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Abstract

Most of classification problems concern applications with objects lying in an Euclidean space, but,
in some situations, only dissimilarities between objects are known. We are concerned with supervised
classification analysis from an observed dissimilarity table, which task is classifying new unobserved
or implicit objects (only known through their dissimilarity measures with previously classified ones
forming the training data set) into predefined classes.

This work concentrates on developing model-based classifiers for dissimilarities which take into
account the measurement error w.r.t. Euclidean distance. Basically, it is assumed that the unobserved
objects are unknown parameters to estimate in an Euclidean space, and the observed dissimilarity table
is a random perturbation of their Euclidean distances of gaussian type. Allowing the distribution of
these perturbations to vary across pairs of classes in the population leads to more flexible classification
methods than usual algorithms. Model parameters are estimated from the training data set via the
Maximum Likelihood (ML) method, and allocation is done by assigning a new implicit object to
the group in the population and positioning in the Euclidean space maximizing the conditional group
likelihood with the estimated parameters. This point of view can be expected to be useful in classifying
dissimilarity tables that are no longer Euclidean due to measurement error or instabilities of various
types. Two possible structures are postulated for the error, resulting in two different model-based
classifiers. First results on real or simulated data sets show interesting behavior of the 2 proposed
algorithms, ant the respective effects of the dissimilarity type and of the data intrinsic dimension
are investigated. For these latter two aspects, one of the constructed classifiers appears to be very
promising. Interestingly, the data intrinsic dimension seems to have a much less adverse effect on our
classifiers than initially feared, at least for small to moderate dimensions.
Keywords: dissimilarity data, model-based classifier, maximum likelihood estimate, intrinsic data
dimension, success classification rate, multidimensional scaling.



1 Contribution and Originality

Traditional classification problems concern applications with objects lying in an Euclidean space, but,
in some situations, only some type of pairwise dissimilarity measure between objects is available.
Today, practical applications are numerous (e.g. [3, 8, 11, 29, 30, 31, 32, 41, 42]). Moreover, using
dissimilarity measures can be of much interest to analyze proximity between curves or objects in high
dimensional spaces, or, more generally, between objects of complicated intrinsic structure.

None of the existing algorithms for dissimilarity data classification is based on standard principles
of statistical inference. Moreover, apart from [38], they do not take into account measurement error
in the dissimilarities. Therefore, they are more suited to classify dissimilarity tables that result from
exactly computed pairwise distances between objects in a data set that were originally given through
attributes in an Euclidean space. They are seldom recommended for coarser or noisy dissimilarity
types, whereas real world dissimilarity data quite often fall in that category.

In the work presented here, we develop a new approach based on the purely statistical viewpoint
of Multidimensional Scaling (MDS) [40]. Although interesting alternatives exist, MDS remains today
the leading mathematical methodology for handling dissimilarity data. We are concerned with classi-
fication analysis from a table of such observed data from an otherwise non observable population of
objects. The main goal is to assign a new object to one of a priori groups in the population using
as only information its dissimilarities with previously classified ones which thus form the Training
Data Set. Basically, our approach to solving this problem assumes a probability model in which the
observed dissimilarities are Euclidean distances perturbed with random gaussian errors. Actually, two
possible probability models are investigated, differing by the structure they postulate for the pertur-
bation of the Euclidean distances which led to the observed dissimilarities. In each of these models,
the unobserved objects are regarded as unknown parameters lying in an Euclidean space. Estimating
these parameters in the statistical sense is thus equivalent to positioning the unobserved objects in
the Euclidean space given their respective pairwise dissimilarities, which is the traditional MDS main
concern. Such a model-based approach then has the advantage to simultaneously estimate objects
positioning and group labeling. Since it is unknown, the dimension p of the Euclidean space shall
serve as a tuning parameter to be estimated from the data by cross validation and the “within one
standard error of the minimum error towards model parsimony” rule.

Each of the two probabilistic models so postulated for dissimilarity data allows us to derive a
general purpose classifier for such data. The two constructed classifiers are nicknamed M1.BC and
M2.BC respectively. The latter (M2.BC) exhibits high flexibility to adapt to the dissimilarity type
at hand in the data. Its classification performance on some classical data sets appears comparable to
that of some of the already available best classifiers on dissimilarity data.
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2 Introduction

Traditional classification problems concern applications with objects lying in an Euclidean space, but,
in some situations, only some type of pairwise dissimilarity measure between objects is available.
Today, practical applications are numerous. Without attempting to be exhaustive, the following
domains often make use of dissimilarity tables in analyzing or classifying collected data: psychology,
sociology, signal processing, pattern recognition, document databases, detection of biomedical patterns
[3, 30], natural language processing [29], classification of spectra [32], detection of abnormal events
in computer networks [8], image indexing and retrieval [11], designing of recognition systems for
vocally impaired persons [42], face authentication systems [41], or classification of seismic signals [31].
Moreover, using dissimilarity measures can be of much interest to analyze proximity between curves
or objects in high dimensional spaces, or, more generally, between objects of complicated intrinsic
structure. In those situations, specification of features to properly represent objects can be quite
problematic, and moving from poor given features to dissimilarities may improve the performance in
the classification task [10, 30, 35, 36].

Paradoxically, more work seems to have been done for (true) dissimilarity data in the area of
clustering than in that of classification, contrary to the case of classical data known through attributes
in an Euclidean space. Indeed, in the by now reference book [20], dissimilarity data only appear in
the lone chapter (among 14) on clustering. One reason for that rather strange situation might stem
from the fact that, in clustering, suffice it to be “heuristically good”, whereas in classification one
has the error rate benchmark hanging over one’s head. The former goal appears to be conceivably
achievable with dissimilarity data since it is intrinsically linked to their very nature. On the other
hand, successfully passing the error rate benchmark in classification appears to be a priori more
problematic for dissimilarity data due to their quite often unstable or unprecise nature. As such, even
the k nearest neighbors (k-NN) method (see Fukunaga [12]), the traditional classification method most
apparently suited for this type of data, can run into trouble in terms of error rate performance. Its
well known drawbacks and advantages are preserved in this context: it is rather slow and non suited
for non-spherical class shapes, neither for noisy data, but efficient with non connected classes. This
latter fact is directly related to its very intuitive construction. The difficulty for the k-NN method to
handle noisy data is particularly to be highlighted here, since real world dissimilarity data quite often
fall in that category.

