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Abstract

We produce bidirectional reflectance experimental measurements in the visible and near-infrared range of a macroscopic target simulatin
the case of a martian crater. Using Hapke’s equation of radiative transfer, we compare the performance, in terms of mineralogical abundanc
determination, of different deconvolution processes on a multispectral image of the experimental target. In particular, we study the effects
of the topography and the physical properties of natural rocky surfaces (e.qg., local variations of incidence and emergence angles, grain siz
variations, mixtures of materials) on the data interpretation. For this purpose, we increase progressively the amount of quantitative knowledg
available in terms of Hapke parameters description, textural properties and topography for the target. We estimate the accuracy of results |
comparison with the known ground truth as a function of the level of knowledge we have of the target and carry out a critical assessment on th
relative applicability of the different processes. This study shows that the more important parameters to take into account are (in decreasin
order): (1) the textural roughness which is shown essential for the accurate determination of mineralogical abundances; (2) the disparit
of Hapke parameters across the target (3) the topography (DEM) that has a limited influence on the results. These findings have obviou
implications for interpreting planetary regolith reflectance properties in terms of photometry, spectroscopy and mineralogy, measured eithe
from spaceborne (e.g., lo observations from Galileo, Mars from Mars-Express/[HRSC and OMEGA) or in situ (Mars Pathfinder, MER)
instruments.
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1. Introduction of the mixing model. This arises from the fact that the re-
flectance spectra depend in a complex manner on (1) the

The planetary surfaces can be seen as a mixture of manyfropert;)es ofche |nd|\#qQaltcomr;1)one?ts ctc'Jmpnsngththe Eur-
different minerals. When interpreting remote sensing re- ace (absorption coefficients, phase function), (2) the phys-

flectance data, one of the key objectives is to quantify and ical state of the surfgce (part_it_:le size, surface rO.UtheSS)
map the mineralogy of planetary materials. However, it is and (3) the observation conditions. Several theories based

difficult to apply a deconvolution process, which provides on the scattering principles exigthandrasekhar, 1960; Van
. . . de Hulst, 1980; De Haan et al., 1987; Stamnes et al., 1988;
an accurate estimate of the mineral abundances as it de- " ) .
ends greatly on mixture in a pixel and the correct choice Mishchenko et al., 1999; Shkuratov and Helfenstein, 2001)
P Among themHapke (1981, 1986, and 1998gveloped an
approximate analytical solution, which provides the bidi-
— Corresponding author. Fax: +33-5-61-33-29-00 rectional reflectance of a particulate medium, using the ra-
E-mail addressesaurelien.cord@cnes, fr diative transfer equation describing the multiple scattering

acord@rssd.esa.igh.M. Cord). of light from soils. It is a nonlinear function of the single

0019-1035/$ — see front mattér 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.icarus.2004.08.010


http://www.elsevier.com/locate/icarus
mailto:aurelien.cord@cnes.fr
mailto:acord@rssd.esa.int

The role of photometry in spectral reflectance deconvolution 79

scattering albedo and parameters linked with the geometric :
conditions of observations, the multiple scattering, the phase !
function, the opposition effect and the roughness.
Depending on the scale of the distribution of the mate-
rials within the pixel, we may consider two kinds of mix-
ture, either areal or intimatéPoulet et al., 2002; Poulet
and Erard, 2004)For areal or macroscopic mixtures, the
reflectance spectrum of a pixel can be considered as a lin-
ear combination of some spectra derived from small areas
representing distinct materials (called “endmembers”) cho- :
sen within the image or extracted from a spectral library:
a Spectral Mixing Analysis (SMA) can be appliéddams o
et al., 1986; Roberts et al., 1998; Chabrillat et al., 2000) r 2
In this approach, the spectral properties of the endmembers &5 & .
are combined linearly in a least-squares mixing algorithm to
provide the best fit for each pixel. For intimate or “salt and
pepper” mixtures, the mean single scattering albedo of a par
ticulate mineral mixture is a linear combination of the single -
scattering albedo of the components, weighted by the cross 2
sectional area of each componéHapke, 1981; Johnson et
al., 1983) An established method to handle the deconvolu-
tion process is to calculate the single scattering albedo im-
age, using photometric modeling (such as the Hapke model), . yiqe field imaging facility, at the Midi-Pyrenees Obser-
and then_ perform a SMA. This methOP‘ Is widely applied vatory, France, and dedicated to the measurement of the mul-
on experimental spectiustard and Pieters 1987’ 1989; tispectral properties of macroscopic surfaces X280 cm)
Johnson' et al.,, 1992; Sabol et al., lg9®) on lnte_grated with a submillimeter spatial resolution within the 0.40—
telescopic and spaceborne photometric observations for the_L.05 um domairgPinet et al., 2000, 2001We compare the

study of photometric function of lunar terrains or regolithic performance of different deconvolution processes (linear and

soils of asteroid¢Helfenstein et al., 1996; Mustard et al., ,hiinear) applied on a multispectral image of the controlled
1998; Li and Mustard, 2000; Tompkins, 2008ome stud- target.

ies give the comparison of Hapke's model and other methods e first depict the target and the facility used for the mea-

