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Abstract We propose a linear and a morphological approach for the charac-
terization and segmentation of binary and digital random textures.
We focus on descriptors at the level of pixels in images, combined
with statistical learning to select and weight them. The approach is
illustrated on simulations of textures patchworks, for which errors
of classification can be evaluated.
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1. Introduction

Image segmentation is a common and important task aimed at extracting
objects that can be subsequently measured or analyzed. This is in particular
useful when looking for defects in materials or for pathological cells in a
biological tissue. In many cases, the background and the objects themselves
are non uniform and made of so-called “textures”. A challenging problem
concerns the automatic extraction (or segmentation) of various textures
present in the same image.

For this purpose, a variety of statistical techniques have been used, such
as histogram based texture analysis techniques corresponding to the use of
co-occurrence matrices [7], texture modeling [4], filtering approaches [11]
and wavelet transformations of images [10, 12, 15]. However on materials
displaying complex patterns that are random in appearance (i.e. not peri-
odic), segmenting texture turns out to be difficult [18].

To handle it, we propose the following approach: to describe the texture
for each pixel of the image, accounting for morphological information in its
neighborhood at different scales and then using a multivariate statistical
approach. This approach is illustrated and validated for binary and gray
level textures through simulations.
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2. Theoretical approach of random textures

Natural textures have the following common characteristics: a texture usu-
ally shows fluctuations at a small scale, and some uniformity at a large
scale. The presence of fluctuations requires the use of a probabilistic ap-
proach to characterize textures. In this framework we will consider binary
textures and gray level textures as realizations of random sets or of random
functions. Therefore, from a theoretical point of view, a random texture is
completely known from its Choquet capacity.

It can be shown [14] that a random closed set A is known from the
Choquet capacity functional T (K) defined on compact sets K:

T (K) = 1− P{K ⊂ AC} (1.1)

where P is the probability of the event {}. Similarly, an upper semi-
continuous random function (RF) Z(x) is characterized by the functional
T (g), defined for test functions g with a compact support K [8, 9]:

T (g) = P{x ∈ DZ(g)} (1.2)

with
DZ(g)c = {x , Z(x + y) < g(y) , ∀ y ∈ K} (1.3)

When the compact set K is a point x and g(x) = z, the cumulative
distribution function is obtained. When using the two points {x, x+h} and
the two functions g(x) = z1 and g(x + h) = z2 we can derive the bivariate
distribution F (z1, z2, h). More generally, using g(x) = z for x ∈ K and
g(x) = +∞ for x /∈ K we obtain the distribution function of Z(x) after a
change of support according to the sup over any compact set K.

From this theoretical background, it turns out that good candidates for
texture descriptors can be provided by estimates of probabilities obtained
after dilations (or erosions) by compact sets for binary textures. Similarly,
distribution functions after dilations (or erosions) of gray level images will
provide texture descriptions in the digital case. Changing the shape and
size of the compact set K provides us with a full set of data.

From a practical point of view, estimates of the Choquet capacity T (K)
or T (g) can be obtained on images. The pertinence of descriptors will
depend on the statistical precision of estimates. In a second step, a selection
of the more efficient descriptors must be made. This is usually performed
by multivariate analysis. This approach was successfully applied to the
classification of images in the standard case when there is a single texture
per field of view [1, 6]. To address the problem of segmentation of textures
in images, a classification of pixels must be performed. This requires a local
characterization, that can be made in different ways:
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1. Transform the image by dilations, erosions by Ki, gi ( “pixel” ap-
proach), and generation of a multispectral image from the collection
of Ki or gi.

2. Consider a neighborhood B(x) of each pixel, and use a local estimate
of T (K), T (g) inside B(x). From the estimates, generate a multispec-
tral image from the collection of Ki or gi.

3. Use measures µi with a compact support Ki and estimate µi(A) or
µi(Z), generating a multispectral image from the collection of Ki.

The first way is deterministic, and provides a set of transformed images
(binary, or gray level). Combining erosions and dilations provides us filters,
like granulometries, as already proposed [1, 6, 17]. This point is developed
below in the section 3. The second way uses a local estimate of the Choquet
capacity. It requires the appropriate choice of B, and will be illustrated in
the application below (section 3.3). As particular cases of the third way
are recovered various types of linear filters, like multi-scale convolution by
Gaussian kernels, wavelets, curvelets, but also local measurements of the
Minkowski functionals for a random set A (section 3.1).

