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Abstract

A wrapped feature selection process is proposed in the context of robust clustering based on Laplace mixture models. The clustering
approach we consider is a generalization of the K-median algorithm. The selection process makes use of the statistical model and recur-
sively deletes features using hypothesis tests. We report simulations and applications to real data sets which illustrate the relevance of the
proposed approach. We propose a strategy to select a reasonable number of remaining features. It uses the test statistic to choose the
most relevant features, then an evaluation of the clustering error to discard the redundant ones from among them. This strategy appears
to produce a good compromise between the selection of features and the performance of the clustering.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Clustering algorithms are developed and used in many
different fields, including machine learning, data mining,
pattern recognition, image analysis and bioinformatics.
Clustering involves finding subsets (clusters) of ‘‘similar’’
observations—similarity often being defined by a distance
measure. In real life we generally have to deal with untyp-
ical values, called ‘‘outliers’’, occurring in data sets. These
may impact considerably the statistical tools that can be
used for clustering. Centroid-based methods, for example,
group observations around a representative sample, which
can often be defined as a weighted mean of the cluster. One
solution involves using an alternative centroid based on a
robust statistic such as the median.

More and more often, data sets in numerous research
areas contain a very large number (from hundreds to tens
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of thousands) of features, providing a powerful contextual
description of the observed phenomena (Turney, 1993).
Some features, however, are not relevant: their presence
can obscure important structures and generally confuse
the description process. To tackle this problem there exist
methods for selecting only those features which are rele-
vant. These methods combine a variety of aims, such as
decreasing computation time and storage requirements,
increasing data interpretability, facilitating data visualiza-
tion, and eliminating noisy features that can adversely
affect the performance of most learning algorithms.

This paper proposes an original method for feature
selection when using clustering based on Laplace mixture
models. This method is a generalization of the K-median
algorithm. The selection process recursively deletes features
using statistical hypothesis tests.

Both clustering and feature selection rely on statistical
models. This approach offers several advantages: (1) It
allows a well-justified criterion to be proposed. (2) The
assumptions in the model, even though they might be sim-
ple, are well known and can allow the user to determine if
they are adapted to a particular problem. (3) It can be
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adjusted to the problem: it is possible to leave only a small
number of free parameters and thus to propose parsimoni-
ous models. For instance, it is possible to consider equal
mixing proportion, if one suspects that subpopulations
have comparable sizes.

We first describe the Laplace distribution mixture. We
then outline the feature-selection method relying on a
Kruskal–Wallis statistical test. Finally, we illustrate the
performance of our algorithm both on synthetic and real
data sets.
2. Mixture of Laplace distributions and median clustering

Dealing with outliers is a recurrent problem in data
analysis. Outliers can occur for a variety of reasons, includ-
ing noise and errors (during the data acquisition or trans-
mission, for instance), or they can simply be correct but
untypical values existing in the data set. Outliers have a
large influence on normal statistics and can dramatically
affect perceived distributions. Although the sample mean
is by far the most commonly quoted measure of location,
it is strongly affected by outliers and, moreover, it often
does not depict the typical outcome.

An alternative measure of the distribution center can be
based on order statistics. In particular, for the majority of
skewed data sets, the sample median is likely to be a more
realistic measure of center than the mean.

The use of Gaussian distributions for clustering relies on
the quadratic distance between outcomes and their mean,
and it is therefore clear that this kind of process will be sen-
sitive to the presence of outliers (Banfield and Raftery,
1993).

A typical solution is to use an algorithm such as k-med-
ian clustering (Bradley et al., 1997), which is based on L1-
norm distance. This generates a partition of the data set
into K groups such that the sum of the distances from
the observations to their cluster�s centroid is minimized.
It is an alternative optimization algorithm, similar to the
very classical k-mean clustering algorithm (Selim and
Ismail, 1984), except that k-median uses the L1-norm
distance as its distance measure, whereas k-mean uses
L2-norm distance. The criterion optimized by k-median is
the sum of the absolute distances between the observations
and their class�s centroid:

Jðx; lÞ ¼
XK
k¼1

X
i=xi2Classk

jxi � lkj. ð1Þ
2.1. Mixture analysis

Basing cluster analysis on a mixture model has become a
classical and powerful approach (MacLachlan and Peel,
2000; Figueiredo and Jain, 2002). Each observation is
assumed to have been drawn from a mixture of parametric
distributions. Data x = (x1, . . . ,xN) are assumed to arise
from a random vector with density
f ðx;UÞ ¼
XK
k¼1

pkfkðx; hkÞ; ð2Þ

where U = (p1, . . . ,pK,h1, . . . ,hK), where p1, . . . ,pK denote
the proportions of the mixture and h1, . . . ,hK the para-
meters of each component density. Obviously, being prob-
abilities, the pk must satisfy "k 2 [1, . . . ,K], pk P 0 andPK

k¼1pk ¼ 1.
In this context two commonly used maximum likelihood

(ML) approaches have been proposed: the mixture
approach and the classification approach. Loosely speak-
ing, the mixture approach aims to maximize the likelihood
over the mixture parameters, whereas the classification
approach aims to maximize the likelihood over the mixture
parameters and over the identifying labels of the mixture
component origin for each point.

In the mixture approach U is chosen to maximize the
log-likelihood

Cmelðx;UÞ ¼
XN
i¼1

log
XK
k¼1

pkfkðx; hkÞ
 !

.

A partition of the data can be directly derived from the ML
estimates of the mixture parameters by assigning each xi to
the component which provides the greatest conditional
probability.

In the classification approach the likelihood is maxi-
mized over the mixture parameters and over the identifying
labels of the mixture component origin for each point:

Cclaðx;UÞ ¼
XK
k¼1

X
i=xi2Classk

log pkfkðx; hkÞ.

A partition of the data is given directly by the identifying
labels.

2.2. A robust clustering algorithm

As a generalization of the k-median algorithm, we pro-
pose using Laplace distributions, that is to say a mixture-
based clustering approach with distributions relying on
the median (Ernst, 1998). This algorithm was proposed in
(Dang, 1998).

We assume that all the components of the mixture are
D-variate Laplace distributions. Moreover, we suppose
that the features are independent within each class. Thus
each D-dimensional Laplace law Lðlk; kkÞ is a product of
D mono-dimensional Laplace distributions Lðlkd ; kkdÞ.

The mono-dimensional Laplace distribution Lðl; kÞ is
defined as

fLðxjl; kÞ ¼
1

2k
exp � jx� lj

k

� �
; ð3Þ

where x 2 R, k > 0 and l is the median.
The density function of the D-dimensional Laplace law

Lðlk; kkÞ is therefore
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fLðxjlk; kkÞ ¼
YD
d¼1

1

2kkd
exp � jxd � lkd j

kkd

� �
. ð4Þ

Relying on a mixture approach, we propose using the
Expectation Maximization (EM) algorithm (Dempster
et al., 1977) for the maximum likelihood estimate of the
mixture parameters.

After convergence, clustering is performed by assigning
each observation to the class having the highest posterior
probability (Maximum A Posteriori strategy, MAP).

It should be noted that in using the mixture of Laplace
distributions with the assumption of equal mixing propor-
tion and equal covariance structure, the classification
approach is equivalent to finding the partition maximizing
the k-median criterion:

Cclaðx;UÞ¼
XK
k¼1

X
i=xi2Classk

logpkfkðx;hkÞ

¼
XK
k¼1

X
i=xi2Classk

logpk

YD
d¼1

1

2kkd
exp �jxid �lkd j

kkd

� � !

¼
XK
k¼1

X
i=xi2Classk

XD
d

jxid �lkd jþC

where C denotes a constant.
In this context the CEM algorithm (Celeux and Govaert,

1992) is equivalent to the k-median algorithm, and the
approach we propose can therefore be considered as an
EM-type generalization of the k-median algorithm.

The mixture of Laplace distributions has been used in
different contexts including texture analysis (Amin and
Guan, 2004), source separation (Mitianoudis and Stathaki,
2005) and speech recognition (Ortmanns et al., 1997).

3. Feature selection

Over the past few years a lot of research areas within the
field of machine learning have had to explore domains con-
taining hundreds to tens of thousands of variables or fea-
tures (e.g., clustering in molecular biology, web search
engines, image retrieval). It might be supposed that greater
volumes of data imply better descriptions, but in practice
some features are not significant and can get in the way
of the description process. Deciding which features are rel-
evant becomes fundamental.

