A2

Écoulement en milieux poreux

- Dissipation due au transport de fluide
- Approche générale des lois de transport
- Loi de Darcy
- Perméabilité relative
- Problème d'évolution
- Conditions aux limites et initiales

Dissipation due au transport de fluide

Dans un milieu continu en évolution on admettra que l'on a toujours :

$$d\Psi = \mu dm$$

$$d(m\psi) = -pd(\phi S_l) + \mu dm$$

tandis que la dissipation due au transport de fluide (inégalité de Clausius-Duhem) prend la forme :

$$\underline{w} \cdot (-\underline{\nabla \mu} + \underline{f}) \ge 0$$

 \underline{f} est la force de masse appliquée au fluide (par exemple $\underline{f} = \underline{g}$).

On rappelle que :
$$\underline{\nabla \mu} = \frac{\partial \mu}{\partial x} \underline{e_x} + \frac{\partial \mu}{\partial y} \underline{e_y} + \frac{\partial \mu}{\partial z} \underline{e_z}$$

Approche générale des lois de transport

Dans le formalisme de la thermodynamique des processus irréversibles la dissipation se met toujours sous la forme :

$$\sum_{i} J_i X_i \ge 0$$

où J_i sont des flux et X_i les forces motrices (gradients). La théorie linéaire des processus irréversibles consiste à relier linéairement ces flux et ces forces sous la forme :

$$J_i = \sum_j L_{ij} X_j$$

On admettra le principe général d'Onsager qui impose de plus la symétrie de la matrice :

$$L_{ij} = L_{ji}$$

La condition thermodynamique $\sum_i \sum_j X_j L_{ij} X_i \geq 0$ impose que la matrice L_{ij} soit définie et positive en plus d'être symétrique.

Loi de Darcy (1856)

La loi de Darcy entre dans le cadre du formalisme précédent. En effet pour un fluide classique on a $\mu=g$ et $dg=\frac{dp}{\rho}$, d'où :

$$\underline{J} \cdot \underline{X} = \frac{\underline{w}}{\rho} \cdot (-\underline{\nabla p} + \rho \underline{f}) \ge 0$$

d'où la loi de Darcy

$$\frac{\underline{w}}{\rho} = k(-\underline{\nabla p} + \rho \underline{f})$$

k est appellée la perméabilité. Son unité est $L^2T^{-1}Pa^{-1}$. On définit aussi souvent la perméabilité hydraulique $k_h=\rho gk$ dont l'unité est LT^{-1} .

Plus généralement dans un milieu anisotrope on a : $\frac{\underline{w}}{\rho} = \underline{\underline{k}} \cdot (-\underline{\nabla p} + \rho \underline{f})$.

 $\underline{\underline{k}}$ est un tenseur du second ordre symétrique défini positif (où une matrice de composante k_{ij}).

Interprétation de
$$\frac{w}{\rho} \cdot (-\underline{\nabla p} + \rho \underline{f}) \ge 0$$

Dans un fluide parfait incompressible en régime permanent, la charge hydraulique

$$h = \frac{p}{\rho g} + z + (\underbrace{\frac{1}{2g}V^2}_{\approx 0})$$

est constante le long des lignes de courant. Dans un fluide visqueux il y a perte de charge ce qui signifie que

$$\frac{dh}{dt} = \underline{\nabla h} \cdot \underline{u} < 0$$
 i.e. $(\frac{1}{\rho g} \underline{\nabla p} + \underline{e_z}) \cdot \underline{u} < 0$

Les expériences effectuées par Darcy à partir de 1854 (dans la cour de l'hôpital de Dijon) ont montré que le flux $\phi\underline{u}$ est proportionnel au gradient de la charge hydraulique:

$$\phi \underline{u} = -k_h \underline{\nabla h} = \frac{k_h}{\rho g} (-\underline{\nabla p} - \rho g \underline{e_z})$$

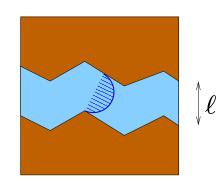
 k_h est la perméabilité hydraulique du milieu poreux $(k_h > 0 \text{ en } m/s)$.