Other heuristic arguments lead to various algorithms for classifying objects on the basis of their
dissimilarities with already classified ones. Guérin-Dugué and Celeux [15] propose a classification tech-
nique for dissimilarity data which leads to a quadratic-like classifier based on a pseudo Mahalanobis
distance. Its advantages are rapidity, adaptation to incomplete dissimilarity data and apparent insen-
sitivity to the (unknown) intrinsic data dimension, a major difficult issue in handling this type of data.
Another distinctive approach is to treat the dissimilarities of objects with the n ones in the training
set as coordinates of those objects in an n-dimensional Euclidean space. To classify the objects,
one can then resort to any of the traditional classification algorithms applied in that n-dimensional
space (albeit with appropriate adaptations for some of these algorithms). This approach is studied in
[33, 34, 36]. In [19, 38], the same authors (with others) also examine a third approach in which the
objects are first embedded in a low dimensional Euclidean or pseudo-Euclidean space where they are
then classified. Another general purpose approach (see [18]) is to use the given pairwise dissimilari-
ties as substitutes to Euclidean distances in kernels-based classification methods such as the popular
Support Vector Machines (SVM). More complicated and specific distance classifiers are also needed
when dealing with more involved classification issues such as subspace classification [1].

However, none of the afore-mentioned techniques for dissimilarity data classification is based on
standard principles of statistical inference. Moreover, apart from [38], they do not take into account
measurement error in the dissimilarities.

In the work presented here, we develop a new approach based on the purely statistical viewpoint
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of Multidimensional Scaling (MDS) [40]. Although interesting alternatives exist, MDS remains today
the leading mathematical methodology for handling dissimilarity data. We are concerned with classi-
fication analysis from a table of such observed data from an otherwise non observable population of
objects. The main goal is to assign a new object to one of a priori groups in the population using
as only information its dissimilarities with previously classified ones which thus form the Training
Data Set. Basically, our approach to solving this problem assumes a probability model in which the
observed dissimilarities are Euclidean distances perturbed with random gaussian errors. Actually, two
possible probability models are investigated, differing by the structure they postulate for the pertur-
bation of the Euclidean distances which led to the observed dissimilarities. In each of these models,
the unobserved objects are regarded as unknown parameters lying in an Euclidean space. Estimating
these parameters in the statistical sense is thus equivalent to positioning the unobserved objects in
the Euclidean space given their respective pairwise dissimilarities, which is the traditional MDS main
concern. Such a model-based approach then has the advantage to simultaneously estimate objects
positioning and group labeling. Since it is unknown, the dimension p of the Euclidean space shall
serve as a tuning parameter to be estimated from the data by cross validation and the “within one
standard error of the minimum error towards model parsimony” rule.

The paper is organized as follows. Section 3 presents our global framework, from the data and
the statistical models to the shape of our proposed solutions to the dissimilarity data classification
problem. Section 4 details the learning phase in each solution, while Section 5 explains how a new
(implicit) observation is classified. Section 6 is devoted to some miscellaneous considerations, including
an empirical discussion about the respective a priori powers of our constructed prediction rules and
the handling of the dissimilarity data intrinsic dimension problem in these rules. Section 7 then
presents some numerical experiments on both simulated and real data. Finally, Section 8 draws some
concluding remarks.

3 Framework

3.1 The data

Let Ω be a population divided into G disjoint groups labeled k = 1, . . . , G, in the respective propor-
tions (known or not):

π1 , . . . , πG > 0.

Our situation of interest here is that in which the objects in Ω cannot be concretely observed.
Nevertheless, it is assumed that each of them can be identified through a coordinate system in an
Euclidean space Rp:

X = (x1 , . . . , xp ) ∈ Rp,

but with X being, thus, unobservable. Henceforth, we shall use Ω and Rp interchangeably. Initially,
in our work, the dimension p is assumed known. Later on, it will appear that it needs to be estimated
from the data so as to maximize the classification success rate of the derived prediction rules.

For the forthcoming classification problem, our learning situation is that in which there exist n
objects in Ω,

X1 , . . . , Xn ∈ Rp, (1)

as unobservable as other objects in Ω, but for which:

1. their respective group labelings are known:

g1 , . . . , gn ∈ {1, . . . , G}; (2)
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2. there exists a dissimilarity measure d(X, Y ) between objects in Ω such that, for each object U
in Ω, one can measure independently its respective dissimilarities with X1 , . . . , Xn :

d(U,X1), . . . , d(U,Xn ). (3)

3.2 The statistical models

There does not seem to be a universally accepted probability model for dissimilarity data, maybe
because such a model should somehow vary with the type of dissimilarity at hand. And, indeed, one
encounters quite a variety of these in the literature. Nevertheless, Ramsay [40] assumes one such
model for this type of data. For the sake of our classification problem, we postulate two (hopefully
plausible) probability models for the dissimilarities between objects in Ω:

• Model 1.
Here, it is assumed that there exists a symmetric square matrix Σ = (σ2

kl) ∈ MG(R∗
+) such

that:
for all X, Y ∈ Ω, d(X, Y ) ∼ N (‖X − Y ‖, σ2

g(X), g(Y )), (4)

where

– MG(K) is the subset of square matrices of order G with all elements in K,

– ‖.‖ is the Euclidean norm in Rp,

– g(X) is the group label of object X ∈ Ω,

– N (m,σ2) is the univariate normal distribution with mean m and variance σ2.

