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(3) Centre de Morphologie Mathématique (CMM),Mathématiques et Systèmes,
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1 Abstract

A classification method based on textural information for metallic sur-
faces displaying complex random patterns is proposed. Because these kinds
of textures show fluctuations at a small scale and some uniformity at a larger
scale, a probabilistic approach is followed, considering textural variations as
realizations of random functions. Taking into account information of pixel
neighborhoods, the texture for each pixel is described at different scales. By
means of statistical learning, the most relevant textural descriptors are se-
lected for each application. The performance of this approach is established
on a real data set of steel surfaces.

2 Introduction

Texture description in image processing may have different objectives :
extraction of characteristics of the scene, defect detection, surface inspec-
tion, image classification. For defect inspection on materials displaying com-
plex patterns but appearing visually periodic on a larger scale, automated
softwares are very successful by their ability to make fast accurate and repe-
titive measurements (Bennamoun and Bodnarova, 2003; Murino et al., 2004;
Mak et al., 2005). A variety of statistical techniques were investigated, such
as histogram-based texture analysis techniques corresponding to the use of
co-occurrence matrices (Iivarinen, 2000; Latif-Amet et al., 2000), structural
approach (Chen and Jain, 1988), texture modeling (Cohen et al., 1991), fil-
tering approach (Meylani et al., 1996; Kumar and Pang, 2002) and wavelet
transformation of images (Lambert and Bock, 1997; Karras and Mertzios,
2002; Serdaroglu et al., 2006). However, on materials displaying complex
patterns that are random in appearance (i.e., not periodic), detecting subtle
local defects turns out to be difficult (Xie and Mirmehdi, 2005). This kind of
textured surfaces shows fluctuations at a small scale and some uniformity at
a larger scale. To handle it, we rely on a probabilistic approach, considering
textural variations as realizations of random functions. A theoretical way to
characterize them is to evaluate their Choquet capacity, that describes their
properties on sets of compact support. Therefore, we describe the texture
for each pixel of images accounting for information in its neighborhood at
different scales, and thus follow the texton approach of Malik et al. (1999).

For textural description, we applied both linear filtering, relying on curve-
let transformations, and non linear filtering by morphological transformations
of images. In order to compare their performance, statistical learning is used
on documented databases. It is based on linear discriminant analysis and
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allows us to evaluate the textural descriptors performance for the considered
application.

Following a first validation of this approach on synthetical random texture
images (Cord et al., 2007), we present here applications on a real data set
of scrapping metallic surface images. We propose an approach for detecting
small textural anomalies drowned in a textural background.

This paper is organized as follows : in Section 3, the textural descriptors
are proposed and the statistical learning tools are introduced, in Section 4,
an application on a real data set is presented.

3 Methods

3.1 Pixel texture description

The presence of fluctuations at a small scale suggests the use of a probabi-
listic approach to characterize random textures. Therefore, from a theoretical
point of view, a random texture is completely known from its Choquet ca-
pacity.

In defect detection studies, image descriptors are generally evaluated on
small images extracted from larger ones (Xie and Mirmehdi, 2005). Here,
we exploit the theoretical approach to characterize textural properties and
calculate them for each pixel, taking into account local properties of its neigh-
borhood at varying scales.

3.1.1 Theoretical approach of random textures

In this framework, we consider textures as realizations of random func-
tions (RF). Morphological and probabilistic information on RF is obtained
by means of lower semi continuous (l.s.c.) test functions g with a compact
support K in Rn : it can be shown (Matheron, 1969, 1975; Jeulin, 1992, 2000)
that an upper semi-continuous RF Z(x) with real values and defined in Rn is
completely characterized by the Choquet capacity functional T (g), defined,
for all l.s.c. functions g and for all compact supports K, by

T (g) = P{x ∈ DZ(g)} = 1− P{x ∈ DZ(g)c} (1)

where P is the probability of the event {} and

DZ(g)c = {x , Z(x+ y) < g(y) , ∀ y ∈ K}. (2)
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DZ(g)c is the complementary set of DZ(g) in Rn. Note that in Jeulin (1992)
an extension to multivariate RF Zi(x) (like color images, or more generally
multispectral images) is given.