3. Pixel texture description

In this work, texture properties are calculated for each pixel taking into
account local properties of its neighborhood at varying scales. This provides
us with 3 dimensional data having two spatial dimensions and a descriptor
dimension. This allows us to characterize texture at the pixel level and
follows the texton approach of [13]. Two families of descriptors are used:
curvelets and morphological transformations.

3.1 The curvelet transform

The curvelet transform is a higher dimensional generalization of the wavelet
transform, designed to represent images at different scales and different
angles [3]. The use of this tool to characterize the texture in an image
is recent [5]. Curvelets have very interesting properties in the context of
object detection, in particular curved singularities can be well approximated
with very few coefficients. This makes the curvelets coefficients for pixels
belonging to a particular object very specific.

The curvelet filter bank is in essence a set of bandpass filters with range
and orientation selective properties. Typically, we apply a linear filtering
of each 100 × 100 neighborhood of every pixel by curvelets with different
frequencies and orientations. The filter bank is decomposed into 4 sets of
frequency containing 1, 8, 16 and 1 filters of varied orientations from the
smallest frequency to the largest one. A spatial filtering of each of the 26
filters results is applied to calculate the local energy function. It aims to
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identify areas where the band pass frequency components are strong, after
conversion into gray levels. The outputs of this function are a first class of
texture descriptors.

3.2 Morphological transformations

The morphological operators are connected to the description of random sets
and of random functions by the Choquet capacity, as recalled in section 2.
They consist of non linear image transformations [16]. Applying a succession
of erosions (respectively dilation) by structuring elements K of increasing
sizes makes progressively disappear characteristics of the images [2]. It is
on this morphological property that the descriptor is based.

Different structuring elements are chosen: disks, vertical and horizontal
segments. For a given type of structuring element and a list of sizes, all
eroded and dilated images are evaluated. The descriptor is obtained by
calculating the difference between the eroded images at the step n and
n + 1 as well as between the dilated images at steps n + 1 and n. Therefore
each pixel is described by a vector with k morphological components, where
k = number of sizes × number of structuring elements × 2 operations.

More complex pixel descriptors can also be proposed by using opening
and closing operations instead of erosions and dilations, respectively, as
made in [1,6,17]. The opening, obtained by an erosion followed by a dilation
by a given structuring element, preserves bright parts of the image which
can contain the structuring element, while the closing operation (dilation
followed by an erosion) preserves dark parts.

In this study, we choose the following structuring elements:

• Small scales, erosion and dilation with series of sizes of
[1, 2, 3, 4, 5, 7, 9, 12]× 2 + 1 (size 48).

• Small scales, opening and closing with series of sizes of
[1, 2, 3, 4, 5, 7, 9, 12]× 2 + 1 (size 48),

• Large scales, opening and closing with series of sizes of
[2, 4, 8, 16, 32]× 2 + 1 (size 30),

3.3 Averaged descriptors

From the initial pixel descriptors, it is easy to estimate average descriptors
in a window B, in order to use the local Choquet capacity. The optimal
size of the window is obtained by minimizing the errors of classification of
pixels. In what follows, averages in windows up to 60× 60 are used.

4. Application

The present application is based on simulations of models of random tex-
tures. They are produced and mixed together. Using the knowledge of the
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ground truth to calculate errors of classification, we are able to test different
pixel descriptors for the segmentation. We produce a critical analysis of the
approach and evaluate its limitations. Images used here are available on
www.cmm.ensmp.fr/~cord/Synthetik_Texture/ for comparison with any
other approach of segmentation.

4.1 Data

On the basis of [8,9], we simulate different textures in images of size 800×800
pixel (Fig. 1), using the Micromorph c© software.

(a) (b) (c)

(d) (e) (f)
Figure 1. Simulated texture images. (a) Boolean random function with cone pri-

mary function. (b) Sequential Alternate random function with cone
primary function. (c) Dead leaves random function. (d) Boolean ran-
dom set, with disk primary grain (radius 6). (e) Binary dead leaves.
(f) Poisson mosaic (from a Poisson line tesselation involving 400 lines).

• A boolean random function with cone primary function (Fig. 1.a),
using a uniform distribution of radii between 1 and 32 pixels.