The case of supervised learning scenarios has been lar-
gely studied in the literature (Guyon and Elisseeff, 2003).
The problem is well defined and consists of removing fea-
tures to improve the classification rate on new data. Differ-
ent methods are described in the literature (Kohavi and
John, 1997): wrapped methods treat the learning machine
as a black box in order to rank subsets of features. Filter
methods employ a pre-processing step in which subsets of
features are selected, independently of the chosen predic-
tor. Embedded methods perform feature selection as part
of the training process.
Feature selection for unsupervised learning is a difficult
task because there are no class labels for the data and so no
obvious criteria to guide the search (Dy and Brodley, 2000;
Roth and Lange, 2003; Law et al., 2004).
3.1. Statistical tests for feature ranking

The feature selection method we propose is based on a
wrapped method. Its crucial component is the determina-
tion and sorting of all potentially relevant features, leading
to the exclusion of features that have only a small influence
on the data.

It relies on statistical models and tests. The idea is sim-
ple: for each feature (d = 1, . . . ,D), we test

H0: All the medians of the different classes are similar
(l1d = l2d = � � � = lKd). This means that the feature
in question d does not separate the classes and is
therefore not relevant.

H1: At least one of the medians is different from the
others.

This produces a test statistic whose value is used to rank
the features in terms of their relevance.

The Kruskal–Wallis statistical test is a non-parametric
test that makes no assumptions about the distribution of
the data (e.g., normality) (Hollander and Wolfe, 1973; Gib-
bons and Chakraborty, 1992). This test is an alternative to
the independent group ANOVA, when the assumption of
normality or equality of variance may not apply. Like
many non-parametric tests it uses data rank rather than
raw values to calculate the statistic.

Let n1,n2, . . . ,nK represent the sample sizes for each of
the K classes. The total sample size is N ¼

PK
k¼1nk. We rank

the combined sample and compute the sum of the ranks
for the class k: Rk ¼

P
ijxi2Classk rankðxiÞ. The Kruskal–

Wallis test statistic is then H ¼ 12
NðNþ1Þ

PK
k¼1

R2
k

nk
� 3ðN þ 1Þ.

If the null hypothesis of equal median holds, this test
statistic corresponds approximately to a chi-square distri-
bution with K � 1 degrees of freedom. The larger the test
statistic H, the weaker the null hypothesis becomes, since
a strong separation of the medians indicates that the fea-
ture under consideration has a high clustering power. In
the following test statistics are used to classify features
according to their level of relevance.
3.2. Recursive feature selection for Laplace mixture

clustering

For the feature selection we used a kind of wrapped tech-
nique called the Recursive Feature Elimination Algorithm.
Often known as sequential backward search, it is one of the
most popular heuristics for feature selection (Pudil et al.,
1994). It was adapted by Guyon et al. (2002) for selecting
relevant features in two-class problems using linear SVM.
It is a recursive process: starting by considering all available
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features, each step consists of ranking the features accord-
ing the level of relevance and discarding some of the less
discriminant features. The clustering algorithm is then
re-applied in the reduced feature space.

In summary, we rely on statistical models to propose
both a generalization of k-median and a wrapper feature-
selection procedure. The algorithm we propose is the
following:

(1) Clustering:
(a) Use the EM algorithm to estimate the Laplace

mixture parameters.
(b) Assign each observation to the component with

the highest posterior probability (Maximum A
Posteriori strategy).

(2) For each feature d = 1, . . . ,D compute the Kruskal–
Wallis statistics.

(3) Use the test statistics to sort features and delete a
fixed number or fixed percentage of the less relevant
ones.

(4) Stop if there are no remaining features, else reiterate
from the first step in the reduced space.

An analysis of computational requirements is carried
out for the first real data set (Section 4.2).