• Model 2.
Here, it is assumed that there exist two symmetric square matrices A = (akl ), Σ = (σ2

kl) ∈
MG(R∗

+) such that:

for all X, Y ∈ Ω, d(X, Y ) ∼ N (ag(X), g(Y )‖X − Y ‖, σ2
g(X), g(Y )). (5)

Hypotheses (4) and (5) essentially mean that, in both postulated models, the dissimilarity measure
d(X, Y ) between objects X and Y is a perturbation of their Euclidean distance in Rp with an error
having a gaussian distribution. It shall turn out that the key assumption for our classification problem
is that this gaussian distribution has a mean and/or variance completely determined by their Euclidean
distance in Rp and their pair of groups in Ω. Indeed, this strongly classification oriented structure of
our models is intended to provide more flexibility for them in trying to adapt to each dissimilarity
data set. One should note that Model 1 is a submodel of Model 2. The former has just a scale
parameter for the distribution of dissimilarities corresponding to the same pair of groups, while the
latter adds a parameter which affects the location of the distribution. One should thus expect a better
generalization performance for a classification rule based on Model 2.

It is important to outline that these are conditional models: they each hypothesize a distribution
for the dissimilarity between two objects in Ω given the coordinates of these objects in Rp. Although
unobserved, no distribution is assumed for the objects themselves (somewhat in the spirit of logistic
prediction). Rather, we shall treat these objects as unknown parameters to estimate in Rp when
needed.

3.3 The dissimilarity data classification problem

Let dij = d(Xi , Xj ), for i, j = 1, . . . , n. Using the available data, i.e.

1. the symmetric matrix D = (dij ) ∈Mn(R+),
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2. the group labels g1 , . . . , gn ∈ {1, . . . , G} (of the unobserved learning objects X1 , . . . , Xn ),

we intend to design a prediction rule U 7→ ĝ (U), from Ω into {1, . . . , G}, such that ĝ (U) = g(U) with
a high probability in Ω.

The important practical requirement is, however, that for any U ∈ Ω, the computation of its group
label prediction ĝ (U) can use the only information which can be gathered about U , namely (3), i.e.

ĝ (U) = ĝ (d(U,X1 ), . . . , d(U,Xn )). (6)

3.4 Some useful terminology

Since its concrete observation is impossible, any object U ∈ Ω can only be an implicit observation or
a virtual observation or a pseudo observation. What can really be observed and manipulated about
U is the vector:

d(U,X) = (d(U,X1 ), . . . , d(U,Xn )) ∈ (R+)n,

where X = (X1 , . . . , Xn ). Thus, d(U,X) is an explicit observation or a real observation or a true
observation.

Note, however, that it is truly the implicit observation or a certain type of information about it
(here its group label) which is of interest for us. The explicit observation, hardly directly interpretable,
only provides us with a convenient mean for trying to reach that implicit information hidden to our
eyes. In that context:

• X = (X1 , . . . , Xn ) is our implicit or virtual training (or learning) data set ;

• the vector lines of the matrix D constitute our explicit or real training data set ;

whereas

• the objects U ∈ Ω \ {X1 , . . . , Xn } are potential implicit or virtual test data,

• the vectors d(U,X) being the corresponding true test data.

Remark. In general, the matrix D does not determine the configuration X uniquely. But this degree
of freedom shall not matter for our classification problem. What is going to be important is, once
X1 , . . . , Xn are estimated, the relative position of any object U in Ω w.r.t. these anchor points.

In the language of the Multidimensional Scaling community (see [2] for a comprehensive presenta-
tion of the subject), X = (X1 , . . . , Xn ) is called a configuration of points for the dissimilarity matrix
D. Indeed, in that scientific community, a chief concern is to devise operational methods to compute
such a configuration given D, or, at least, one good enough w.r.t. a reasonably chosen criterion (gen-
erally of least squares type). It shall turn out, in what follows, that this shall also be a key point in
our classification procedures. In our context, X therefore deserves to be called the implicit learning
configuration (of points or objects in Ω).

3.5 Our methodology

Let π = (π1 , . . . , πG ) be the vector of groups proportions in Ω. To simplify notations, let also, for
any U ∈ Ω:

g = g(U) ∈ {1, . . . , G}, di = d(U,Xi ) (i = 1, . . . , n), d = d(U,X) = (d1 , . . . , dn ). (7)

Similarly, we shall denote P, the set of parameters in each of our models. Hence,

• in Model 1, P = Σ, while in Model 2, P = (A,Σ).
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Note that in Model µ, P ∈MG(R∗
+)µ.

As already stated, in our approach basically we regard objects in Ω as fixed unknown parameters
which need estimation whenever requested. They are to be distinguished from those in P which are
the intrinsic parameters in each model. With this in mind, we shall then proceed as follows in each of
our models:

• Learning Phase. Using the explicit learning data, i.e. the dissimilarity matrix D and the group
labels g1 , . . . , gn , we estimate the learning configuration X ∈ (Rp)n, the intrinsic parameters set
P and, if needed, the vector of groups proportions π. This is done by a ML procedure, yielding
respective estimates X̂, P̂ and π̂. If the groups proportions are known, of course one simply
takes π̂ = π. This trivial case is excluded henceforth.