(H|ro! and Pieters, 1994; Nichols et al., 1999; Cheng and ¢ ;;ements and then we describe the methodology (Hapke’s
Domingue, 2000; Poulet etal., 200Znese works generally  mqqe| endmembers research method and spectral mixing
do not take into account the global set of Hapke’s parametersanawsis). Finally we present and analyze the results from

asitis notavailable. _ _ the different deconvolution processes.
Differently from earlier experimental works dealing

with powder mixtures analyzed using laboratory spot spec- 1 1. The target
troscopy (e.g-Mustard and Pieters, 1989; Sabol et al., 1992;
Johnson et al., 1992; Hiroi and Pieters, 1994 which the We built a target that is a good simulation of a crater
experiments were designed to minimize any influences on modifying the martian regolithRig. 1). We chose this kind
photometric parameters due to variations in particle size, of geologic structure because on one hand it is frequently
textural roughness and regolith structure, the purpose of thegbserved on planetary surfacg®arlow, 2000)and on the
present study is to investigate experimentally the case of aother hand it has a complex photometric behavior due to
“real-world” extended target and to assess the effect on datamixtures of minerals, local variations of incidence and emer-
interpretation when increasing progressively the amount of gence angles and grain size distributions. This synthetic tar-
quantitative knowledge available in terms of surface compo- get simulates the major photometric variations induced by
sition, textural properties and topographic description for the an impact process, in terms of local topography slopes, in-
controlled target. Indeed, this is an attempt at addressing theverted stratigraphy and surface redistribution associated with
case of natural surfaces for understanding how to proceedimpact ejecta, not regarding the thermodynamic effects due
with the deconvolution and interpretation of multispectral to impact-driven pressure and temperature conditions (e.g.,
and hyperspectral imaging data obtained on rock/soil sur-fusion products, glasses). In particular, the geometric aspect
faces in planetary exploration and earth observation. ratios of the crater are taken into account in order to best
To carry out such an experiment, we have built up a con- approximate the photometric variations expected in the real
trolled target, with varied mineralogies at the subpixel scale, case. Since the total target size is aboutx2Q0 cm, the
simulating a crater modifying the martian surfa¢ég( 1). simulated crater is 21 mm deep and 80 mm wide in diam-
Then we have produced measurements by means of a speceter, providing a maximum slope angles about 8bthe

Fig. 1. Photo of the “real-world” target. It simulates a crater modifying the
martian surface It sizes about 2020 cm.
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wall of the craterFigure 2shows the digital elevation model no spectral dependence (basalt) while the two others have a
(DEM) of the target, allowing the evaluation of local inci- high reflectance increasing as a function of wavelength. The
dence and emergence angles for each pixel. The calculatiorred tephra and the palagonite both have a low spectral con-
of the DEM is axially symmetric. It is different from the real trast in order to investigate how effective the deconvolution
topography of the target that shows eight distinct lobes of process is for their discrimination.

material arranged in a star-shaped pattern. However, the er- A preparatory study detailed i@ord et al. (2003g)al-

ror estimate on the evaluation of incidence and emergencelowed us to handle the photometrical properties of the three
angles for each pixel is less thah dnd this has a minor in-  materials: it presents a method for a determination of the

fluence on the deconvolution process results. global set of parameters involved in Hapke’s model (shown
The target is composed of three different types of basaltic here inTable 2a) when dealing with a set of angular con-
materials: ditions representative of the usual range of observation in

planetary exploration for spaceborne optical instruments.

e A fresh unaltered basalt, with some phenocrysts of = The target comprises three stratigraphic surface layers,
olivine, pyroxene and plagioclase, from a lava flow of illustrated inFig. 4, with the following sequence from top
Pic d’Ysson (Massif Central, France). This sample is la- to bottom: tephra, palagonite and basalt. A fraction of the
beled “basalt”. three layers is distributed in the synthetic ejecta to simulate

e An oxidized basaltic red-tephra, labeled “tephra”, from the inverted stratigraphy. As a result, the target has seven
Flagstaff Cinder Sales (Arizona, USA) containing few different concentric zones, each having specific composi-
phenocrysts of plagioclase. This material is related to tions from the outermost to the innermost: 100% tephra,
explosive-type basaltic volcanism, with some effects of 80% tephra and 20% palagonite, 80% palagonite and 20%
iron oxidation. basalt, 100% basalt, 100% tephra, 100% palagonite, 100%

e A highly altered basalt, palagonitic-like material, la- basalt. The materials are intimately mixed in the crater’s
beled “palagonite”, from the Salagou Lake (Herault, ejecta and the compositional variability has been produced
France). This basalt has been intensively altered by low by controlled volumic mixtures, allowing us to master the

temperature water circulation. reference volumic proportion inside each zone. Then, as-
suming the composition to be identical for each pixel in-
The chemical whole rock analyses are giverable 1 side a zone, we compute, for each material, an image giv-

These three selected materials are good analogs of materialihg the expected mineralogical abundance for all the pix-
existing on planetary surfaces, particularly for M@sard els, called ideal Mineralogical Fraction Images (ideal MFI)
and Calvin, 1997; Murchie et al., 2000)hey have varied  (Figs. 9a—9% Due to the volumic control of the mixture, the
grain size ranges (sd@ble D). The presence of those large mineralogical abundances are equivalent to the geometrical
grains induces an important “mesoscopic roughness” as de-

fined in Cord et al. (2003a)Indeed, in this study, it was 045

shown that the submillimetric to centimetric scales influence o.40 —o— Basalt

strongly the optical response. The materials present differ- ..

. . . . . —=—Pal it
ent spectral propertie§ig. 3): one is a grey material with slagente

—— Tephra

0.00
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Fig. 3. Bidirectional reflectance factor spectra of the three materials. The

Fig. 2. Digital Elevation Model computed for the crater (unit is pixel). incidence angle is 30and emergence®0
Table 1
Chemical whole rock analyses for the three materials (w%)
SiOy Al,O3 Fe,O3 MnO MgO CaO NaO KoO TiOy P05 LOI
Basalt 428 115 129 0.3 153 9.6 27 12 21 0.6 10
Palagonite 4 194 7.3 0.1 32 54 22 41 0.6 0.2 117
Tephra 480 179 118 0.2 5.8 9.7 37 0.7 17 0.5 0.2

The precision on determination4s1%.
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Table 2
(a) Values of Hapke’s parameters for the three materials present in the target sourced from a preparatory study (Cord et al., 2002c), (b)fresertan o
grain sizes present in the crater

(a) Hapke’s parameters (b) Grain sizes

b c h Bog 0 Min. (um) Max (um)
Basalt 042 032 014 016 250 250 2000
Palagonite o4 040 013 025 250 50 1000
Tephra 041 052 030 015 250 50 1000
Mean 042 044 02 0.2 250

The mean values adopted when considering that the parameters are constant across the target are in the last line.