As particular cases, when the compact set K is a point x and g(x) = z
(g(y) = +∞, for y 6= x), the cumulative distribution function is obtained
from 1 − T (g) = P{Z(x) < z}. When using the two points {x, x + h} and
the function defined by g(x) = z1 and g(x + h) = z2, we can derive the
bivariate distribution F (z1, z2, h) = P{Z(x) < z1, Z(x + h) < z2}. More
generally, for a function defined on n points, we recover the multivariate
spatial distribution of the RF. Using g(x) = z for x ∈ K and g(x) = +∞ for
x /∈ K we obtain the distribution function of Z(x) after a change of support
according to the supremum over any compact set K. This corresponds to the
morphological grey-level dilation of Z by K (Serra, 1982, chapter XII). In
addition to dilation and erosion, we use in this study openings and closings
applied to grey-level images. The opening, obtained by an erosion followed
by a dilation by a given structuring element, preserves bright parts of the
image which can contain the structuring element, while the closing operation
(dilation followed by an erosion) preserves dark parts. Applying a succession
of openings (respectively closings) by structuring elements of increasing sizes
makes disappear one by one the characteristics of the image.

To address the problem of segmentation of pixels from texture properties
and of textural anomaly detection, a classification of pixels must be perfor-
med. This requires a local characterization, that can be made in different
ways :

1. As described above, transform the grey-level image by opening or clo-
sing by Ki, and generate a multimodal image from the collection of Ki.
It corresponds to filters, like granulometries, as already proposed by
Sivakumar and Goutsias (1997); Aubert et al. (2000); Fricout and Jeu-
lin (2004). These morphological operations, which are the basis to the
probabilistic characterization of random functions through the Cho-
quet capacity are good candidates as texture descriptors. In this study,
different structuring elements are chosen : squares, vertical and hori-
zontal segments. The structuring elements sizes are [2, 4, 8, 16, 32] ×
2 +1 pixels, that are adapted to our application. For a given type of
structuring element and the list of sizes, all opening and closing images
are evaluated. The descriptor is obtained by calculating the difference
between the open images at sizes n and n + 1 as well as between the
closed images at sizes n + 1 and n. Therefore each pixel is described
by a vector with 30 morphological components, where 30 = number of
sizes (5)× number of structuring elements (3)× number of operations
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(opening/closing).

2. Consider a neighborhood B(x) of each pixel, and use a local estimate
of T (g) inside B(x). From the estimates, generate a multimodal image
from the collection of gi. It uses a local estimate in B of the Cho-
quet capacity and requires the appropriate choice of B. This approach
developed in Cord et al. (2007), will not be used here.

3. An alternative approach to the Choquet capacity and to the dila-
tions/erosions, is to use measures µi with a compact support Ki and es-
timate µi(Z), generating a multimodal image from the collection of Ki.
This approach is less general than the morphological approach, since
it is limited to linear operators. Particular cases are given by various
types of linear filters, like multi-scale convolution by Gaussian kernels,
wavelets, curvelets,... The application of this approach is presented in
Section 3.1.2.

3.1.2 Linear filtering using curvelets

The curvelet transform is a higher-dimensional generalization of the wa-
velet transform, designed to represent images at different scales and different
angles (Candes and Donoho, 1999). The use of this tool to characterize the
texture in an image is recent (Elad et al., 2005). curvelets have very interes-
ting properties in the context of object detection, in particular curved singu-
larities can be well approximated with very few coefficients. This makes the
curvelet coefficients for pixels belonging to a particular object very specific.