• Prediction Phase. Here, we wish to predict the group label g of a new implicit observation U ∈ Ω
“landmarked” by the explicitly observed vector d in (7) of its respective dissimilarities with
the points in the implicit learning configuration X. To conform to our designed methodology
in which objects in Ω are regarded as parameters, it then comes that with this new implicit
observation enters a new unknown parameter, i.e. U itself. Whence, the joint distribution of the
couple (d , g) is parameterized by U , X, P and π. Now, using golden standards in classification
methodology (see [6], [20]), one should predict the group membership of U as that group g = k
among 1, . . . , G which maximizes the a posteriori group probability given the explicit observation
d :

Pr (g = k | d , U, X,P, π), (8)

were U , X, P and π available. This is the same as maximizing, w.r.t. g, the joint likelihood of
(d , g):

f(d , g |U,X,P, π) = Pr (g |π) · f(d | g, U,X,P) = πg · f(d | g, U,X,P). (9)

But since the values of the parameters U , X, P and π are unknown, the idea is to first estimate
them as best as one can, and then maximize, w.r.t. g, the so obtained estimated version of (9).
For X, P and π, the learning phase will have done the job with the respective ML estimates X̂,
P̂ and π̂. However, there clearly remains a nuisance parameter in (9) which was not estimated
in the learning phase: U itself. Our strategy is then to simultaneously estimate U and predict
g by maximizing, w.r.t. the couple (U, g), the estimated version of (9):

f(d , g |U, X̂, P̂, π̂) = π̂ g · f(d | g, U, X̂, P̂). (10)

This is achieved through the following two steps:

1. For each k ∈ {1, . . . , G}, the object U is estimated as best as possible under the hypothesis
that U is in group k. This is obtained by maximizing, w.r.t. U , the estimated conditional
likelihood of d given g = k:

f(d | g = k, U, X̂, P̂). (11)

We denote Ûk , the estimation so computed for U .

2. We then predict the group of U in Ω by ĝ ∈ {1, . . . , G} given by:

ĝ = arg max
k∈{1,...,G}

[
π̂ k · f(d | g = k, Ûk, X̂, P̂)

]
. (12)

In Sections 4 and 5 to follow, we detail these two phases for our models.
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4 The learning procedures

Recall that we are given the learning data:

1. the dissimilarity matrix D = (dij ) ∈Mn(R+), where dij = d(Xi , Xj ) for i, j = 1, . . . , n;

2. the group labels g1 , . . . , gn ∈ {1, . . . , G} of the points in the unobserved learning configuration
X = (X1 , . . . , Xn );

and one wishes to use these learning data to estimate, in each of our postulated models, the unknown
learning configuration X ∈ (Rp)n, the set of intrinsic parameters P, and π = (π1 , . . . , πG ), the vector
of groups proportions. This will be done by ML estimation.

But before moving any further, it is important to keep in mind that as a (proper) dissimilarity
matrix, D is symmetric with a zero diagonal. Hence, the useful data it contains can be found entirely,
for instance, in its strict upper triangular portion. We denote this upper triangular array hereafter by
Dup, which can thus be substituted to D in the whole model based classification analysis.

To proceed in our ML estimation procedures, we assume the following hypotheses:

H1. The coefficients dij in Dup have been observed independently.

H2. The group labels g1 , . . . , gn have also been observed independently (and independently of the
dij ’s) and their common distribution has π as lone parameter.

H3. Given g , X and P, the distribution of Dup does not depend on π.

Before we proceed, a brief remark is in order here. The number of independent parameters in our
models (np + (G2 + 3G− 2)/2 for Model 1, and np + G2 + 2G− 1 for Model 2) grows unboundedly
with the number of independent observations (n(n + 1)/2). This shouldn’t hurt, however, orthodox
statistical methodology since the ratio of the latter over the former grows unboundedly in parallel;
so when n → +∞, the number of independent observations more and more outweighs the number of
parameters to estimate.

4.1 The structure of the learning data likelihood

The full learning data is the (hyper)couple (Dup, g ), which, under H2-H3, has likelihood:

f(Dup, g |X,P, π) = Pr (g |π) · f(Dup | g ,X,P). (13)

It thus comes that to maximize f(Dup, g |X,P, π) w.r.t. (X, P, π), one needs to maximize separately:

1. Pr (g |π) w.r.t. π = (π1 , . . . , πG );

2. f(Dup | g ,X,P) w.r.t. (X, P).

We now proceed to solve these two separate maximization problems in each of our models.

4.2 ML estimation of groups proportions

By H2, one has in all our models:

Pr (g |π) =
n∏

i=1

Pr (gi |π) =
n∏

i=1

πgi =
G∏

k=1

πnk
k , (14)

where nk is the number of objects Xi in the learning configuration X with group label gi = k.
A well known result has it that among all probability vectors π = (π1 , . . . , πG ) (i.e. satisfying:
π1 , . . . , πG ≥ 0 and π1 + · · ·+ πG = 1), (14) achieves maximal value at

π̂ = (π̂ 1 , . . . , π̂ G ), with π̂ k = nk /n, for k = 1, . . . , G. (15)
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4.3 ML estimation of X and P: How it proceeds

As outlined in Section 4.1, in each of our models one needs to maximize the conditional likelihood
f(Dup | g ,X,P) w.r.t. (X, P). Now, by H1,

f(Dup | g ,X,P) =
n∏

i=1

∏
j>i

f(dij | g ,X,P), (16)

where the usual convention that a product with an empty set of indices equals 1 is assumed throughout.
As is obvious from (16), f(Dup | g ,X,P) is quite a complicated function of (X,P) to maximize,

even numerically. Nevertheless, we are going to follow this latter path by constructing, in each Model
µ, a sequence (X̂

ν
, P̂ ν) ∈ (Rp)n ×MG(R∗

+)µ in the hope that it shall converge towards

(X̂, P̂) = arg max
(X,P)

f(Dup | g ,X,P), (17)

or, at least, towards a local maximum, which we shall still denote (X̂, P̂) and use accordingly. To
achieve this, we proceed iteratively by alternating maximization w.r.t. X and maximization w.r.t. P.
Notice then that:

• in Model 1, P̂ ν = Σ̂ ν , while in Model 2, P̂ ν = (Â ν , Σ̂ ν).