._/_é I&-xl the field of view estimated at the pixel scale ranges from
| 0.005 to 0.01 in reflectance, depending on the considered
wavelength(Pinet et al., 2000, 2001WVith this binning, we

are aware that the pixels are smaller than the largest grain
Fig. 4. Organization of three materials in stratigraphic layers, with a se- sizes {fable 2)) The validity of .the photometric m.OdeI We.
quence from top to bottom of tephra (in light grey), palagonite (in deep use (Hapke) is not well established for observations of in-
grey) and basalt (in black) horizons. dividual soil particles. However, the grain size classes are
large enough to assume that most of the pixels contain a lot
cross-sections of each material. These images will be use f_smal! particles Fhat are eventually mixed Wi.th Iarger_ones.

tis valid to take into account the photometric behavior of

as a reference to evaluate the results from the different de—Small articles using Hapke's model. Then. we assume that
convolution processes. Some errors are produced when we P g nap : ’

compute the ideal MFI due to grain sizes that are occasion—the model is valid for most of pixels. During the comparison

ally close to the pixel size. Besides, one should note that ourofdeconvolutlon processes results, there is a statistical aver-

estimates have only a statistical meaning for each zone; how-29€ coming from the large number of pixels that are present

ever, this is not critical since, in the following, we will focus in the image (more than 30,000).
on the relative performance of tested processes. Despite it
relative simplicity, this target allows us to statistically quan-
tify the influence of photometry on unmixing processes.

*1.3. Method

In the different deconvolution processes used in this pa-
per, the data are expressed in bidirectional reflectance or
transformed into single scattering albedo using Hapke’s
equation(Hapke, 1981, 1986, 1993 all the cases, each
pixel's spectrum of the multispectral image is considered as
the result of the mixing of a number of reference material
spectra, referred to as the endmembers in the following.

1.2. Instrumentation

The spectral imaging facility is located at the Midi-
Pyrénées Observatory in Toulouse, Frar{Bénet et al.,
2000, 2001; Cord, 2003)t measures the bidirectional re-

flectance properties of macroscopic targets (aboutx20 In this section, we give a short description of Hapke’s
20 cm), with a spatial resolution of 0.2 mm per pixel. ’

Th . ST ; dmodel, endmember research using Principal Components
e measurements are obtained in visible anq ngar-mfrar_e lAnalysis (PCA) and the spectral mixing analysis.

range by means of 16 narrow band interferential filters: their

typical band pass is 15 nm and their central wavelengths are; 51 Hapke’s model

ranging from 0.4 to 1.05 um. We produced a multispectral
image of the target with an incidence angle of 3hd an
emergence angle of0

Hapke (1993)proposes an empirical model to calcu-
late the bidirectional reflectange). Here we rely on what
s . . . Hapke calls “reflectance coefficient” or “reflectance factor”,
The bidirectional reflectance is obtained using a spec- p _ 7r/cogi). This is the usual outcome of laboratory

f[tralon ai a rbefetr_encg ‘;'1”“99 rrtlﬁasurent'\erllts. Tto aé:codunt foc;measurements (relative to a reference sample observed un-
its non-Lambertian behavior, the spectralon standard usedyq, imijar geometry):

has been calibrated by means of measurements produced by

ONERA, Toulouse, France, and consistently compared with p — v [(1+ B(2))P(g) + H (o) H (1) — 1]5(9),
independent recent estimai@onnefoy et al., 2001) 4(uo+ )
A 6 x 6 binning is applied on the multispectral image, 1)

which both increases the signal to noise ratio (SNROO) whereug, u are, respectively, the cosines of incidence and
and smoothes the local heterogeneities at the pixel scaleemergence anglesg,is the phase angley is the single scat-
(spatial resolution~ 1.2 mm) for the purpose of reducing tering albedo,B is the opposition effect function? is the
the target optical complexity (orientation of crystal facet, phase functionH is the isotropic multiple scattering func-
anisotropy). The homogeneity of the measurements acrosgion andsS is the function for macroscopic roughness.



82 A.M. Cord et al. / Icarus 175 (2005) 78-91

The H function used is given irHapke (1993) corre-
sponding to an approximation with a difference of less than o>+ S
1%.

The double Henyey—Greenstein function, including two  =-== |
parameters, describes the particle phase funatigyp with
sufficient accuracy for most radiative transfer calculations
in planetary regolith§McGuire and Hapke, 1995; Hartman
and Domingue, 1998)

plot =227

P@)=(1-0 L0
g)=Lr=c 2\3/2 IO
(1+ 2bcogg) + b2)3/ ; ;,,.;-»Qé,lQA SR
; 2
+c(1—2bcos(g) I ) e gl 0301 Reflectanve Spectra
whereb andc are the two parameters linked with the mater- 0.25 3
ial properties. 0.20 ]

With a phase angle of 30the coherent backscattering -

opposition effect (CBOE) is negligiblHelfenstein et al., By 015 /
1997; Hapke et al., 1998; Shepard and Arvidson, 1999; [o] =" = gég 5 A
Kaasalainen et al., 2001; Shkuratov and Helfenstein, 2001) ' ‘ '
- " 0.2 04 08 08 1.0 1.2

Consequently, only the shadow hiding opposition effect
(SHOE) should lightly influence the measurements and is  Fig. 5. (a) PCA cloud, (b) image of the target, (c) associated spectra.
described by the functioB(g) in Hapke (1993)

The function for macroscopic roughnesso, o, 1),
called topographic shadowing function in the following, is for the crater multispectral image, the pixel locations in the
presented itHapke (1993)The parametef providesamea-  PCA clouds associated with both the locations inside the
sure of surface macroscopic roughness inside a pixel. Theimage and the spectra. This approach is used to relate the
macroscopic roughness alters the local incidence and emerstatistical distribution of the spectral properties within the
gence angles. multispectral dataset with criteria of spatial coherency based