4. Results

To illustrate the performance of our algorithm we test it
on two synthetic data sets and three publicly-available data
sets from the UCI Machine Learning Repository (Murphy
and Aha, 1992), as well as on one from Alon et al. (1999).
The entire data set is used both for the clustering and eval-
uation of error rates. For each test we run our algorithm 20
times with different initializations. The features are dis-
carded one by one: only the least relevant feature is elimi-
nated during each iteration. To avoid local convergence, at
each iteration of our algorithm the EM-algorithm is
repeated at least five times with a random initialization,
and the solution corresponding to the best log-likelihood
is chosen.
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Fig. 1. Results of the 10-class synthetic data set. (a) Error curves. (b) Test-stat
low variance between runs on this data set.
For the sake of clarity three curves are shown: the test
statistic, the classification error and the clustering error in
relation to the number of remaining features. The test sta-
tistic curve traces the smallest values of the Kruskal–Wallis
test as a function of the number of remaining features. It
corresponds to the test value of the feature that is elimi-
nated during the current iteration. The classification error
is the percentage of incorrectly classified examples, and is
computed by finding the permutation of the actual labels
associated with each cluster that minimizes the difference
between estimated and true classes. The true class labels
are used only in generating the classification error and
not in obtaining the clusters. The clustering error is com-
puted in exactly the same way, except that instead of the
true class label we use the class label of the clustering com-
puted when all the features are retained. It will be noticed
that the clustering error on the data set containing all the
features is zero by definition. In all the curves error bars
show one sample standard deviation above and below each
point.

In the case of unlabelled data clustering, only two of
the three curves are available: the test statistic and the clus-
tering error. In the following we will show how the two
curves are complementary and how they can be combined
in order to choose a reasonable number of features to
retain.

4.1. Synthetic data sets

We first consider a ‘‘toy’’ synthetic data set, easy to
deal with: it consists of 800 observations from a mixture
of four Gaussian distributions Nðmi; IÞ; i ¼ f1; 2; 3; 4g,
where m1 = (0,3), m2 = (1,9), m3 = (6,4) and m4 = (7,10)
mixed in the same proportions. Eight non-relevant
features, sampled from a Nð0; 1Þ, are added to this data.
It gives a 10-dimensional pattern.

The classification error plotted in Fig. 1a shows that in
all 20 executions the four components are always correctly
identified as long as there are at least two features. The
class label of the clustering computed when all the features
are retained is very similar to the actual class label (three
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istic curve. Note that the error bars are generally not visible because of the
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classification errors for 800 points) and the classification
and clustering errors are identical.

The values of the statistical test (Fig. 1b) are drastically
different between the two relevant features and the others.
This example gives us the extreme values that the test sta-
tistic can reach for a 10-dimensional pattern: less than 5 for
totally irrelevant, and greater than 500 for the totally rele-
vant features.

Here separation of the relevant from the non-relevant
features is very easy and can be done with the clustering
error or the test statistic curves indifferently.

The second synthetic data set was first proposed by
Trunk (1979). It consists of 1000 points from a mixture
of two 20-dimensional Gaussian Nðm1; IÞ and Nðm2; IÞ
where m1 ¼ 1; 1ffiffi

2
p ; . . . ; 1ffiffiffiffi

20
p

� �
, m2 ¼ �m1. Note that the fea-

tures are sorted in order of decreasing relevance. The lower
the rank, the more discriminant the feature. To produce the
results curves (Fig. 2) with meaningful error bars, the algo-
rithm runs 20 times simulating a new set of synthetic data
each time. Both the errors and the values of the test statistic
decrease as the number of features increases, in accordance
with the true characteristics of the data. In particular, it
confirms the link between test statistic values and the level
of relevance of the features.

We should note that it is not possible to use classical
p-values to select the features, because almost all the fea-
tures have a p-value very close to 0. It therefore becomes
almost impossible to distinguish the different levels of rele-
vance of the data. This is a consequence of the fact that the
p-value in clustering will be exaggerated. In particular, a
data set without any cluster structure can have a very small
p-value. A simple example is to consider k-means clustering
(with k = 2) on a data set consisting of points uniformly
distributed in the interval [0,1]. Cluster A will be centered
at 0.25, whereas cluster B will be centered at 0.75. If one
does a hypothesis testing on

H0: Cluster A and cluster B are the same (has the same
mean).