With this in mind, the alternating maximization process goes as follows:

• Initialization Step: Σ̂0 = (σ̂2
kl,0), with σ̂kl,0 = 1, for k, l = 1, . . . , G ;

and, in Model 2, Â0 = Σ̂0.

• At step ν ≥ 0, with P̂ ν at hand:

(M.X) Computation of X̂
ν

by maximizing f(Dup | g ,X, P̂ ν) w.r.t. X.

(M.P) Computation of P̂ ν+1 by maximizing f(Dup | g , X̂
ν
,P) w.r.t. P.

4.4 Maximization (M.X) for computing X̂
ν

given P̂ ν.

We first detail the case of Model 1 before giving the short adaptation needed for Model 2.

4.4.1 Maximization (M.X) in Model 1.

Here,

f(Dup | g ,X,P) = f(Dup | g ,X,Σ) =
n∏

i=1

∏
j>i

[
1

σgi gj

· ϕ
(

dij − δij (X)
σgi gj

)]
, (18)

where δij (X) = ‖Xi − Xj ‖, for i, j = 1, . . . , n; and ϕ(x) = exp(−x2/2)/
√

2π is the pdf of the
standard normal distribution.

Given Σ = Σ̂ ν = (σ̂2
kl,ν) ∈MG(R∗

+), taking the logarithm on both sides of (18) yields:

ln f(Dup | g ,X, P̂ ν) = Ĉ ν − 1
2
· ̂STRESS ν(X), (19)

where Ĉ ν is a constant w.r.t. X and one defines

̂STRESS ν(X) =
n∑

i=1

∑
j>i

ŵij,ν · (d̂ij,ν − δij (X))2, (20)
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with d̂ij,ν = dij and ŵij,ν = σ̂−2
gi gj ,ν , for i, j = 1, . . . , n.

So, from (19), one deduces that maximizing f(Dup | g ,X, P̂ ν) w.r.t. X is equivalent to minimizing
̂STRESS ν(X) w.r.t. that same (np)-dimensional variable. Now, this latter minimization problem is

a common Multidimensional Scaling (MDS) situation where one searches a configuration of points
X in Rp which inter-points (Euclidean) distances δij (X) closely approximate given dissimilarities dij

between the Xi ’s. Such a configuration can be obtained by minimizing an expression like (20) called
a weighted STRESS criterion with the given weights ŵij,ν on the observed dissimilarities dij ’s.

We solve this rather involved minimization problem by one of the leading algorithms in the MDS
area: the SMACOF algorithm of de Leeuw (see [21, 25]) which is essentially an implementation of
[17]. This iterative algorithm requiring an initial configuration X̂

ν,0
to start with, it is provided as

follows:

• Case ν = 0: X̂
ν,0

= O.d.(XT ).

Here, XT is taken to be the configuration computed from the dij ’s by Torgerson’s classical MDS
(finite) algorithm [43, 44], and O.d.(X) is the optimal dilation transformation of Malone et al.
[28, 27], pushing further initial ideas of [13]:

O.d.(X) =
< ∆up(X), Dup >

‖∆up(X) ‖2F
·X, (21)

where ∆up(X) is the strictly upper triangular part of ∆(X), the n × n distance matrix with
coefficients δij (X); ‖ · ‖F is the Frobenius norm for such triangular arrays, with weights ŵij,ν

on the coefficients, and < ·, · > is the corresponding inner product. Malone et al. [28] gave a
theoretical justification and some numerical evidence in the unweighted (or equal weights) case
showing that the transformation (21) can significantly improve a poor configuration X as far as
minimization of the STRESS criterion is concerned. However, their derivation extends steadily
in the weighted case as well since it uses only the Euclidean structure intrinsic in that least
squares criterion. In any event, it always decreases the STRESS criterion, albeit insignificantly
after the first application.

• Case ν ≥ 1: X̂
ν,0

= O.d.(X̂
ν−1

).

This last systematic choice of initialization considerably accelerates the convergence both in the
SMACOF algorithm here, and in the whole iterative maximization process (M.X)-(M.P).

The stopping criterion in the SMACOF algorithm shall be that the ̂STRESS ν values of two con-
secutive configurations X̂

ν, q−1
and X̂

ν, q
differ, in relative value, by less than, say, 0.01, or, otherwise,

that q = 25.
Remark. The main advantage of the SMACOF algorithm is that, although quite slow and with no
guarantee to converge to a global minimum of the ̂STRESS ν function, it has the virtue to decrease it
at each iteration and so, in our context, to increase the likelihood. For that reason, we are likely to
converge to a (local) maximum of f(Dup | g ,X, P̂ ν) w.r.t. X.

So, to stop at iteration q in the SMACOF algorithm, we require that:

(0 < ) ̂STRESS ν(X̂
ν, q−1

)− ̂STRESS ν(X̂
ν, q

) < 0.01 · ̂STRESS ν(X̂
ν, q−1

). (22)

If this is realized or q = 25, we stop the iteration and set: X̂
ν

= X̂
ν, q

.
We stress that [23] could have been a possible alternative to the use of the SMACOF algorithm

here to minimize the STRESS criterion.
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4.4.2 Maximization (M.X) in Model 2.

Here, (16) becomes:

f(Dup | g ,X,P) = f(Dup | g ,X,A,Σ) =
n∏

i=1

∏
j>i

[
1

σgi gj

· ϕ
(

dij − agi gj δij (X)
σgi gj

)]
. (23)

So (19)-(20) still holds if one redefines d̂ij,ν and ŵij,ν respectively as:

d̂ij,ν = dij /âgi gj ,ν , ŵij,ν = (âgi gj ,ν/σ̂gi gj ,ν) 2. (24)

The maximization of ̂STRESS ν(X) w.r.t. X then proceeds exactly as in Model 1 as detailed in
Section 4.4.1 above.

4.5 Maximization (M.P) for computing P̂ ν+1 given X̂
ν
.

In what follows, ϕ(x|m,σ2) denotes the pdf of the univariate gaussian distribution with mean m and
variance σ2.