The preparatory study undertaken on the three materialson knowledge of the observed scene. It allows an optimal se-
composing the cratefCord et al., 2003apave us typical lection of image endmembers generally from the edge of the
values, which are presented Table 2, for all the para-  PCA clouds, representing spectrally extreme pixels. More-
meters involved in Hapke’s equations. Moreover, it showed over this method is helpful to depict the mixing trends be-
that in the spectral domain under consideration in this study, tween the different endmembers of the image in relation to
i.e., 0.4-1.05 microns, the shadowing function and the parti- their spatial distribution.
cle phase function are weakly dependent on the wavelength
(Cord et al., 2003b)it is not taken into account here and we
consider that Hapke parameters only depend on the physical
and mineralogical properties of the selected materials.

|1 .3.3. Spectral mixing analysis

Whether the data are in bidirectional reflectance or in sin-
gle scattering albedo, a number of endmember spectra of
known composition are selected as described above. The
spectral properties of the endmembers are combined in a
least-squares mixing algorithm to provide the best fit for
each pixel within the image. Each pixél j) is thus rep-
resented by a proportion of each endmember required to
minimize the difference between the model spectrum and the
actual spectrum:

1.3.2. Endmember research

The Principal Components Analysis (PCA) takes advan-
tage of both spatial distribution and spectral characteristics
(Smith et al., 1985; Johnson et al., 1986)s a mathemat-
ical technigue that describes a multivariate set of data using
“derived variables.” The derived variables are formulated
using specific linear combinations of the original variables
(in this case, the wavelengths). They are uncorrelated and
computed in decreasing order of variance. Therefore PCA gM ZFk RM 4 M 3)
constructs a small set of derived variables that reduces the ij iy Ly’
dimensionality of the original data. In this study, the three
first axes take into account more than 96% of the variabil- where M: number of endmemberss L measured re-
ity of our multispectral image. Consequently, for the data flectance of pixel, j for Wavelengthk;, Flk . mixing co-
representation, all the pixels of the multispectral image, as- efficient of endmembet for pixel i, ] Ry A reflectance of
sociated to spectra, are projected in the space of the threeendmembek for wavelengthiy; E; ’ : error for pixeli, j
first axes of PCA, giving a cloud of pointsigure 5shows, and wavelength,.



The role of photometry in spectral reflectance deconvolution

Table 3
Values of criteria applied during the linear spectral mixing analysis to select
pixels that are properly modeled

Mean RMS RMS per
level wavelength
Bidirectional reflectance data 165 Qo1 0015
Single scattering albedo data 409 Q02 003
Then, the RMS error for each pixel is:
4)

whereN: number of wavelengths.

The inversion is a minimization of the RMS error for each
pixel using different combinations of the endmembers (see
Iterative Spectral Mixing Analysis i€habrillat et al., 2000

Based on the evaluation of the instrument accuracy estimates

on the reflectance measurements (cf. Secti@)) we define

the statistical result as the proportion of pixels that have a
satisfactory solution according to the following quantitative
criteria:

e The relative mixing coefficient for each endmember is
constrained between 0 and 1.1.

e The RMS error has to be less than 0.01 for bidirectional
reflectance image and 0.02 for single scattering albedo
image.

e The absolute error for each Wavelengiﬁ should be
less than 0.015 for bidirectional reerctance image and
0.03 for a single scattering albedo image.

The values used for the different cases (bidirectional re-

83

(%)

illurmination

100 1

pixel

flectance and single scattering albedo) are summarized in_

Table 3 We notice that the mean level of a bidirectional re-

flectance image is three times less than the mean level of

Fig. 6. (a) Luminosity image for the case labeled “const”. This image is less
than 1 when the pixel luminosity is smaller than the mean luminosity of the
endmembers. White pixels are not satisfactorily inverted pixels. (b)’A-A

a single scattering albedo image, explaining the differencesprofile of the illumination images. The crosses correspond to “const” and

between criteria applied.
The outcomes of such analyses are

e Endmember Mixing Coefficient Images (EMCI), repre-
senting the proportion of each selected endmembers.

e A standard-deviation image, RMS image, revealing the
units that are not satisfactorily described by the pro-
posed model in terms of unexplained residual variance.

In our case, we produce three EMCI, one for each mate-
rial. To estimate the contribution of shade/shadow from the
scene, we compute a relative luminosity image, using the
following formula:

M
_ k
A= ZFI»,]-.
k=1

The Fig. 6a shows this image for the deconvolution
process labeled “const” in the following. It shows the rel-
ative luminosity of each pixel in comparison with the mean

(%)

the line to “dem”.

luminosity of the endmembers. The darkest area is located
on the wall of the crater, on the side of the light source, as
expected. This image derives from the SMA and allows us
to take into account the small variations of luminosity in the
scene that are not taken into account by photometric models
when it is applied before. Relying on the idea that shadow
contribution leads to a linear variation on spectra, the EMCI
are renormalized by this image in order to eliminate the ef-
fects due to shadowing from those related to the nature of
the material:

k

Vi, j.k, FFo=-1L 6
L] WA (6)
giving
M
Vi.j Y Ff=1 (7)
k=1
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WhereFk. is the relative cross sectional abundance of the
mineral represented by the endmembgem the pixeli, j.

We should notice that when the data are expressed in sin-
glke scattering albedo, the relative cross sectional abundances
F;
no{ directly mineralogical fractions (froidapke, 1981 In

this framework, the mixing coefficients are actually geomet-
rical cross-sections. However, as explained in Sectidn

due to the volumic control of the material mixtures, the ideal (4)
mineralogical abundances are equivalent to the geometrical
cross-sections of each material. In the following, we will call

Fk

comparable with the ideal MFI defined above (Sectial).

2. Resultsand discussion

We compare in the following the performance of different
deconvolution processes on the experimental multispectral
image, when we increase gradually the amount of quantita-
tive information available for the target. We estimate their
respective efficiency as a function of the level of a priori
knowledge available for the target and carry out a critical
assessment on their relative applicability.

