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Abstract— In order to navigate safely, it is important to
detect and to react to a potentially dangerous situation. Such
a situation can be underlined by a judicious use of the
locations and the uncertainties of both the navigating vehicle
and the obstacles. We propose to build an estimation of the
collision probability from the environment perception with
its probabilistic modelling. Then this probability is used for
updating a braking order applied to our vehicle either to
avoid or to mitigate a collision. The probability of collision is
computed from a product of integrals of a product of Gaussians.
The integrals take into account the uncertain configurations and
the volume of both the vehicle and the obstacles.

I. INTRODUCTION

The anticipation of a collision is necessary for a safe
navigation. The prediction of collisions could be used for
obstacle avoidance, speed control, speed monitoring or path
planning. We chose to deal with speed control in order to
follow a path in the best condition by increasing the speed
if the situation is safe and by lowering it if the situation
is risky. The assessment of driving situation (which rely on
the study of future possible collisions) has been computed
in various ways during the last years.

[1] defines a security area modeled by a circle (centered
on the robot position) whose radius is proportional to the
speed. A collision judgement is based on an intersecting
test between this circle and high-confidence position error
ellipses. Controlling the speed and steering of the mobile
robot along a preplanned path is done by using the collision
judgement. [2] uses an interaction component (deformable
virtual zone) of the robot with the environment which
leads to avoidance-oriented control laws. Furthermore an
emergency area around the robot causes an emergency stop
if it is broken by an obstacle. [3] performs an on-line speed
monitoring by computing a time to collision. Longer times to
collision lead the higher speed. In order to detect a collision,
the authors grow a mobile robot with its uncertainty ellipse
and they do a collision test between the resulting shape and
the obstacles. The process is repeated all along the path in
order to compute a time to collision. Uncertainty ellipses
have also been used in [4] for safe path planning. The safety
is realized thanks to a collision test between a robot enlarged
with its uncertainty ellipsoid and the obstacles. [5] computes
a distance to undecided regions (unknown region) or to

nearby obstacles. Next they use this distance information to
compute the speed.

We think that only using a measured distance to collision
[5][6] is not sufficient as the real distance could be quite
different and lead to unexpected collisions. Using a security
area [1][2] around the vehicle is a good idea only if this secu-
rity area represents the uncertainty on the vehicle location.
Nevertheless such an area (an ellipse [3][4]) is a discrete
and binary representation of a continuous probability of
presence. Most authors uses an ellipse which represents the
probability of presence of the vehicle at 90%. Unfortunately
by defining a threshold they loose information for higher
level algorithms.

That’s why in this paper we propose to use the entire avail-
able information (the pdf of the vehicle and the obstacles) for
defining the probability of collision. Such an approach has
been followed in [7] for a punctual robot and a geometrical
obstacle without considering the uncertainty in orientation.
We are going to overcome those restrictions (punctual and
no uncertainty in orientation) in order to compute a realistic
collision probability for real world application. To the best
of our knowledge, it is the first time that the 3D uncertainty
and the volume of the objects are used when calculating the
probability of collision. Consequently, it is also the first time
that such a probability of collision obtained from the pdf of
the objects is used for providing a speed control.

In the next section we introduce the necessary models. In
section 3 we propose an analytical formula for computing
the probability of collision between two configurations. The
general case (both vehicle and obstacle with any shape and
added uncertainties) is studied in section 4. In section 5
we consider the probability of collision between multiple
objects. Section 6 introduces the risk notion and uses this
notion to defining a safe speed and next a safe acceleration
(or deceleration). Finally we provide simulation results.

II. PROBLEM STATEMENT

A. Vehicle and obstacle models

The vehicle configuration is denoted xv = (xv, yv, θv)T

where (xv, yv) are the coordinates of a characteristic point
which is located midway between the two rear wheels of our
vehicle and θv is its orientation. All variables are defined with



respect to the global frame. The evolution of the vehicle state
could be written as follows:

x̂v(t+ ∆t) = f (xv (t) ,∆s,∆θ) (1)

=

 xv(t) + ∆s · cos(θv(t) + ∆θv/2)
yv(t) + ∆s · sin(θv(t) + ∆θv/2)

θv(t) + ∆θv


where ∆s and ∆θ are the incremental longitudinal and
rotational motion which can be computed from odometers
or from an inertial central.