4.5.1 Maximization (M.P) in Model 1.

Setting X = X̂
ν

in (18) yields in Model 1:

f(Dup | g , X̂
ν
,P) = f(Dup | g , X̂

ν
,Σ) =

n∏
i=1

∏
j>i

ϕ(dij | δij (X̂
ν
), σ2

gi gj
)

=
G∏

k=1

n∏
i=1

gi =k

G∏
l=1

∏
j>i
gj =l

ϕ(dij | δij (X̂
ν
), σ2

kl ) =
G∏

k=1

G∏
l=1

 n∏
i=1

gi =k

∏
j>i
gj =l

ϕ(dij | δij (X̂
ν
), σ2

kl )


=

[
G∏

k=1

Ψ̂kk,ν(σ2
kk )

]
·

 ∏
1≤k<l≤G

Ψ̂kl,ν(σ2
kl )

 , (25)

where we define:

Ψ̂kk,ν(σ2) =
n∏

i=1
gi =k

∏
j>i

gj =k

ϕ(dij | δij (X̂
ν
), σ2), for k = 1, . . . , G ; (26)

Ψ̂kl,ν(σ2) =
n∏

i=1
gi =k

n∏
j=1
gj =l

ϕ(dij | δij (X̂
ν
), σ2), for 1 ≤ k < l ≤ G. (27)

To see that (25) holds with definitions (26)-(27), one should recall that σkl = σlk since Σ is a symmetric
matrix.

From (25)-(27), it comes that maximizing f(Dup | g , X̂
ν
,Σ) w.r.t. Σ = (σ2

kl ) ∈ MG(R∗
+) is

equivalent to doing so separately for each of the G(G + 1)/2 functions of one positive real variable
Ψ̂kl,ν(σ2) (1 ≤ k ≤ l ≤ G). In this respect, it is important to emphasize that in our models, except for
symmetry, no other a priori relationship is assumed between the coefficients of the matrix Σ, contrary
to those of a covariance matrix for instance.

11



Now, by their very respective definitions (26)-(27), each of the functions Ψ̂kl,ν(σ2) can be recast
as:

Ψ(σ2) =
r∏

i=1

ϕ(xi|mi , σ
2) =

r∏
i=1

ϕ(xi − mi | 0, σ2),

where x1 , . . . , xr are independent observations from the respective gaussian distributions N (m1 , σ2 ),
. . . , N (mr , σ2 ), with given means m1 , . . . , mr and common unknown variance σ2 . Therefore, x1−m1,
. . ., xr − mr are r i.i.d. observations from N (0, σ2 ). Given these latter, estimating σ2 by ML, i.e.
maximizing the likelihood Ψ(σ2), is a standard exercise in Statistics Textbooks and yields:

σ̂2 =
1
r

r∑
i=1

(xi −mi )2.

Let then

Nk = number of couples of indices (i, j) among 1, . . . , n satisfying: i < j and gi = gj = k; (28)
Nkl = number of couples of indices (i, j) among 1, . . . , n satisfying: gi = k and gj = l. (29)

Based on the preceding analysis and given expressions (25) to (27), it comes that, in Model 1,
f(Dup |g , X̂

ν
,P) is maximal w.r.t. P at P = P̂ ν+1 = Σ̂ ν+1 which diagonal elements are given

by:

σ̂2
kk, ν+1 = arg max

σ2
Ψ̂kk,ν(σ2) =

1
Nk

∑
i<j

gi =gj =k

[
dij − δij (X̂

ν
)
]2

, (30)

whereas its off-diagonal elements are:

σ̂2
kl, ν+1 = arg max

σ2
Ψ̂kl,ν(σ2) =

1
Nkl

∑
gi =k
gj =l

[
dij − δij (X̂

ν
)
]2

. (31)

These explicit expressions highlight the fact that, in Model 1, the maximization problem (M.P)
has a unique global solution P̂ ν+1 which can easily be computed in closed form. No iterative numerical
process is requested here.

4.5.2 Maximization (M.P) in Model 2.

Analogously to the case of Model 1 above, setting X = X̂
ν

in (23) yields:

f(Dup | g , X̂
ν
,P) = f(Dup | g , X̂

ν
,A,Σ) =

n∏
i=1

∏
j>i

ϕ(dij | agi gj δij (X̂
ν
), σ2

gi gj
)

=
G∏

k=1

n∏
i=1

gi =k

G∏
l=1

∏
j>i
gj =l

ϕ(dij | akl δij (X̂
ν
), σ2

kl ) =
G∏

k=1

G∏
l=1

 n∏
i=1

gi =k

∏
j>i
gj =l

ϕ(dij | akl δij (X̂
ν
), σ2

kl )


=

[
G∏

k=1

Ψ̂kk,ν(akk , σ2
kk )

]
·

 ∏
1≤k<l≤G

Ψ̂kl,ν(akl , σ
2
kl )

 , (32)
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where now:

Ψ̂kk,ν(a, σ2) =
n∏

i=1
gi =k

∏
j>i

gj =k

ϕ(dij | a δij (X̂
ν
), σ2), for k = 1, . . . , G ; (33)

Ψ̂kl,ν(a, σ2) =
n∏

i=1
gi =k

n∏
j=1
gj =l

ϕ(dij | a δij (X̂
ν
), σ2), for 1 ≤ k < l ≤ G, (34)

and again the symmetry of the intrinsic parameter matrices A and Σ played a key role.
Here, by their respective definitions (33)-(34), each of the functions Ψ̂kl,ν(a, σ2) can be recast as:

Ψ(a, σ2) =
r∏

i=1

ϕ(yi| a xi , σ
2) =

r∏
i=1

ϕ(yi − a xi | 0, σ2). (35)

Now, (35) is the likelihood of the linear least squares model

yi = a xi + εi , (36)

where the xi’s are given real numbers, the yi’s are observed random quantities and ε1 , · · · , εr are i.i.d.
centered gaussian errors with common variance σ2. Standard computations yield ML estimates of a
and σ2 in (36), i.e. the values maximizing Ψ(a, σ2):

â =
r∑

i=1

xi yi

/
r∑

i=1

x2
i , σ̂2 =

1
r

r∑
i=1

(yi − âxi )2.