2.1. The five deconvolution processes

@)

)
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surface composed of grains with similar photometric

properties.

Using the digital elevation model (DEM) (cFig. 2,

we evaluate the local incidence and emergence angle for

each pixel for the transformation into single scattering

albedo. This case, labeled “dem”, would be valid for a

macroscopically uneven target composed of grains hav-

ing similar photometric properties.

In the highest level of knowledge, the DEM is taken into

account and the Hapke parameters (exeeptre cal-

culated, for each pixel from the “linear” deconvolution
process, as a linear combination of pure materials pa-
rameters, weighted by the abundance of each material.

Then the single scattering albedo is evaluated for each

pixel. This case, labeled “var”, is the most adapted to our

target: a macroscopically uneven surface composed of
grains having varied photometric properties. The com-
bination of Hapke’s parameters is probably highly non
linear and we must investigate further how the parame-
ters of mixing should be calculated. However, as a first
approximation, we will see that this method gives better
results than when the spatial variation of mineralogical
properties is neglected.

(5) Finally, we have a particular interest in considering the
effect of roughness of the target. This case is the same as
number 4, except for the topographic shadowing func-
tion which is not taken into account, i.&.,= 0°. This
case, labeled “thet0”, would be applicable for a virtual

derived from the spectral mixing analysis are actually

the Mineralogical Fraction Image (MFI) that will be

We first applied a linear deconvolution process, labeled

“linear”, where the SMA is directly applied to the bidi-

rectional reflectance. It is a standard technique used for
the processing of remote sensing planetary data in the
general case, when no a priori knowledge of the target is

surface without any macroscopic roughness inside each
pixel. In principle, it could be approached by extremely
flat surfaces only composed of very small grain with
sizes of a few microns.

available. It is the basic approach only valid in the case

of areal mixing. All the tested deconvolution processes are summarized in
Then, in the subsequent experiments, relying on a tech-Table 4

nique proposed by Hapke, the deconvolution proceeds

in two steps: an inversion of Hapke’s model to convert 2.2. Comparison between deconvolution processes

data from bidirectional reflectance into single scattering

albedo, followed by a SMA. To evaluate the other para-  All the deconvolution processes give similar statistical
meters of Hapke’s modeb( c, h, Bo andd), we used a  results: the proportion of pixels that have a satisfactory so-
varied amount of information about the target from one lution according to the quantitative criteria defined above
case to the other: (Sectionl1.3.3 is between 89 and 91% for all the cases. It
Assuming the knowledge of the mean Hapke parame- provides a control on the validity of the mixture modeling,
ters (exceptw) of target materials (cfTable Z), we in particular the choice of endmembers.

transform the multispectral image into single scattering  Hence, the difference arising between the different pro-
albedo with all parameters constant across the target.cesses appears in what we define as the physical criteria:
This case, labeled “const” in the following, would be it is evaluated by a comparison between the results of the
in principle only applicable for a macroscopically flat deconvolution processes (calculated MFI) and the ground

Table 4
Summary of the tested deconvolution processes

Linear Const Dem Var ThetO
Conversion intaw No Yes Yes Yes Yes
Incidence and emergence angles N/A Constant Variable Variable Variable
b, ¢, h, Bg values N/A Constant Constant Variable Variable
6 value N/A Const£ 0 Const£ 0 Variable Zero




The role of photometry in spectral reflectance deconvolution 85

truth (ideal MFI,Fig. 9a—¢: Fig. 7shows on the abscissathe e The percentage of pixels that are physically well mod-
percentage error between the calculated MFI and the ideal,  eled according to this thresholdgble 5. It allows a

and on they-axis, the proportion of physically well-modeled good discrimination between the different deconvolu-
pixels for all three materials. It shows that whatever the er- tion processes.

ror threshold, the deconvolution process results are always e The mean absolute difference between the ideal MFI
sorted in the same order: “var”, “const” and “dem”, “thet0”, and the calculated MFI for each material and we obtain
“linear” from best to worst. To establish the adequate physi- Fig. 8

cal criteria, we rely on the work dabol et al. (1992)they

use spectral mixture analysis to determine detection limits ~ These indicators show that the physical solutions, pro-
of target materials in the presence of background materialsvided by the different deconvolution processes, are not
within the field of view under various compositional con- equivalent. In the following, we discuss about the dissim-
ditions. In particular, they show that the detection limit for ilarities.

two materials with low spectral contrast is between 12.5and  For instanceFig. 9shows also that there are more pixels

16%. On this basis, we choose an error threshold of 15% andthat have a satisfactory solution according to the quantita-

we estimate the followings for each deconvolution process: tive criteria in the darkest part of the center of the crater for
the case “linear” than for the case “var”. However the min-

eralogical abundances evaluated in the “linear” case are far

TO0 Tpercentageor  ~ ' =] from the ground truth (ideal MFI). It illustrates that the best
| "well modelled” pixels /" . . .
mathematical solution does not correspond to necessarily the
. best physical solution.
- 2.2.1. Absolute difference between ideal and
B0 [— Var calculated MFI
i We note that the differences between ideal and calculated
B / Dem and MFI, presented ifirig. 8 are large for all the processes: from
40 Const 8 to 20%. This gap has two main sources: (1) As detailed in
B Thet0
>0 Table 5 _
| ) Results of deconvolution processes
Linear
B // Linear Const Dem Var Thet0
o s ) Threshold
— — : Wellmodeled  39%%  668%  671%  711%  541%
0.0 B-= B Mean 77 083 081 087 081
cv 186%  117% 84% 71%  194%

Fig. 7. Cumulated histogram of fitting errors. The threshold is plotted on
the abscissa; the percentage of pixels having a difference of less than theThe first line correspond to the percentage of pixels that are well modeled
threshold between abundance for all three materials and the ideal fractionalfor all three materials. The two last to mean and coefficient of variation

abundance is plotted on theaxis, for each deconvolution process. (CV) of illumination images in the center of the crater.
25.0
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Fig. 8. Mean absolute difference of MFI calculated between the different models and the ideal MFI derived from the ground truth.
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|:| not inverted

Fig. 9. Mineralogical fraction images (MFI) of basalt, palagonite, tephra from left to the right. (a, b, ¢) correspond to the ideal MFI deriveddroomthe
truth, (d, e, f) correspond to the “linear” MFI and (g, h, i) correspond to the “var” MFI. White pixels correspond to pixels that have not a satisfatitory s
according to the quantitative criteridgble 9.