The obstacles configuration is denoted xo = (xo, yo, θo)T .
The shape of both vehicle and obstacles are denoted Vv

and Vo. The geometric center of Vo is xo. The shape and
uncertain configuration of the obstacles could be given by
a map, a wireless communication system or estimated by
embedded sensors. If a communication system is available,
the moving obstacles are assumed to send their data; the
infrastructure sensors can also detect the objects and send
similar information. This paper does not deal with such
system and only focus on collision assessment and speed
control.

B. Uncertainty modeling

The pdf (probability density function) of a configuration
x = (x, y, θ)T having a Σ covariance matrix and an x̂ mean
is:

p(x) =
1(√

2π
)3√

det Σ
e−

1
2 ((x−x̂)T Σ−1(x−x̂)) (2)

Such a matrix could be the result of a filter process like
the Extend Kalman Filter or could be directly defined by:

Σ = E
(

(x− x̂) (x− x̂)T
)

(3)

The pdf of a v vehicle and an o obstacle are denoted pv

and po with their associated Σv and Σo matrices.
Finally, v and o are defined by: v = (xv,Σv,Vv) and

o = (xo,Σo,Vo).

C. Prediction using proprioceptive sensor

The prediction equation which use proprioceptive (odo-
metric) measurement is given by the vehicle model (Eq. (1)).
We need to compute the new uncertainty matrix Σk with the
help of Σk−1 and Qk−1. Assuming that x̂v, k−1, ∆s and ∆θ
are not correlated, and due to f non-linearity, Σk calculation
is achieved by a first order Taylor expansion.

Σk/k−1 = Fk−1Σk−1/k−1FT
k−1 + Qk−1 (4)

with

Fk−1 =
(
∂f

∂x

)
x=bxk−1

(5)

=


1 0 −∆s · sin

(
θ̂k−1 + ∆θ/2

)
0 1 +∆s · cos

(
θ̂k−1 + ∆θ/2

)
0 0 1


Using Eq. (4) we can compute the covariance matrix of

the vehicle along a path at each time instant k.

Fig. 1. pdf of the collision between an obstacle and a vehicle moving in
straight line

III. PROBABILITY OF COLLISION BETWEEN 2 UNCERTAIN
CONFIGURATIONS

The probability of collision between a v and an o uncertain
configurations (assuming that Vv = Vo = ∅) is defined by :

Pcoll(v, o) =
∫∫∫

R3
pv(x, y, θ) · po(x, y, θ) · dxdydθ (6)

The integral (6) can be analytically computed. Let’s
assume that pv(x, y, θ) is the density of a Nd (x̂v,Σv)
distribution, and po(x, y, θ) the density of a Nd (x̂o,Σo)
distribution. Let us denote x = (x, y, θ)T , A =
(x− x̂v)T Σ−1

v (x− x̂v) + (x− x̂o)T Σ−1
o (x− x̂o) and

B = [x−m]T Σ−1 [x−m] with:

m = Σ−1
(
Σ−1

v x̂v + Σ−1
o x̂o

)
(7)

Σ−1 =
(
Σ−1

v + Σ−1
o

)
(8)

We have

Pcoll(v, o) =
exp

[
− 1

2 (A−B)
]√

det (Σ)√
det (Σv)

√
det (Σv)

(9)

with

A−B = x̂T
v Σ−1

v x̂v + x̂T
o Σ−1

o x̂o (10)