• A sequential alternate random function with cone primary function
(Fig. 1.b)

• A dead leaves random function (Fig. 1.c)

• A boolean random set, with disk primary grain (radius 6) (Fig. 1.d)
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• A binary dead leaves with disks (radius 6) (Fig. 1.e)

• A Poisson mosaic (from a Poisson line tessellation involving 400 lines
(Fig. 1.f)

• A binary Poisson mosaic with 50 lines (Fig. 2.e), used as a mask.

We consider 4 case studies, corresponding to 4 patchwork images with a
mixture of two textures. They are produced using two original images from
Figures 1.a-f, combined using masks corresponding to image from Figure
1.g and its complementary. These images, shown in Fig. 2, are used to test
the segmentation procedure on the basis of the local textural properties.
We can notice that the resulting composite images show some very small
areas with different textures, as compared to the size of the primary grains,
for which the segmentation is a very difficult task.

(a) (b)

(c) (d) (e)
Figure 2. Patchwork image containing two types of texture for separation. Com-

bination of: (a) Figure 1.a and b. (b) Figure 1.a and c. (c) Figure 1.d
and e. (d) Figure 1.d and f. (e) The mask used for patchwork image:
binary Poisson mosaic with 50 lines.

4.2 Experiments

Learning Procedure Texture descriptors are calculated both on origi-
nal images and on the patchwork image. For each patchwork image, two
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different learning training procedure based on a linear discriminant analysis
(LDA) are produced and compared. In each case, both training and testing
pixels are extracted. First, we randomly extract from each of the two orig-
inal images (Fig. 1), 20, 000 pixels half for the training and the rest for the
test. This is labeled “Training ORI” in the following. This analysis aims to
calculate the projection of descriptors that corresponds to the best linear
separation between the two textures. Second, we extract from half of the
patchwork image (Fig. 2), 10, 000 pixels of each texture for the training and
from the other half of the patchwork image 10, 000 pixels of each texture
for the test. This is labeled “Training PATCHW” in the following. This
analysis aims to calculate the projection of descriptors that allows to best
discriminate between the two textures even in border areas. We have to
stress the fact that the textures in the original images (Figure 1) and in the
patchwork images (Figure 2) have different probabilistic properties, since
the second ones are a combination of simple textures and of a random set
(the large Poisson mosaic).

An histogram of train data projections on the first LDA axis is presented
in figure 3.

(a1) (a2) (b1) (b2)

Figure 3. Exemple of histogram of training data projection on the first LDA
axis when training (1) ORI, (2) PATCHW. (a) For gray scale image
corresponding to Fig. 2.a. (no averaging of the descriptors) (b) For
binary image corresponding to Fig. 2.c (descriptors are averaged by a
box of size 35× 35).

It shows that the separation between the two textures is systematically
reachable. The separation appears to be more efficient for training ORI
than training PATCHW. In this last case, the descriptors for one texture
is clearly influenced by the descriptors from the other ones, in particular
for pixels located near boundaries. It confirms that textures have different
probabilistic properties. The Gaussian shape suggests that LDA was indeed
a good method, much simpler to perform than SVM (however we provide
a comparison of the results obtained for the two techniques). It leads us to
model the data as a mixture of two Gaussian random variables.

Finally, the patchwork image descriptors are projected on the first LDA
axis and classified. The probability for each pixel of belonging to one of the
Gaussian distribution is calculated and is used to produce the classification.
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Using the knowledge of the mask, a patchwork error corresponding to a
misclassification is evaluated. It is the global error of the approach.

The difference between train and test errors are smaller than 1.5 % in
all the cases, showing that the system do not overfit. Therefore we restrict
the presentation to test errors.

Different sizes of windows B are used to average descriptors as detailed
in section 3.3. The figure 4 presents the test errors and the patchwork errors
as a function of this size for the two learning procedures (training ORI and
PATCHW).

(a) (b)

Figure 4. Errors versus size of descriptor averaging boxes (a) For gray scale
image corresponding to Fig. 2.a. (b) For binary image corresponding
to Fig. 2.d. ∇ test error for training ORI. 4 patchwork error for
training ORI. O test error for training PATCHW. X patchwork error
for training PATCHW.

Only two of the four projections are presented, because the results are
similar for the two gray level images and for the two binary images. However,
the behaviors are very different between gray scale and binary images used
in this study.

Training on original vs. patchwork images The gap between test
errors and patchwork errors for training ORI shows that this training pro-
cedure produces a large error, as a result of edge effects induced by the
boundaries of domains with a single texture. Training on images with a
single texture is therefore not very efficient, and should be avoided for ap-
plications to texture segmentation when they are intimately mixed.