Sectionl.1, the computation of the ideal MFI is not totally  the spectral properties and the spatial connectivity within the
perfect due to the complexity of the target: it is composed target.

of large grain-sized materials (SE@. 1 andTable D), and However, the absolute difference is not critical here be-
the composition is not exactly the same from one pixel to cause we focus on the relative performance of the different
another even inside a given zone of expected identical com-deconvolution processes.

position. This appears for instance in the calculated MFI of
the “linear” process, in thé&igs. 9d—9f Indeed, there are
some local variations of the calculated composition, in par-

ticular outside of the crater, where the expected composition i . .
P P two kinds of materials. For dark materials (basalt), the re-

. 0 . i
Is 100% of tephrafig. ). In order to reduce this effect, the sults are similar for all the models. In contrast, for bright

hyperspectral Image 1S binned to decrea§e the spatial reso'u'materials (palagonite and tephra), it shows a significant im-
tion up to 1.2 mmipixel. (2) The large grain-size leads also

provement using Hapke’s model versus the linear case: a

to variations in the measurements coming from the facet ori- ., o4 absolute difference decrease by more than 4 points.
entations of each grain and from indirect illumination from \y/e propose two main reasons for this behavior:

distant facets. The photometric modeling associated with the

deconvolution processes is not able to take into account all ¢ \We saw inFig. 3that bright materials have a low spectral
this variability. One cannot completely handle the photomet- contrast and are harder to discriminate from one to each
ric complexity of such a target, and this highlights the need other than the dark material. Therefore, in these cases a
for a better deconvolution process taking into account both more sophisticated model is required.

2.2.2. Difference arising from materials
Figure 8shows that the physical results, provided by the
different deconvolution processes, allow us to distinguish



The role of photometry in spectral reflectance deconvolution 87

e The multiple scattering makes a larger contribution to Contrary to what is expected, the two cases show about 67%
the bidirectional reflectance in the case of bright mate- of well modeled pixelsTable § suggesting that the use of a
rials, so considering it through a photometric modeling digital elevation model does not improve results
in the deconvolution process leads to a significant im-  In order to understand the effect of the digital elevation
provement on the results. model in the deconvolution process, we focus in the lu-

minosity images Kig. 6). These images, derived from the
It should be reminded that the bright materials considered SMA, allow us to take into account, inside each pixel, the
in this study are ice-free rocky materials, not exceeding 0.4 relative luminosity in comparison with the mean luminosity
in reflectance. Indeed, for surfaces having an albedo close toof the considered endmembers. In this way, the effects of the

1 (case of sulfur on the surface of lo (e.Gigissler et al.,  small variation in luminosity in the scene, mainly due to the
2001; Simonelli et al., 2001; Bonnefoy et al., 20@t icy mutual shadowing, are discarded during the renormalization
surfaces), this effect would be amplified and the contribution step of the SMA (see Sectidn3.3.

of the multiple scattering should not be neglected. Figure @& shows the luminosity image of the case “const”.

. o The significant local variations of incidence and emergence

2.2.3. Comparison between the bidirectional reflectance  gngles are concentrated on the wall of the crater, the area
linear deconvolution process and the others where the variations of shadowing by neighboring grains are
_ Figure 9shows three sets of MFI: ideaFigs. 9a-9}, the most significant. Indeed, the darkest part is located in this
“linear” (Figs. 9d-9f and “var” (Figs. 9g-9). In this fig- area on the side of the light source and the lightest part on

ure, the _most significant difference between those two de.— the opposite side. This figure shows that during the process
convolution processes appears on the tephra and palagomteconst,. the SMA step has taken into account the variations

i’:\bundantcelmapts. Ats e>:jpla|n.ed al::'ovi, tEose rfrf1at$rlals ha&ve fh luminosity existing inside the target to retrieve the miner-
ow spectral contrast and we investigate how effective are e'alogical abundance (MFI).

con\;_o lL:t'fon procestshes fo;thew dtlscrlmma;nt(;]n. It:or mtstarr:ce, To compare the luminosity images of the two processes
we first focus on the outermost zone of the target where .. onq “gem” we calculate the profile (Athrough

0 .
100% tephra are expected, corresponding to a dark red coIorthe center of the crater of the luminosity imag@ig(6b).

(Fig. .90)' th? var: case Kig. 9) exhibits many“rpore ,P'X This plot confirms that the albedo variations are more sig-
els with a high proportion of tephra than the “linear” case ... : .

. ) N . nificant in the walls of the crater. It shows that the variation
(Fig. 9), which shows a significant proportion of palago- . i N N

e . . L are larger for the case “const” (cross) than for the case “dem
nite in this zone fig. %). Another example: in the part (line) in Fig. 6. In order to quantify this difference, we cal
of the ejecta being very close to the rim (in orange in the . - - - '

) g very ( g culate inTable 5the coefficient of variation C.V. (standard

Fig. 9, third zone from the outermost to the innermost), deviation divided bv th f luminosity i in th
we designed the target without any tephra material. How- d€Viation divided by the mean) of luminosity images in the
walls of the crater for all the deconvolution processes. In the

ever the “linear” case detects about 20% tephra in this area, . D T

whereas in the same region the “var” case detects no tephre-2S€ "const’, it displays a variation in albedo 50% greater
at all as expected. To quantify those results, we consider"an in the case “dem”, showing that:

the Table 5 it shows that the use of Hapke’s modeling for
the inversion of spectral data improves by a factor of about
1.75 the proportion of well-modeled pixels: the “linear” case

e Hapke’s model is able to handle the shadowing effects
if the Digital Elevation Model is present as in the “dem”

gives a proportion of about 40 and 71% for the case “var’. case. The calcuIaFion of the single scattering albedo is
The results of the processes “const” and “dem” are about ~ then closer to reality than in the case of a plane approx-
67% that is significantly greater than the “linear” case. This imation.

supports experimentallCord et al., 2002ahe method pro- e The SMA step of the deconvolution process compen-
posedHapke, 1981; Johnson et al., 1988ansforming the sates for the absence of a digital elevation model, taking
bidirectional reflectance into single scattering albedo before ~ into account the variations of albedo due to topogra-
spectral mixing analysis. This gives a more efficient way phy by means of the illumination image, and allows the

of retrieving the fractional abundance of a wide-field target retrieval of fraction images consistent with the ground

than the basic linear technique. truth after the renormalization step.