−
(
Σ−1

v x̂v + Σ−1
o x̂o

)T
Σ−1

(
Σ−1

v x̂v + Σ−1
o x̂o

)
Equation (9) has been used to compute the probabilities

of collision of Fig. 1. During this experiment corresponding
to an outdoor situation, a car (so called “the vehicle”, right
part of the figure) was running on its way whereas there was
another static car (so called “the obstacle”) on the opposite
lane (left part of the figure). The vehicle was moving from
the bottom to the top of the figure in a straight line using only
its proprioceptive sensors. The pdf of the vehicle is shown
at 6 different time instants (every 4 meters). The pdf of the
collision has been computed at each of those time instants
but only 2 pdf are noticeable. The maximum height of the



Algorithm 1 Probability of collision between v and o
1: function PROBABILITYOFCOLLISION(v, o)
2: Pcoll(v, o)← 0
3: for j ←1 to N do
4: xv ← randc(x̂v,Σv )
5: xo ← randc(x̂o,Σo)
6: if Vv(xv ) ∩ Vo(xo) 6= ∅ then
7: Pcoll(v, o)← Pcoll(v, o) + 1
8: end if
9: end for

10: Pcoll(v, o)←Pcoll(v,o)
N

11: return(Pcoll(v, o))
12: end function

biggest pdf of the collision is tiny (0.00205) compared to the
corresponding pdf’s height of both the obstacle (0.16) and
the vehicle (0.13). Consequently the pdf of the collision has
been multiplied by 100 on Fig. 1 for a better visualization.
The greatest probability of collision computed using Eq. (9)
is equal to 0.007. It allows us to conclude that the situation
is safe which is unrealistic considering the real situation
with the volume of the cars. We should have thought about
taking into account the volumes as they are big regarding
the estimated distance between the vehicles. We have not
investigated the interest of Eq. (9) when the volumes are not
null because the following approaches (see section 4 and
5) provides results that are good enough both in term of
computing time and precision.

IV. PROBABILITY OF COLLISION BETWEEN ANY 2
OBJECTS WITH GAUSSIAN UNCERTAINTIES

A. Analytical description of the problem

The probability of collision between a v and an o object
is the probability that v and o share a same part of the
space. Consequently, given an x̂v configuration (with a pv

associated pdf and a Vv volume) and an x̂o configuration
(with a po associated pdf and a Vo volume) the probability
of collision is given by:

Pcoll(v, o) =
∫

D

pv(xv, yv, θv)· (11)

po(xo, yo, θo) · dxvdyvdθvdxodyodθo

with

D = { (xv, yv, θv, xo, yo, θo) ∈ R6

\ Vv(xv, yv, θv) ∩ Vo(xo, yo, θo) 6= ∅} (12)

If v and o are punctual objects then Eq. (11) turns to Eq.
(6). If v and/or o have an infinite volume then v and o always
collide and Eq. (11) equals one.

B. Monte Carlo solution

As we have no analytical solution to Eq. (11), we propose
to use a MC (Monte Carlo) method.

First, we need to rewrite Eq. (11) as :

Pcoll(v, o) =
∫

R6
Υ · pv(xv,yv, θv) · po(xo, yo, θo)

· dxvdyvdθvdxodyodθo (13)

Where Υ = Υ(Vv(xv, yv, θv),Vo(xo, yo, θo)) is a collision
test between the volume Vv of the vehicle and the volume
Vo of the obstacle:

Υ(Vv(xv, yv, θv),Vo(xo, yo, θo)) ={
1 if Vv(xv, yv, θv) ∩ Vo(xo, yo, θo) 6= ∅
0 if Vv(xv, yv, θv) ∩ Vo(xo, yo, θo) = ∅

(14)

Denoting z = (xv, yv, θv, xo, yo, θo) (and Z the associated
random variable), Eq. (13) can be rewritten as:

Pcoll(v, o) =
∫

R6
Υ(z)f(z)dz, (15)

with f(z) = pv(xv, yv, θv) · po(xo, yo, θo) and Υ(z) =
Υ(Vv(xv, yv, θv),Vo(xo, yo, θo)).