Influence of the window size of the post-averaging (a) For gray
scale images, only a small box of size 3 × 3 slightly improves the results.
It shows that the descriptors on the scale of pixels are well adapted to our
problem in the case of the gray level images.
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(b) For the training on original images, we note that increasing the
averaging window size systematically decreases the test error: the separation
of the textures increases, as a result of a better estimate of the descriptors.
However, the precision of the detection decreases, in particular near the
boundaries. Therefore we have to find a compromise, corresponding to the
minimum reached on the patchwork error curve.

In the following, we keep no averaging for the gray scale and a 35 × 35
averaging box for the binary images. A summary of the test and patchwork
errors is given in table 1.

Training ORI Training PATCHW

No Average Average No Average Average SVM

Fig. Test Patch Test Patch Test Patch Test Patch Patch

2.a 1.0 29.5 NA NA 15.5 15.7 NA NA 9.7

2.b 0.8 30.5 NA NA 14.9 14.8 NA NA 9.4

2.c 25.6 30.6 1.8 15.8 29.1 29.2 13.2 13.5 12.1

2.d 28.4 39.4 3.7 30.7 35.6 35.0 19.3 18.1 19.3

Table 1. Test and patchwork errors for the different proposed procedures. Av-
erage box sizes 35× 35. All values are in %.

Results analyses With the present approach we obtain between 82 %
and 90 % of pixels that are correctly classified. These results are very
satisfying taking into account the complexity of the chosen images. We run
a SVM using a radial basis function (exp(− 1

2 (u− v)2)) for the best training
procedure (train PATCHW with the adapted averaging window size). By
minimizing the test error, we optimized the regularization parameter C
that controls the trade-off between training set accuracy and generalization
performance. The result, presented in table 1 are similar to LDA ones for
the binary images and greatly improved for gray scale images.

Chosen descriptors We have also looked for descriptors giving a larger
contribution to the LDA projection. The disk structuring element appears
to be the most relevant one for all present applications, where the textures
are isotropic. The erosion/ dilation are most relevant for binary images and
opening/closing for the gray level images. The present curvelet approach,
which acts symmetrically on images and on their negative, is unable to sepa-
rate textures like the sequential alternate and the Boolean random function.
Indeed, the curvelets are more relevant for binary images than grey level
images.

The typical scale of the present binary images is very small (within a
range of 12 pixels), and therefore the contribution of structuring elements
of large size decreases, whatever the considered training.
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(a1) (c1) (d1)

(b1) (c2) (d2)
Figure 5. Localisation of misclassified pixels are plotted in white for the 4 studied

cases. a, b , c and d correspond to the label in Figure 2. (1) Descriptors
are not averaged. (2) Descriptors are averaged by a 35× 35 box.

Error localization The localization of misclassified pixels gives inter-
esting information. For gray scale images (Fig. 5.a and 5.b) errors are
mainly located in small areas of the patchwork image and near the bound-
aries between the two textures. For binary images, this Figure illustrates
the differences existing between non averaged descriptors (Fig. 5.c1 and
5.d1) and averaged descriptors (Fig. 5.c2 and 5.d2). The improvement of
the descriptors averaging is clearly visible: for the training 1 large areas of
identical texture are misclassified, and the error image appears very noisy.
On the contrary, for the training 2, the localization of misclassified pixels
are mainly located on the boundary between the two textures.

We plot in figure 6 the classification probability for image 2.d and the
corresponding histogram. The probability image could be used as a seed for
further segmentation, using for instance watersheds. However, our attempts
and a comparison to image 2.d shows that it would be very difficult to
recover the misclassified pixels in small area without introducing errors in
the well classified pixels. Therefore the present classification is closed to the
optimal one.
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(a) (b)

Figure 6. (a) Classification probability for image 2.d. (b) The corresponding
histogram. In read pixels that are misclassified and in blue the well
classified ones.

5. Conclusion

A morphological approach at the level of pixels in images, combined with
statistical learning proved to be very efficient for the segmentation of bi-
nary or digital textures, as illustrated for difficult case studies. The main
conclusions for further applications are as follows: the basic operations of
mathematical morphology (erosion/dilation for binary images, and open-
ing/closing for gray level images) provide efficient descriptors of textures.
Local averaging of the binary descriptors improves significantly their dis-
criminant power. Finally, the training procedure has to be made on a se-
lection of pixels in composite images, rather than in pure textures.
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