The curvelet filter bank is in essence a set of bandpass filters with range
and orientation selective properties. Typically, we apply a linear filtering
of each 100 × 100 neighborhood of every pixel by curvelets with different
frequencies and orientations. The filter bank is decomposed into 4 sets of
frequencies containing respectively 1, 8, 16 and 1 filters of varied orientations
from the smallest frequency to the largest one. The features used are the
magnitudes of each of the 26 filters results.

3.1.3 Synthesis of pixel texture description

To minimize border effects on descriptor calculation, images were exten-
ded by neutral values for the corresponding feature (max for the erosion, min
for the dilation and mean for the linear filtering).

Combining linear and non linear filtering for textural properties descrip-
tion provides us with a 3 dimensional data set having two spatial dimensions
and a descriptor dimension. Each pixel is then described by a vector. This
allows us to follow the texton approach of Malik et al. (1999).
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The calculation is evaluated using an image sizing 256×256 on a PC intel
CPU 3.4 GHz with 1 GB of RAM running Matlab 7.1. The morphological
descriptors having 30 dimensions are calculated in 0.58 sec. The 26 curvelets
are calculated in 2.4 sec. The optimization of the calculation time is not an
issue in this paper, and we focus on the following on prediction performance.

3.2 Statistical Learning

From a practical point of view, using pixel texture descriptions provides
us with a large amount of descriptors for each pixel of each image in the
database. We deliberately use a large number of descriptors, that are auto-
matically selected for each application by statistical learning. In this way,
the approach is generic and the pattern and orientations that are chosen are
problem-dependent. This approach was successfully applied to the classifica-
tion of images in the standard case when there is a single texture per field of
view (Aubert et al., 2000; Fricout and Jeulin, 2004).

The statistical learning approach described here could be decomposed in
three steps.

1. A dimensional reduction of the set of independent variables by principal
component analysis.

2. A supervised learning using linear discriminant analysis.

3. A variable selection based on forward selection.

This approach will help us to know which set of descriptors can best
determine the pixel classes and what classification rule should be applied to
best separate the groups of pixels.

Principal component analysis (PCA) is a vector space transform often
used to reduce multidimensional data sets to lower dimensions. PCA is defi-
ned as an orthogonal linear transformation that maximize the variance of the
projected data. In our applications, PCA is used for dimensionality reduction
in a data set by retaining those characteristics of the data set that contri-
bute most to its variance, by keeping lower-order principal components and
ignoring higher-order ones. A fixed percentage of the variance, typically 99 %
is conserved in order to minimize the possible correlation existing between
textural descriptors.

Linear discriminant analysis. The purpose of linear discriminant ana-
lysis is to classify objects (here, pixels) into one of two or more groups based
on a set of features that describe the objects (here, textural properties). It
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assumes that the groups can be separated by a linear combination of fea-
tures. It is a supervised learning method, meaning that some object, that
has an identified label, should be extracted from the database. More details
may be found in Hastie et al. (2001). Other methods, as SVM, could be used
to produce this classification, but at the expense of a higher computational
cost.

The applied method is a combination of a PCA followed by a LDA on
selected axis (that represent 99 % of the global variance). It produces new
variables, as linear combinations of the initial features that maximizes the
ratio of between-class variance to the within-class variance.

Cross-validation is the statistical practice of partitioning data (pixels in
the present case) into subsets such that the analysis is initially performed on
all except one subsets, while the last subset is retained for subsequent use in
validating the initial analysis. In this work, the original data is partitioned
into 5 subsets. Of the 5 subsets, a single subset is retained as validation data
for testing the model, and the remaining 4 subsets are used as training data.
The cross-validation process is then repeated 5 times, with each of the 5
subsets used exactly once as validation data. We calculate both the mean of
the 5 results to produce an estimation of the learning error, and the standard
deviation to evaluate the expected precision of this error.