Secondly we know [8] that for evaluating the integral∫
R6

Υ (z) f (z) dz = Ef [Υ(Z)] (16)

we can use a sample (z1, ..., zm) generated from the density
f . Therefore, Eq. (16) can be approximated by the empirical
average

Ῡm =
1
m

m∑
j=1

Υ(zj), (17)

since Ῡm converges almost surely to Ef [Υ(Z)] by the
Strong Law of Large Numbers. Variable z is Gaussian as
(xv, yv, θv) and (xo, yo, θo) are both Gaussian and indepen-
dent. Therefore, the sample (z1, ..., zn) can be obtained by
generating separately (xvj

, yvj
, θvj

) ∼ pv(xv, yv, θv) and
(xoj

, yoj
, θoj

) ∼ po(xo, yo, θo).
Thanks to Eq. (17) we can rewrite Eq. (13) as:

Pcoll(v, o) =
1
m

m∑
j=1

Υ(Vv(xvj , yvj , θvj ),Vo(xoj , yoj , θoj )).

(18)

Drawing samples (xv, yv, θv) and (xo, yo, θo) is done by
an existing randc() function (many excellent generators exist
to do such a job).
The Eq. (18) leads to algorithm 1 with a linear complexity
in O(N) where N = m is a number that determines the
accuracy of the integral computation.

C. Experimental results

Results provided by algorithm 1 for different values of
probability of collision have been shown on Fig. 2. The
algorithm has approximated 3 different values of probability
of collision: a high (Fig. 2.a), a medium (Fig. 2.b) and a low
value (Fig. 2.c). Both vehicle and obstacles were represented
as polygonal lines for the geometrical collision test inside the
probabilistic collision test.
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Fig. 2. Result of the proposed algorithm for an high, a medium and a low probability of collision
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Fig. 3. Comparison of errors for an high, a medium and a low probability
of collision

For each value the algorithm has been ran 10 times (although
one run is sufficient to obtain an estimate of the probability)
with until 104 samples for each run (N = 104 in algorithm
1). Consequently the subfigures of Fig. 2 have 10 curves
(plus the line of the exact value) and we can analyze various
results of the algorithm on three typical situations. For each
figure the “exact probability” corresponds to the mean after
106 samples. On each subfigure the algorithm defines a
corridor around the exact value.
The root mean square error (RMSE) is computed on Fig. 3
from the 3 subfigures of Fig. 2. The RMSE value is accept-
able for the high and the medium probability values (less
than 0.02 for 0.91 and 0.5 mean values after 1000 generated
observations). Nevertheless the RMSE is big regarding the
low probability value (less than 0.005 for 0.01 mean value
after 1000 generated observations).
The proposed algorithm computes the probability of collision
with 104 samples (one run) in about 0.01 second on a Pen-
tium IV processor (2 Ghz). Approximating the probability
of collision takes 1 millisecond if we consider that only 103

samples are necessary.

V. PROBABILITY OF COLLISION BETWEEN AN OBJECT
AND OTHER OBJECTS WITH GAUSSIAN UNCERTAINTIES

A. Analytical description of the problem

The probability that v collides with at least one obstacle
can be calculated through the probability that v does not

collide with any obstacles :

Pcoll(v, o1...on) = 1− Pcoll(v, o1) · . . . · Pcoll(v, on) (19)

The probability that v do not collide with oi obstacle is

Pcoll(v, oi) =
∫

R6
Υ · pv(xv, yv, θv) · poi(xoi , yoi , θoi)

dxvdyvdθvdxodyodθo (20)

with Υ = Υ(Vv(xv, yv, θv),Voi
(xoi

, yoi
, θoi

)).

B. Monte Carlo solution

Using Eq. (19) and (20) leads to algorithm 2 which is
explained beneath.
• Lines 2-4: The probability Pcoll(v, oi) that the v vehicle

does not collide with the oi obstacle is initialized to 0
for each of the n obstacles.

• Lines 5 and 13: This first loop activates the computation
of Pcoll(v, oi) for each of the n obstacles.

• Lines 6 and 12: This second loop computes Pcoll(v, oi)
using a new pair of samples at each iteration. The bigger
the number N of samples the better the accuracy.

• Lines 7 and 8: A xv (respectively xo) sample is drawn
following the pdf of the vehicle (respectively the i
obstacle).