In the following sections, we analyze what kinds of infor-
mation about the surface are crucial to conduct a deconvolu-  Indeed, in this specific experiment, with slopes smaller
tion process giving good physical results. than 35, incidence angle 30and emergence®( calcula-

tions show that differences in the single scattering albedo

2.2.4. What is the influence on the results when the digital using or not a digital elevation model are smaller than 3%
elevation model is taken into account? when the local incidence decreases due to topography and

In the case “const”, the geometrical angles are consideredless than 10% when the incidence increases. Pixels corre-
constant across the entire scene. In the case “dem”, the locasponding to this last case are located in the darkest area of
incidence and emergence angles are evaluated for each pixethe image where the SNR drastically decreases, so they do
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not satisfy the statistical criteria and therefore are not con- graphic structure of grains. It has obvious implications in the
sidered. case of regolithic surfaces such as that of lo, as studied by
This experiment shows that the SMA is able to take into Galileo/SSI instrument, for which ranges between 2énd
account the minor effects induced by the topography and, 24° (Geissler et al., 2001; Simonelli et al., 200&Epr the lu-
then, the use of a digital elevation model does not improve nar regolith, recent results also reveal that the local mare re-
the abundance determination. golith macroscopic roughness ranges betweéna2@ 26,
with unusual values reaching 36r more in the case of dis-
2.2.5. The most accurate results of deconvolution processedurbed surface textures associated with swidimet et al.,
The process “var” corresponds to the case where the max-2004) For Mars, in situ observations derived from Viking
imum amount of information about the target is used to and Mars Pathfinder photometfGuinness et al., 1997;
transform the bidirectional reflectance into single scattering Johnson et al., 199®)dicate significané variations ranging
albedo. So, as expected, it produces the most accurate resultsetween 4 and 27, the rocks being smoother than the soils
among the tested deconvolution processes: it improves by aas a possible consequence of aeolian abrasion and/or coating
factor greater than 1.75 the number of well-modeled pixels with atmospheric dust or cemented drifddcSween et al.,
in comparison with the “linear” case (from 40 to 71%, Th- 1999)and are consistent with earlier photometric inferences
ble 5. Consequently, this approach should be recommendeddrawn from telescopic observations (eRjnet and Chevrel,
for interpreting bidirectional reflectance imaging data, either 1990; Dolfus and Deschamps, 1993; De Grenier and Pinet,
orbital or in situ. 1995; Martin et al., 1996; Pinet and Rosemberg, 3001
The differences between the results of the other cases usorder to assess the impact of this functi€@), we compare
ing Hapke’s model, “const” and “dem”, are less significant, a deconvolution process whetés neglected (“thet0”) with
but the improvement is not negligible: from 67 to 71%a{ the case where it is not (“var”), and all other variables being
ble 5. Therefore a good estimation of Hapke’s parameters the same.
across an extended target ensures the optimum results pos- Table 5shows that the result worsens considerably as ev-
sible for the deconvolution process and hence provides usidenced by the score of 71% for the case “var” versus 54%
with a technique to better model planetary surfaces. It il- for the case “thet0”. This result leads to the following con-
lustrates that the linear combination of Hapke’s parameters, clusions:
weighted by the abundance of each material, is, as a first
approximation, an efficient way to estimate locally the para- (1) It confirms that a surface composed of coarse-grained
meters. However it opens the door to investigate further how material has a significant macroscopic roughness ef-

the parameters of mixing should be calcula(€drd et al.,
2002b; Stankevich et al., 2002)

fect that strongly influences the bidirectional reflectance
measurements.

In addition, the case “var” has the smallest coefficient of (2) Neglecting this effect leads potentially to much de-

variation within its illumination imageTable 9. In this case,

graded results in terms of mineralogical prediction. This

during the computation of the single scattering albedo from
the bidirectional reflectance, the effects induced by the mu-
tual shadowing and topography, even inside the pixels, are
well controlled by the photometric modeling. This confirms wall is slightly higher (19.4%) than in the linear case
that Hapke’s model allows us to better handle the bidirec- (18.6%) and considerably higher than in the non lin-
tional reflectance variations due to these effects across the ear cases (between 7.1 and 11.4%). This shows that not
whole target to retrieve a single scattering albedo close to taking this effect into account leads to an amplification
the reality. of the shadowed area during the calculation of the sin-
gle scattering albedo instead of a reduction as for the
non linear cases: then the model is not able to take into
functionS(9) account the subpixel shadows existing inside the image
In Hapke’s theory, the topographic shadowing function and the calculation of the single scattering albedo is in-
takes into account the effects due to the shadowing inside  correct.
each pixel and to the local modification of the incident and (3) The Hapke photometrical model does not account for
emission angles. The effect that influences this function re- multiple scattering between elements of large-scale sur-
sults predominantly from an integral of the roughness prop- face topography, which is important for rather bright
erties of the surface in the submillimetric to centimetric planetary surfaces. Indeed, improvements of the Hapke
range inside the pixel of observation: it depends on the sur- theory are very difficult because the rigorous descrip-
face boundary topographyHelfenstein and Shepard, 1999; tion of shadowing demands numerical calculations, by
Cord et al., 2002b, 2003a; Shkuratov et al., 20F%) our means of a Monte Carlo ray tracing, for different par-
target, composed of grain sizes from 50 pm to 2 nTia- ( ticulate structures (single-valued topography, rocky or
ble 2b), this function is dominated by the “rocky” aspect clumpy topography, fractally-arranged topography, e.g.,
of the surface involving the shape, roughness and topo- Shepard et al., 2001; Shkuratov and Stankevich, 1992;

is supported by illumination images studyable 3:
when neglecting the topographic shadowing function,
the variation of the illumination image inside the crater