Variable selection is made using the classical approach named forward
selection (Guyon and Elisseeff, 2003). It is a method to find an efficient com-
bination of variables by starting with a single variable, and progressively
incorporating variables into larger and larger subsets. The method starts
by first selecting the variable which results in the lowest classification er-
ror. Next, this variable is used to test all combinations with the remaining
variables in order to find the best pair of variables. In all further steps, addi-
tional variables are added until all variables are used up. It is then possible
to select the best subset of variables corresponding to the step where the
error reaches a minimum. Note that the forward selection does not necessa-
rily find the best combination of variables (out of all possible combinations).
However, it will result in a combination which comes close to the optimum
solution.

4 Metallic surface application

In automatic surface inspection, the conventional method of detection /
classification relies on two steps. First fast real time algorithms pull out “ob-
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jects” of interest. Then powerful classification calculations adequately reject
pseudo-defects and sort the pertinent defects in appropriate families. Howe-
ver, on materials displaying complex patterns that are random in appearance,
detecting subtle local defects or describing textural variation turns out to be
a rather difficult task.

The main idea of this application is to detect defects on this kind of
materials. For this purpose, we calculate for each pixel of the image if it’s
belonging to a defect or not (Section 4). Then we implicitly gather the defect
pixels to reinforce the detection (Section 5).

Then, we propose to describe pixels textures using the advanced descrip-
tors presented above and demonstrate their potential in the evaluation of
light defect detection in strongly textured surfaces.

The study was made possible thanks to the “Digital Coil Recording”
(DCR) feature equipping SIAS R© systems, permitting the uncompressed re-
cording of the video stream of an entire coil as a full image, when desired.
Large amounts of images were thus processed with this aim.

Training database extraction. For this application, we use a database
containing 800 images of scraping steel surface factory, provided by SIAS R©.
Those images typically have a size of 240× 296 pixels, with a 1 mm scale reso-
lution, and all of them contain different defects on a non uniform background
showing fluctuations of texture. Our objective is to distinguish standard steel
surface, versus defects.

Among the 800 images, we randomly pick 50 of them for the training of
the system. The rest will be used to validate the results at the very end. On
these 50 images,

– all the defect pixels are manually localized, and
– we measure all the 56 texture descriptors that are described in Sections

3.1.1 and 3.1.2 (30 morphological granulometries and 26 curvelets linear
filtering).

The number of images for the training is sufficient because the objects
that are classified during the learning procedure are pixels. Many of them
can be extracted from these 50 images. Indeed, we randomly select 100 000
pixels belonging to the defect class and 100 000 pixels outside, corresponding
to the background. All the descriptor vectors of those pixels are placed in
a database, that is used in the following learning procedure to evaluate and
select variables.

Classification using all the descriptors. The first step of the analysis
is meant to evaluate the efficiency of both the descriptors and the learning
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procedure in the task of classifying pixels between the 2 classes “defect”
vs. “background”. We run the learning procedure combining PCA and LDA
with a cross-validation step as described in Section 3.2. The use of the cross-
validation is essential to evaluate the performance of the learning procedure.
Without it, our performance would be too optimistic because of potential
overfitting.

The histogram of the pixels descriptors projection on the first discrimi-
nant axis for one subset of the cross-validation is presented in Figure 1. All
other subsets are very similar.

Figure 1 – Projection of the test data on the first linear discriminant axis
for one subset of the cross-validation. The x-axis is the coordinate of the
projection on the first linear discriminant axis. The y-axis is the proportion
of pixels. The background data are plotted in black. The defect data are
plotted in white.

In this figure, the separation between the two classes looks good. It is
confirmed by the evaluation of the following statistical criteria for the test
data :

– The accuracy (number of pixels correctly classified / total number of
pixels) is 94.4 % (with a standard deviation of 0.2 %).

– The sensitivity (percentage of defect pixels classified as defect) is 96.3 %
(0.3 %).

– The specificity (percentage of normal pixels classified as normal) is
92.5 % (0.3 %).

– The positive predictive value (percentage of classified as defect pixels
who are correctly classified) is 92.8 % (0.2 %).