• Lines 9-11: If the volume of the vehicle on xv does not
intersect the volume of the i obstacle on xo then the
variable Pcoll(v, oi) rises in increment of 1. The division
of Pcoll(v, oi) by the number of samples corresponds to
the probability that the v vehicle and the oi obstacle do
not collide.

• Line 14 : The probability Pcoll(v, o1..n) that the vehicle
does not collide with the obstacles is initialized to 1.

• Lines 15-17: Pcoll(v, o1..n) is updated according to
Pcoll(v, oi) (a variable which is proportional to the
probability of collision with each of the obstacles).

• Line 18: The probability Pcoll(v, o1...on) that the
vehicle collides with the obstacles is computed.
Pcoll(v, o1..n) is divided n times by N where N is the
number of samples and n is the number of obstacles.

• Line 19 returns the result.



Algorithm 2 Probability of collision between v and o1, ..., on

1: function PROBABILITYOFCOLLISIONS(v, o1, ..., on)
2: for i←1 to n do
3: Pcoll(v, oi)← 0
4: end for
5: for i←1 to n do
6: for j ←1 to N do
7: xv ← randc(x̂v,Σv )
8: xo ← randc(x̂oi

,Σoi
)

9: if Vv(xv ) ∩ Voi
(xo) = ∅ then

10: Pcoll(v, oi)← Pcoll(v, oi) + 1
11: end if
12: end for
13: end for
14: Pcoll(v, o1..n)← 1
15: for i←1 to n do
16: Pcoll(v, o1..n)← Pcoll(v, o1..n) · Pcoll(v, oi)
17: end for
18: Pcoll(v, o1...on)←1− Pcoll(v,o1..n)

Nn

19: return(Pcoll(v, o1...on))
20: end function

The complexity of this algorithm is O(nN ) which is n
times the complexity of algorithm 1. This is verified by
experimental results (with N = 103) where the computing
time is n milliseconds.

VI. DEFINING A SPEED PROFILE

We assume that a planned path P has already be defined.
We want that the v vehicle follows P at a speed which
corresponds to an accepted risk of collision.

A. Introduction

The more a vehicle is localized, the more we can know
if a collision will occur or not. A vehicle alternates pre-
diction steps and correction steps during its motion. The
prediction step (link to a displacement) enlarges the con-
figuration uncertainty whereas the correction step reduces
it. Consequently, the best localization is achieved by doing
numerous correction steps between small displacements. As
the correction step is done at a constant rate, the only way to
issue repeated correction step on a given path in comparison
with small displacement is to reduce the speed. Consequently
reducing the speed enable the best localization which reduce
the probability of collision. Furthermore, reducing the speed
reduces the crash consequences (cost of collision). A crash
at small speed could have no consequences whereas a crash
at high speed generally lead to the destruction of the car.
But as we want that the vehicle arrives at destination as
fast as possible, we should deal with a trade-off between
low probability of collision and fast speed. This trade-off
corresponds to an accepted risk of collision as described by
Eq. (22) (section VI-B).

A human being follows the same speed reduction strategy
then the one that we expect for an intelligent vehicle. For

instance, he drastically reduces the speed of its car in a
narrow corridor (which reduces the cost of collision which
will be too higher for higher speeds). The speed could be
very slow which allows the driver to quickly alternate left and
right localization while steering the car (a better localization
reduces the probability of collision). Despite everything, if a
collision occurs at low speed it will generate small damages.

In this paper we are going to define a speed profile on
a given time window. In order to compute the required
speed for a given situation, we should use the localization
uncertainties. As we want to compute future speed we should
compute future uncertainties (and associated probability of
collision). The future uncertainties are computed thanks to
the prediction part (Eq. (4)) of the localization algorithm
along P .

In the next section we are going to introduce the risk of
collision so as to compute an adequate speed along P .