2.2.6. Influence of the topographic shadowing
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Shkuratov and Helfenstein, 2001; Stankevich and Shku-
ratov, 2000, 2004; Stankevich et al., 1999, 200&
particular, the domain in which the scale of surface
boundary topography is comparable to the size of sur-
face particles has to be investigated more in dé@trd

et al., 2004) However the results of the calculation are
too complex to be practical for a deconvolution process.
Our experimental results show that, as a first approxi-
mation, for nonicy material having an albedo less than
0.7, the topographic shadowing function developed by
Hapke is able to handle the optical behavior of such
a complex surface and to retrieve the material relative
mineralogical abundances.

by a factor of 1.75 the proportion of well-modeled pix-
els with respect to the “linear” case (bidirectional re-
flectance spectral mixing analysis). However, we must
investigate further how the parameters of mixing should
be calculated.

The spectral mixing analysis is able to compensate for
the absence of a digital elevation model, i.e., to take into
account variations of albedo due to topography.

The influence of the topographic shadowing function
S(6) which is predominantly controlled by the rough-
ness properties of the surface boundary topography in
the submillimeter to centimeter range is crucial and must
be considered for proper mineralogical interpretation.

As a consequence, this study shows that the more im-
portant physical parameters to take into account are (in de-
creasing order): (1) the textural roughness, essential for the

This paper addresses several objectives. accurate determination of mineralogical abundances; (2) the

First of all, the experiment which has been performed variations per pixel of Hapke parameters across the target
points out the interest of the wide-field multispectral imag- and (3) the topography (Digital Elevation Model) that has a
ing facility set up at the Midi-Pyrénées Observatory for con- limited influence on the results.
ducting experimental simulations of the optical properties of ~ Moreover, for ongoing and upcoming orbital spectral data
planetary regolithic surface analogs. interpretations (e.g., Mars-Express/HRSC and OMEGA in-

Secondly, we assess the performance of different decon-struments; MRO/CRISM), we can suggest a methodology to
volution processes relying on Hapke’s model of radiative assure an optimal determination of the subpixel mineralog-
transfer by investigating samples such as natural rock sur-ical abundance: keeping in mind that Hapke parameters of
faces and bulk soils rather than powder, in order to simulate our materials were evaluated using only a limited set of mul-
different textural situations representative of planetary sur- tiangular measurements, our results show that one can de-
face states. rive, from dedicated orbital measurements, the photometric

Thirdly, we deduce quantified information about linear parameters of specific areas representative of the main sur-
and nonlinear deconvolution processes applied on a realface materials. These values should be used for the regional
scene and determine the impacts of target complexities(e.g.,Pinet et al., 2004and global studies of the planetary
(topography, material mixing, and macroscopic grain size surfaces and linked with in situ data measured by optical in-
variation) on the bidirectional reflectance spectra interpre- struments operating on landers or rovers at smaller spatial
tation. Relying on the quantitative ground truth available for scales: landscape, rock and even grain scales (e.g., Viking,
the built-up target, we compare the results derived from the Guinness et al., 199Mars PathfindeiGeissler et al., 2001
different processes. We conclude that: FIDO Prototype Mars Rover Field Triakrvidson, 2002

Athena PancanBell et al., 2004 and Microscopic Imager,

e All the tested processes give similar statistical results: Herkenhoff et al., 2004 From both types of measurements,
i.e., the proportion of pixels that have a satisfactory so- the surface physical characteristics could also be extracted
lution is between 89 and 91%. However, the determined (i.e., mesoscale surface roughness, topography) and used for
mineralogical abundances are not identical in all the the sake of interpretations.
cases, giving different relative performances in terms of ~ The future work directions could be to test different sets
physical appropriateness. of Hapke’s parameter values (assuming for instance aver-

e Compared with the case of the bidirectional reflectance age surface roughnes® (= 15 or 20) and compare the
linear spectral mixing analysis, the deconvolution tech- performance of the associate deconvolution processes, to as-
nigue proposed bylohnson et al. (1983)provides a sess the performance of the last developments of Hapke’s
method to better quantify and map the mineralogy of model(Hapke, 2002pr alternative approaches for radiative
a target, whatever are the approximations. The best casdransfer models (e.gShkuratov et al., 1999; Shkuratov and
is, as expected, the one requiring the largest amount of Helfenstein, 2001; Poulet and Erard, 2904nd to investi-
information. It gives in particular the single scattering gate various surface targets in order to simulate different tex-
albedo closest to the reality. tural situations representative of planetary surface states with

e The linear combination of Hapke’s parameters, weighted a particular emphasis put on the azimuthal effects linked to
by the abundance of each material, is, as a first approx-the occurrence of anisotropic scatterers.
imation, an efficient way to estimate locally the para- Indeed, new experimental studies are strongly advocated
meters. For the inversion of spectral data, it improves for improving the photometric modeling associated with de-

3. Conclusion
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convolution processes in the case of a complex target. ThisCord, A.M., Pinet, P.C., Daydou, Y., Stankevich, D., Shkuratov, Yu., 2002b.
also highlights the need for improved theoretical modeling  Planetary regolith surface analogs and mesoscale topograpy: optimized

to describe the case of natural regolithic surfaces determination of Hapke parameters using multiangular spectro-imaging
' laboratory data. In: Solar System Remote Sensing Symposium, Pitts-

burgh, 2002, p. 17.
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