– The negative predictive value (percentage of classified as normal pixels
who are correctly classified) is 96.2 % (0.2 %).
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There was no significant difference between the performances on the trai-
ning and the test data. This indicates that the learning procedure does not
overfit the data, i.e., that the number of selected pixel in the database (100
000 per class) is sufficient compared to the number of descriptors (56). It thus
confirms that the choice of extracting only 50 images for the 800 available
images is relevant.

The accuracy of 94.4 % shows that the descriptors we propose are valid
for the classification task. The small classification error may be explained by
the fact that our pixel database is not perfect. Indeed, pixels located near a
defect border may not be easy to classify.

Relying on these results, we consider the possibility of obtaining such a
score using only a subset of variables.

Variable selection. Using forward selection of variables as detailed in
Section 3.2, we calculate the mean test error and its standard deviation as a
function of the number of remaining variables in Figure 2.

Figure 2 – Classification test error versus number of selected variables. The
error bars correspond to error standard deviation.

It shows that the error decreases as the number of variables increases
and reaches a minimum for 20 selected variables. The standard deviation
keeps a very low level whatever the number of selected variables. It assures
us of the stability of the learning procedure. Keeping the selected subset
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of 20 descriptors leads to a classifier as efficient as having the whole set of
descriptors.

Those 20 variables, sorted as function of their classification power, are
presented in Table 1 with the associated classification error and standard
deviation.

Descriptor Error (%) StdDev (×0.01)
1 curvelet Low Freq. angle from vertical of 112.5̊ 24.9 0.316
2 curvelet High Freq. angle from vertical of 78.75̊ 20.64 0.151
3 curvelet Low Freq. angle from vertical of 135̊ 17.59 0.054
4 Opening with Horizontal line of size 65 14.6 0.105
5 Closing with Square of size 33 12.99 0.192
6 curvelet High Freq. angle from vertical of 90̊ 11.65 0.175
7 curvelet High Freq. angle from vertical of 123.75̊ 10.42 0.153
8 Closing with Square of size 65 9.53 0.211
9 curvelet Low Freq. angle from vertical of 45̊ 8.69 0.165
10 curvelet High Freq. angle from vertical of 0̊ 7.83 0.094
11 Closing with Square of size 17 7.47 0.148
12 Opening with Square of size 65 7.10 0.109
13 curvelet Low Freq. angle from vertical of 22.5̊ 6.71 0.104
14 curvelet High Freq. angle from vertical of 157.5̊ 6.53 0.097
15 curvelet High Freq. angle from vertical of 67.5̊ 6.33 0.245
16 curvelet High Freq. angle from vertical of 112.5̊ 6.19 0.117
17 curvelet High Freq. angle from vertical of 135̊ 6.04 0.099
18 Opening with Vertical line of size 5 5.89 0.098
19 Closing with Square of size 9 5.79 0.103
20 curvelet Low Freq. angle from vertical of 90̊ 5.66 0.095

Table 1 – Classification test error with respect to the selected variables (cg.
Fig. 2)

From this Table, it appears that curvelet linear filters are the best des-
criptors for the classification task in the present application. Indeed, the
curvelets are the 3 first selected variables and they represent 13 of the 20
selected variables. We found both low and high frequency filters. It confirms
the relevance of those descriptors for the presented application, in particular
the choice of filter frequencies.

However the curvelets are not sufficient by themselves. Indeed, a quick
test shows that keeping only theses descriptors leads to an error of 11.4 %.
It appears that the morphological granulometry cooperates well with the
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curvelets. The structuring elements corresponding to the selected descriptor
presents a good representation of the available ones, both in terms of forms
(Horizontal lines, vertical lines and square) and sizes (65, 33, 17, 9 and 5
pixels).

In our approach, the relevant descriptors are selected for the current ap-
plication by statistical learning. In this way, the method is generic and the
pattern and orientations of the filters that are chosen are problem-dependent.

Threshold setting. On the selected subset of descriptors, we calculate the
projection matrix, that corresponds to a linear combination of the 20 selected
descriptors. To find a mapping of defects on a global image, we project every
pixels on the first discriminant axis. We need to find a threshold over which
a pixel is considered as a defect.