Perméabilité intrinsèque

Afin de rendre compte de la viscosité du fluide, appliquons une analyse dimensionnelle. Écrivons

$$J_i = f(X_i, \mu, \ell, \underbrace{\phi, \cdots}_{\text{g\'eom\'etrie}})$$

	J_i	X_i	μ	ℓ	ϕ	• • •
\overline{L}	1	-2	-1	1	0	0
M	0	-2 1 -2	1	0	0	0
T	-1	-2	-1	0	0	0



À partir de J_i , X_i , μ et ℓ on ne peut former qu'un nombre sans dimension : $\frac{J_i\mu}{X_i\ell^2}$. La relation précédente prend alors nécessairement la forme :

$$\frac{J_i\mu}{X_i\ell^2} = \chi(\phi, \cdots)$$

ce qui montre que

$$k = \frac{\ell^2 \chi(\phi, \cdots)}{\mu} = \frac{k_{\text{int}}}{\mu}$$

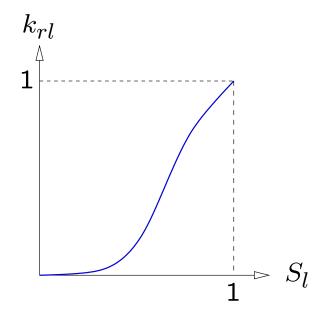
Perméabilité relative

En non saturé on écrit

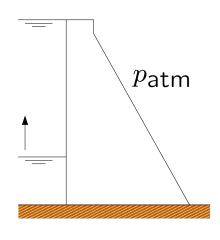
$$\frac{\underline{w}}{\rho} = k(S_l)(-\underline{\nabla p} + \rho \underline{f})$$

On introduit la perméabilité relative :

$$k(S_l) = \frac{k_{\mathsf{int}}}{\mu} k_{rl}(S_l)$$



Formulation des problèmes d'écoulements Modèle de Richards



Hypothèses:

1.
$$p_g(\underline{x}, t) = p_{\text{atm}} \quad \forall \underline{x}$$

2.
$$\rho = \text{cste}, \ \mu = \text{cste}$$

- $\bullet \quad \frac{\partial m}{\partial t} = -\text{div}\underline{w}$
- $\bullet \qquad m = \rho \phi S_l(p_c)$
- $\underline{w} = \rho \frac{k_{\text{int}}}{\mu} k_{rl}(S_l) (-\underline{\nabla p} + \rho \underline{g})$

Équation de Richards :

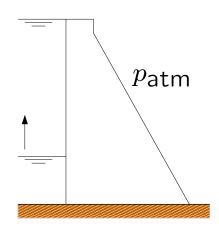
$$\phi \frac{\partial S_l}{\partial t} = -\text{div}\left(\frac{k_{\text{int}}}{\mu} k_{rl}(S_l)(-\underline{\nabla p} + \rho \underline{g})\right)$$

Auteurs	$S_l(p_c)$		
Brooks & Corey	$(p_c/p_b)^{-\lambda}$		
van Genuchten	$(1+(p_c/A)^n)^{-m}$		

Milieux	$k_{int}(m^2)$
sables, graviers	$10^{-9} - 10^{-12}$
sables fins	$10^{-12} - 10^{-16}$
argile	$10^{-16} - 10^{-20}$
béton	$10^{-16} - 10^{-21}$

Attention $k_{int}(\underline{x})$ et $\phi(\underline{x})$!

Conditions aux limites et initiales



Cas général

2 types de conditions aux limites :

$$\bullet \ p = p^d \ \operatorname{sur} \ S_p$$

•
$$p = p^d \operatorname{sur} S_p$$

• $\underline{w} \cdot \underline{n} = q^d \operatorname{sur} S_q$

avec $S_p \cup S_q = \partial \Omega$ et $S_p \cap S_q = \emptyset$

Ici

En
$$x = 0$$
 et $y \le h(t)$: $p(0, y, t) = p_{atm} + \rho g(h(t) - y)$

En
$$x = 0$$
 et $y > h(t)$: $w_x(0, y, t) = 0$.

Partout ailleurs $\underline{w} \cdot \underline{n} = 0$.

Conditions initiales:

Par exemple $p(x, y, 0) = p_{atm} - \rho gy$