Applying this to (33)-(34), one sees that, in Model 2, f(Dup | g , X̂
ν
,P) is maximal w.r.t. P at

P = P̂ ν+1 = (Â ν+1, Σ̂ ν+1) with the diagonal coefficients of the matrices Â ν+1 and Σ̂ ν+1 given by:

âkk, ν+1 =
∑
i<j

gi =gj =k

dij δij (X̂
ν
)

/ ∑
i<j

gi =gj =k

[
δij (X̂

ν
)
]2

, (37)

σ̂2
kk, ν+1 =

1
Nk

∑
i<j

gi =gj =k

[
dij − âkk, ν+1 δij (X̂

ν
)
]2

, (38)

whereas the respective off-diagonal elements are:

âkl, ν+1 =
∑
gi =k
gj =l

dij δij (X̂
ν
)

/ ∑
gi =k
gj =l

[
δij (X̂

ν
)
]2

, (39)

σ̂2
kl, ν+1 =

1
Nkl

∑
gi =k
gj =l

[
dij − âkl, ν+1 δij (X̂

ν
)
]2

. (40)

One concludes that, in Model 2 also, the maximization problem (M.P) has a unique global solution
P̂ ν+1 = (Â ν+1, Σ̂ ν+1) which can easily be computed in closed form, with no iterative process required.
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4.6 The stopping criterion in the iterative maximization process (M.X)-(M.P)

Given how we initialized the SMACOF algorithm in Section 4.4, we stop the alternating maximization
process (M.X)-(M.P) when the following criterion is satisfied:

(0 < ) ̂STRESS ν−1 (X ν−1)− ̂STRESS ν(X ν) < 0.01 · ̂STRESS ν−1 (X ν−1), (41)

or ̂STRESS ν−1 (X ν−1) ≤ ̂STRESS ν(X ν) (i.e. no STRESS decrease between steps ν−1 and ν). Thus,
if this stopping criterion is realized, or ν = 50 (say), we set (X, P̂) = (X̂

ν
, P̂ ν), and this ends the

learning phase of our proposed solutions to the dissimilarity data classification problem.

5 The classification procedures

5.1 The prediction rule for a new implicit observation U ∈ Ω

Recall that U is only “observed” through its dissimilarities di = d(U,Xi ) with each of the learning
implicit observations X1 , . . . , Xn (themselves unobserved). From these dissimilarities, one wishes to
predict appropriately the group label g ∈ {1, . . . , G} of U in Ω.

With (X, P, π) estimated in the learning phase by MLE yielding (X̂, P̂, π̂) in Section 4, to
predict g, hopefully with a high probability, we proceed through the two successive steps described
in the Prediction Phase of Section 3.5, and thus obtain a prediction ĝ ∈ {1, . . . , G} for the group of
the implicit observation U in Ω. Note that this procedure also computes, as a byproduct, a ML type
estimate for U once X1 , . . . , Xn have been positioned at X̂1 , . . . , X̂n and (P, π) estimated by (P̂, π̂).
In the notations of (11)-(12), this ML like estimate of U is Ûk with k = ĝ .

5.2 About the sub-maximization requested in the prediction rule

The Step 1 of the Prediction Phase (see Section 3.5) consists, for each group label k ∈ {1, . . . , G}, in
maximizing, w.r.t. U , the function in Rp:

F̂k(U) = f(d | g = k, U, X̂, P̂), (42)

where we recall that d = (d1 , . . . , dn ) = (d(U,X1), . . . , d(U,Xn )). Now, by the hypothesis that
dissimilarities are observed independently,

F̂k(U) =
n∏

i=1

f(di | g = k, U, X̂, P̂). (43)

Again, we detail the case of Model 1 before outlining the simple adjustment needed to handle the
prediction in Model 2.

5.2.1 The sub-maximization for prediction in Model 1

In Model 1, (43) becomes:

F̂k(U) =
n∏

i=1

 1
σ̂k, gi

√
2π

exp

− 1
2

(
di − ‖U − X̂i ‖

σ̂k, gi

)2

 . (44)

Clearly, maximizing F̂k(U) w.r.t. U ∈ Rp, the solution of which was denoted Ûk in Section 3.5, is the
same as minimizing w.r.t. U :

Ĥk(U) =
n∑

i=1

ω̂k, gi

(
d̂ik − ‖U − X̂i ‖

)2
, (45)
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where
ω̂k, gi

= 1/σ̂2
k, gi

, d̂ik = di . (46)

The minimization of Ĥk(U) is performed iteratively, starting from a chosen initial estimate Ûk,0 of
Ûk , through a numerical nonlinear optimization algorithm. In our case, since all of the programming
was done in the R statistical computing system [39], we used the nlm function. However, in order to
significantly speed up iterations, it appears wise to equip the R function evaluating Ĥk(U) for any
given U with a “gradient” attribute consisting of the value of its exact gradient evaluated at U . This
is readily seen to be:

∇Ĥk(U) = 2
n∑

i=1

ω̂k, gi
· (‖U − X̂i ‖ − di ) ·

U − X̂i

‖U − X̂i ‖
. (47)

This manœuvre prevents the nlm function from using finite differences to approximate the p coordinates
of ∇Ĥk(U), thus nearly dividing the computing time roughly by p. The gain is enormous as soon as
p ≥ 2.

The computation of an initial approximation Ûk,0 of Ûk is discussed in the Appendix.