The ROC curve (Egan, 1975), plotted in Figure 3, is produced on the 200
000 pixels from the database by varying the threshold corresponding to the
limit between background and defect.

Figure 3 – ROC curve for the metallic defect detection. The black point
corresponds to the selected threshold.

In our application, we need to minimize the false detection rate. Indeed,
we only need to find some pixels in a global defect to produce an alert. Then
we seek on the ROC curve the threshold that corresponds to a false detection
rate of 1 %. It leads to a high missed detection rate of 35 %, in terms of pixels.
However, as it is presented in the following, it mainly corresponds to pixels
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located on defects borders.

5 Results on metallic surfaces at the image

level

In this section, we translate the detection from the pixel scale to the
image scale, by implicitly gathering detected defect pixels. Because a defect
is composed of numerous pixels, using this information enhance the statistical
results. The method was evaluated on available images. The process of any
incoming image is the following :

1. Calculation of the 20 selected descriptors.

2. Projection on the first discriminant axis.

3. Application of the threshold, determined using the ROC curve.

We applied this process on the 800 available images. Some results are
presented in Figure 4. The two top rows illustrate the variability of defects
that can be detected by our approach. On the third row, the thinnest part
of the defect is missed, but there is still a detection on its larger part. On
the last row, the defect located at the center of the image is too thin to be
detected.

All images contain both defect and background. The classified images
were all manually scanned to evaluate the following results. First, with the
selected threshold, there is not a single false detection (meaning a detection
occurring outside the defect in an image). It corresponds to a specificity and a
positive predictive value of 100 %. Only 20 images present a partially missed
defect, as shown in the third row in Figure 4. Four images present a totally
missed defect, as shown in the last row in Figure 4. It then corresponds to
a sensitivity of 99.5 %, a negative predictive value of 97 % and an accuracy
of 98.5 %. It shows that defects are well located by the approach, whatever
their shape and structure. A complementary description of this shape and
structure could be used to determine the defect category.

As a conclusion on this example, the pixel texture description allows us
to characterize pixel neighborhood properties and to distinguish defects and
a standard textured background. We could extend this study by testing some
other texture descriptors, or applying some post-processing on detected area
to improve the results.
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Figure 4 – Examples of defect detection. On the left, the original image. In
the middle, the projection on the first lda axis. On the right, the detection
after applying the threshold. From top to bottom, two good detections, a
partially missed defect and a totally missed defect.
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6 Discussion and conclusion

The methodology presented in this paper is slightly different from typical
classification tasks on images. The originality is to describe all pixels of each
image by some local descriptors and to use the learning process at the pixel
scale. In this way, we have access to an quasi-unlimited number of samples
to train and test the statistical model. The gathering of the classified pixel
enhance the detection at the final step.

Morphological image transformations, and curvelets provide efficient des-
criptors for pixels classification according to the local texture. In the tes-
ted application, they allow to point out the textural variations existing in
images, and to discriminate between specific characteristics. We could add
some other descriptors, as wedge or wavelet for instance, to generalize the
approach and may be to improve the results. However the complementarity
of linear (cuvelets) and non linear (morphological) filtering presented here
leads to a satisfactory performance on the considered example.

We deliberately use a very large number of descriptors, that could be
selected for each application by statistical learning. In this way, the approach
is generic and the pattern and orientations that are chosen are problem-
dependent. Indeed, the pertinence of a subset of image transformations for
texture classification depends on the application, and can be ascertained from
statistical learning techniques. Then, the method could be applied to a large
set of problems relying on pattern recognition in random textured images.

Other learning approaches could be used in the same kind of study, as
SVM, LARS/Lasso for instance. We deliberately choose to use the combina-
tion of simple tools as PCA and LDA because they are easy to handle, fast
to compute and produce satisfactory results for our application.
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Paris.

Matheron, G. (1975) Random sets and integral geometry. J. Wiley.
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