H1: Cluster A and cluster B are different (has different
means).
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Fig. 2. Results of the 20-class synthetic data set from Trunk (1979). (a) Err
One will get a very small p-value and reject H0. The
cause for this is that the clustering process ‘‘inflates’’ the
separation of the classes. Notice that it is only a warning
and that our technique is not affected by this remark
because no hypothesis testing is involved for the feature
sorting.
4.2. Real data sets

In order to compare our approach with exiting methods
we chose publicly available data sets that were used by
Mangasarian and Wild (2004) and Law et al. (2004). This
comparison is described in Section 4.3.

We tested our method on the wine-recognition data set.
These data are the results of a chemical analysis of 13 con-
stituents found in 178 wines produced in the same region in
Italy but by three different growers.

Fig. 3 shows the results of our analysis. The total time
required to generate the resulting curves (which entailed
running the EM-algorithm 1300 times, selecting the fea-
tures 260 times and plotting the graphs, all within MAT-
LAB 7) was 78 s on a 2 GHz 512 MB RAM desktop
machine running Windows XP.

In Fig. 3b a gap appears between the last six relevant
features (from 8 to 13) and the first seven (from 1 to 7).
Classification and clustering errors are lowest when exactly
seven features are retained. These features all have a more
or less equivalent capacity to separate the different clusters,
when considering the value of the Kruskal–Wallis test sta-
tistic, but there are probably some redundant features that
can be eliminated at only a small cost in terms of errors.

In Fig. 3a both the classification and the clustering error
curves rise gently as the number of features decreases from
13 to 4, but then rise steeply as the number of features
decreases from 4 to 1. In this example these two curves
have the same behavior. For the treatment of unlabelled
data the classification error is not available. However, the
similarity of the error curves would seem to indicate that
the clustering error alone is sufficient to determine a com-
promise between a tolerable error magnitude and the num-
ber of features to be retained.
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Fig. 3. Results of the wine data set from Murphy and Aha (1992). (a) Error curves. (b) Test-statistic curve.
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It is interesting to note that the test statistic curve does
not have the same behavior as the error curves. The two
curves need to be combined to provide a better insight into
the clustering. There are two possible strategies for this
data set: we can either retain seven features, thus minimiz-
ing the errors; alternatively we can retain only four fea-
tures, which represents a good compromise between the
errors and the number of features.

The Cleveland Heart data set consists of a database
of heart disease diagnoses collected from the Long Beach
and Cleveland Clinic Foundation (Robert Detrano,
M.D., Ph.D.). This database contains 76 attributes,
but all published experiments have used a subset of just
14 of them, and we shall do likewise. The ‘‘goal’’ field
refers to the presence of heart disease in the patient. It is
integer valued from 0 (no presence) to 4. Experiments with
the Cleveland database have so far attempted only to
distinguish presence (values 1, 2, 3, 4) from absence (value
0).

The classification error curve is surprising insofar as it
falls almost continuously as features are eliminated
(Fig. 4a). The clustering error curve has very wide error
bars, and in this example the parallel between the two
curves is not clear. We notice that the partition obtained
with all the features is dramatically different from the par-
tition obtained with a reduced number of features, since the
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Fig. 4. Results of the Cleveland Heart data set from Murphy
clustering error jumps from 0% to 20%. This could be
explained by the fact that some features with low clustering
power have influenced the resulting partition during the
first steps of the procedure.

However, the test statistic in Fig. 4b is quite simple: it
increases slightly as the number of features decreases from
13 to 2, staying below 50, but then leaps to almost 300
when the number of features is reduced from 2 to 1. A deci-
sion about which feature are relevant is possible consider-
ing the test statistic curve related to the Cleveland data set.

We go on to examine further how these curves can be
combined.