B. From probability of collision to speed

A risk function is classically defined as a product of a
probability by a cost. Consequently the risk of collision is
given by:

riskcoll(v) = pcoll(v, o1...on) · costcoll(v) (21)

The cost of collision (also called severity of crashes)
depends on the square of the vehicle’s speed. Consequently,
Eq. (21) could be rewritten as :

riskcoll(v) = pcoll(v, o1...on) · speed2
v (22)

We will tolerate a maximum risk of collision riskmax
coll

as human does when driving. Consequently, we tolerate a
maximum speed:

speedv =

√
riskmax

coll (v)
pcoll(v, o1...on)

(23)

If speedv is defined beyond the speed limit of the way
then it is lowered to the speed limit.

We define a minimum value for pcoll(v, o1...on) which
corresponds to the accuracy on the computation of
pcoll(v, o1...on) (see section IV-C). Practically we have com-
puted an upper bound (0.01) on the accuracy of the algorithm
2 and consider a maximum speed (100km/h) for the lowest
probability of collision (0.01). Consequently, our maximum
risk of collision is set to 1. Furthermore in order to stop
our vehicle in the presence of an high risk of collision we
consider that a small computed speed (inferior to 2km/h) is
a null speed.

C. From speed to acceleration

We want to define the acceleration of the vehicle at time
k in order to achieve a speed sk+1 at time k + 1. By
considering a constant acceleration a between k and k + 1
and by integrating it, we obtain:

sk+1 = ak(tk+1 − tk) + sk (24)

ck+1 =
ak(tk+1 − tk)2

2
+ sk(tk+1 − tk) + ck (25)



where sk and ck are respectively the speed and the
curvilinear x-coordinate. Equation (24) can be rewritten as :

tk+1 − tk =
sk+1 − sk

ak
(26)

Next, we can replace tk+1 − tk in Eq. (25) thanks to Eq.
(26):

ak =
s2k+1 − s2k

2(ck+1 − ck)
(27)

Unfortunately, acceleration and deceleration are bounded
value : ak ∈ [amin, amax]. Practically, if the needed accel-
eration is bigger than amax then the vehicle will not achieve
the higher required speed. This has no consequence on the
path safety; it only increase the traveling time.

If the needed acceleration is lower than amin then the
vehicle will not achieve the required security speed. Conse-
quently, using Eq. (27), we propose to define a new speed
smax

k that will replace the previous speed sk:

smax
k =

√
s2k+1 − 2amin(ck+1 − ck) (28)

Next ak−1 could be computed and so on until the current
time.

D. Experimental results

We have implemented the previous algorithm using C++
language inside the SiVIC simulator [9]. The SiVIC soft-
ware architecture allows very easily to model virtual road
environment including vehicles, infrastructure and sensors.

In order to prototype, to test and to evaluate our approach,
we have used 2 different types of scenarios. These scenarios
are presented in figures 4 and 5. In the two cases, the vehicle
drives in straight line and we consider small uncertainties on
the obstacles configurations. Whatever is the vehicle uncer-
tainties, it drives at the full speed (100km/h) when it is far
from the obstacles. When it becomes closer to the obstacles,
it gradually reduces its speed. The negative acceleration
depends on the vehicle uncertainty: the smaller is the vehicle
uncertainty the bigger is the negative acceleration (if there is
a near obstacle). In the case of figure 4, the vehicle passes
trough the tunnel at a reduced speed (14km/h) and then
gradually accelerates until the full speed. The brick wall
scenario (figure 5) provides similar results. The vehicle goes
out of the road (in straight line) to the center of the front
wall of the house. As the uncertainty on the vehicle is big,
the speed slowly decrease to 2km/h. Next the vehicle stops.

VII. CONCLUSION

We have defined the probability of collision for a vehicle
in a cluttered environment as a product of integrals of a
product of Gaussians. The probability of collision takes into
account the uncertainties and the volume of both vehicle
and obstacles. Once the probability of collision is computed
we can use it to compute a safe speed for the vehicle. By
repeating this process over a given time windows and by
retro-propagate it we can compute an acceleration profile.

Fig. 4. The tunnel scenario

Fig. 5. The brick wall scenario
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