Fig. 5 gives the results from the colon data analyzed ini-
tially in (Alon et al., 1999). It consists of 62 tissue samples
described by 2000 human gene expressions (40 tumors and
22 normal tissues). The actual implementation of the algo-
rithm has difficulties dealing with so many features (preci-
sion problems) and we thus consider a subset of the
available features extracted by a simple filtering procedure:
the 210 features with the highest t-statistics (computed
from the two real groups) were extracted from the 2000 ini-
tial features. Notice that the purpose of processing this
data set is to test the method on a real data set having a
large amount of features (more than 200), but in context
of unsupervised clustering it may not be the best possible
experimental setting.
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and Aha (1992). (a) Error curves. (b) Test-statistic curve.
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Fig. 5. Results of the colon data set from Alon et al. (1999). (a) Error curve. (b) Zoom on the error curve. (c) Test statistic curve. (d) Zoom on the test
statistic curve.
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From Fig. 5a it is clear that there is no variation in clus-
tering results when we eliminate the features from 210 to
20. A first approximation might be to stop the selection
here. However, to pursue the analysis further we shall
examine Fig. 5b and d, where we have zoomed in on the
last 40 features. In the test-statistic curve a small gap
appears between the sixth and the fifth features (from 32
to 37), showing that the first five features are really more
relevant than the others. The clustering error curve then
remains horizontal from the fifth to the second feature,
showing that these features are probably redundant, and
suggesting that only the first 2 among the 210 initial fea-
tures be retained. The classification error, in this case, is
the same with 2 as with 210 features, confirming the valid-
ity of our method. Notice that a feature subset of 10 leads
to the smallest classification error. However, this result is
not detectable in the unsupervised case, with our curves,
which shows that our method is not perfect in all cases,
although it leads to a good compromise for all the exam-
ples we have considered.

We propose the following strategy: use the test-statistic
curve to choose the most relevant features, and then from
among these eliminate the redundant features indicated
by the minimum of the clustering error curve. This strategy
appears to converge to a good compromise between the
number of features and the performance of the clustering,
in particular if the parallelism between classification and
clustering error curves is not well established.

Our final example is based on the Wisconsin Diagnostic
Breast Cancer (WDBC) data set. This contains 576 data
points having 30 features. They are computed from charac-
teristics of cell nuclei present in digitized images produced
via a fine needle. The goal is to predict the diagnosis
(benign, malignant).

From Fig. 6 it would not appear easy at first sight to
choose an optimal number of features from the clustering
error and test-statistic curves. However, using our method,
we shall propose different strategies as in the case of the
wine recognition data set: from the test-statistic curve
(Fig. 6b) the most relevant features can be separated into
a handful of groups of decreasing relevance: from 1 to 6,
from 7 to 12, from 13 to 18, from 19 to 26. After the
27th feature the test-statistic values decline significantly,
indicating that any further features should not be taken
into consideration. For each group we can determine the
local minimum for the clustering error: it can be seen from
Fig. 6a that the local minima are to be found at features 3,
10, 16 and 22. The choice between the different numbers of
features should be made in accordance with the degree of
precision a particular problem requires. We should notice
that those values correspond to local minima of the classi-
fication errors.

4.3. Comparison with other results

In the study by Law et al. (2004) the authors present
the results of their clustering algorithm for the wine and
WDBC data sets. Their classification errors, 6.61 and
9.35, respectively, are larger than ours, which are from
3.8 to 5.8 and from 6.2 to 6.4, respectively. Their algorithm,
however, does not have precisely the same purpose as ours:
it not only yields a feature selection, but also allows an
evaluation of the best number of classes needed to model
the data.



Table 1
Comparison of results from different approaches

Data set Error (Law et al.,
2004)

Error (Mangasarian
and Wild, 2004)

Nb features (Mangasarian
and Wild, 2004)

Error
(this work)

Nb features
(this work)

Wine 6.61 4 4 5.8/3.8 4/7
WDBC 9.35 9 7 8.8/8.8/6.2/6.4 3/10/16/22
Cleveland Heart N/A 28 8 30.5 2

The respective errors are expressed as percentages.

0 5 10 15 20 25 30 35
–0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of features

T
ra

in
in

g 
se

t e
rr

or
s

Classification error
Clustering error

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

350

400

Number of features

F
-s

ta
t

(a) (b)

Fig. 6. Results of the WDBC data set from Murphy and Aha (1992). (a) Error curves. (b) Test-statistic curve.
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The algorithm of Mangasarian and Wild (2004) is closer
to our method. Indeed, their algorithm can be interpreted
as a CEM algorithm assuming a mixture of Laplace distri-
butions with equal covariance structure. Our approach
offers more flexibility for modeling when the cluster covari-
ances are assumed to be different. It will be noticed from
Table 1 that the classification error rates we obtain are sim-
ilar or better.

Moreover, Mangsarian and Wild use only the clustering
error curve to select the number of relevant features. This
technique does not work with all the data sets (cf. Cleve-
land Heart or WDBC data sets). Indeed, the test statistics
of Kruskal–Wallis produce precious complementary infor-
mation for feature selection, as demonstrated in the results
analysis section.

5. Conclusion

In this study a cluster analysis based on a mixture model
of Laplace distributions is proposed. Generally speaking,
the number of iterations needed by the EM algorithm to
converge is smaller when using Laplace rather than Gaus-
sian distributions. This compensates for the fact that one
EM iteration for a Laplace distribution has a greater
time-overhead than its equivalent Gaussian iteration.
Moreover, it is clearly less sensitive to the presence of
outliers because the measure of the distribution center
is based on an order statistic (median). The feature selection
is based on a wrapper method, it is then compu- tationally
intensive and that can be a limitation to this approach.

In order to propose a practical solution for reducing the
number of features we consider that a feature is not essen-
tial if the partition does not change greatly when the fea-
ture is ignored. This observation is not sufficient in itself
to select a feature subset, since the reference partition
obtained using all the features can sometimes be substan-
tially influenced by features with low a clustering power.
We therefore propose the use of an additional criterion
to evaluate the clustering power of a given feature. The
whole approach relies on statistical modeling and uses sta-
tistical hypothesis testing to measure clustering power.

Applying our method to real data sets illustrates the
strategy we propose for selecting a reasonable number of
remaining features. This strategy involves combining two
steps. First, we extract a group of features that have a high
clustering power, corresponding to the largest test statis-
tics. Then, from among these, we discard the redundant
features, i.e. those which do not modify the partition when
they are ignored. This strategy is a practical tool for explor-
atory data analysis which simplifies the selection process,
too often subjective and ad hoc, performed in a clustering
context when using Laplacian mixture models.

Appendix A. EM algorithm for Laplacian mixture

The detailed EM algorithm for Laplacian mixtures nec-
essarily includes a definition of weighted median. Given a
set of N scalars {x1, . . . ,xN} and N weights {w1, . . . ,wN},
positive or null scalar values with at least one weight differ-
ent from 0, the weighted median wmedian(x,w) is defined as
a scalar that minimizes

JðaÞ ¼
XN
i¼1

wijxi � aj; ðA:1Þ
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where M is the rank and satisfiesPM�1
i¼1 wi <

1
2

PN
i¼1wi 6

PM
i¼1wi.

Two situations arise:

wmedianðx;wÞ ¼ xM if
XM
i¼1

wi >
1

2

XN
i¼1

wi >
XM�1

i¼1

wi;

wmedianðx;wÞ 2�xM ; xMþ1½ if
XM
i¼1

wi ¼
1

2

XN
i¼1

wi.

In the second case, we choose wmedianðx;wÞ ¼ xMþxMþ1

2
.

The two steps of the EM algorithm at the qth iteration
are:

E-step: For i = 1, . . . ,N calculate the probability that xi
comes from the kth component of the mixture:

cðqþ1Þ
ik ¼

pk

YD

d¼1

1

2kðqÞkd

exp � jxid � lðqÞ
kd j

kðqÞkd

 !

XK

k¼1
pk

YD

d¼1

1

2kðqÞkd

exp � jxid � lðqÞ
kd j

kðqÞkd

 ! . ðA:2Þ

M-step: Evaluate the parameters lq+1 and kq+1 that
maximize the log-likelihood. For k = 1, . . . ,K and d =
1, . . . ,D we have:

lðqþ1Þ
kd ¼ wmedian ðxid ; cðqþ1Þ

ik Þ; i ¼ 1; . . . ;N
n o� �

; ðA:3Þ

kðqþ1Þ
kd ¼ 1

nðqþ1Þ
k

XN
i¼1

cðqþ1Þ
ik jxid � lðqþ1Þ

kd j; ðA:4Þ

with nðqþ1Þ
k ¼

XN
i¼1

cðqþ1Þ
ik ; ðA:5Þ

pk ¼
nðqþ1Þ
kPK

k¼1n
ðqþ1Þ
k

. ðA:6Þ
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