5.2.2 The sub-maximization for prediction in Model 2

In Model 2, (43) becomes:

F̂k(U) =
n∏

i=1

 1
σ̂k, gi

√
2π

exp

− 1
2

(
di − âk, gi

‖U − X̂i ‖
σ̂k, gi

)2

 . (48)

So (45) still holds, provided one takes:

ω̂k, gi
= (âk, gi

/σ̂k, gi
)2, d̂ik = di /âk, gi

. (49)

One can then proceed as in Section 5.2.1 above for Model 1 to numerically minimize F̂k(U).

6 Miscellaneous aspects

6.1 Acronyms for our 2 model based classifiers

As reference acronyms for the two classifiers so constructed, we shall use, from now on:

• “M1.BC” for the pairwise dissimilarities Model 1 based classifier;

• “M2.BC” for the pairwise dissimilarities Model 2 based classifier;

where “pw.d.M1.BC” and “pw.d.M2.BC” would have been more appropriate but too long.

6.2 About the a priori predictive power of M1.BC/M2.BC

Considering the way our prediction rules are designed (see Sections 3.5 and 5), the structure of the
function Ĥk(U) given by (45)-(46) suggests that classes k and l are well separated by Model 1 when
lines k and l of the matrix Σ are appreciably different vectors in RG. However, how the magnitude
of that vector difference affects the separability of the two classes is still to be properly investigated.
Nevertheless, preliminary empirical evidence seems to suggest that the difference needs not be that so
big in order for the model to correctly discriminate between the two classes.

A similar empirical analysis holds for Model 2 by simultaneously considering this time the lines
of the matrices A and Σ. However, as already explained, the coefficients in A affect the location of
dissimilarities pairwise distributions while those of Σ are scale factors. As such, it is the former that
appear to play the leading discriminatory role in the classification.
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6.3 About the dissimilarity data intrinsic dimension problem

The first quite obvious problem which appears when trying to implement our classification methodol-
ogy for dissimilarity data, as described in the previous Sections, is that of the data intrinsic dimension
p which is seldom known. The strategy chosen to cope around this apparent hurdle is to regard p
simply as an arbitrary embedding dimension acting as a tuning parameter to be estimated from the
data. For a range of p values, chosen to be 1 to 12 in our experiments, the “good” one is considered to
be the one yielding the highest classification rate estimated through 5-blocks Cross Validation [6, 20].
However, the “within one standard error of the minimum error towards model parsimony” rule. is
also included as a complement in that choice, meaning that the final estimate pe of p is chosen to be
the smallest among those with a 5-blocks Cross Validation success rate estimate within one standard
error of the highest rate.

7 Numerical experiments

To evaluate and compare our two proposed classification procedures for dissimilarity data, two types
of experiments were conducted:

1. the first ones to weigh the effect of the dissimilarity type and of the data intrinsic dimension on
the performance of our classifiers (Section 7.1);

2. the second ones to test these classifiers on some “true” dissimilarity data, i.e. given through a
table of pre-computed pairwise dissimilarities (Section 7.2).

In each type of experiments, after being investigated internally, our classifiers were also compared
to some reference existing classifiers suited for dissimilarity data. These comprise:

• 1-NN: Nearest Neighbor classifier.

• RLDA-D: Regularized Linear Discriminant Analysis for Dissimilarities classifier. This is the
usual LDA classifier [20] applied to dissimilarity data viewed as vectors in an n dimensional
Euclidean space, where the n coordinates equal, for each object, its respective dissimilarities
with the n objects of the Training Data Set. The regularization is needed in this context
because the size of the Training Data Set does not exceed the space dimension n, rendering the
common class covariance matrix singular and, thus, impossible to invert as requested in the LDA
classifying engine. The regularization is obtained by adding a positive constant λ to the diagonal
elements of the estimated common class covariance matrix which then becomes invertible. More
precisely, let ŝ be the biggest of those elements, and λ̂ = ŝ/200. Then, in our experiments, the
results presented for RLDA-D are those obtained with the value of λ yielding the highest success
rate among the set of values {λ̂, 2λ̂, . . . , 15λ̂}.

• RdQDA-D: Regularized diagonal Quadratic Discriminant Analysis for Dissimilarities classifier.
When one constrains the covariance matrices in the different classes to be diagonal, the usual
QDA classifier [20] becomes dQDA. And RdQDA-D is the version of dQDA applied to dissim-
ilarity data as with RLDA-D above, except that here ŝ is the biggest coefficient among the
diagonal elements of all estimated class covariance matrices, and λ̂ = ŝ/500. However, it would
have been natural to consider here, instead, the RQDA-D version of QDA. This was not done
because results in [33, 34] seems to suggest that RLDA-D nearly always significantly outperforms
RQDA-D while being far cheaper, probably due to a high overparameterization of RQDA-D in
this context. On the other hand, RdQDA-D seems a good compromise here to handle the case
of possible different class covariance matrices, with much less coefficients to estimate.
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• SVM-D: the Support Vector Machine for Dissimilarities acting on the same n-dimensional space
as RLDA-D and RdQDA-D above. The implementation of the support vector machinery used
here was that of the R package e1071 [9], which is based on [7]. We used the function svm of
that package with default settings.

7.1 M1.BC/M2.BC vs. dissimilarity type/intrinsic data dimension

7.1.1 The experimental framework

Our first type of numerical experiments uses 4 data sets (described in Section 7.1.2), both real and
simulated ones, each given through their coordinates in an Euclidean space Rd. Such a data set
is first converted to a dissimilarity matrix by means of a chosen distance in Rd computed between
pairs of objects in the set. The objects are then classified by applying M1.BC, M2.BC and the afore-
mentioned competing classifiers to the derived dissimilarity matrix. For each classifier, the success rate
is estimated through 5-blocks Cross Validation, alongside the standard deviation of that estimation.
Moreover, M1.BC and M2.BC were applied for values of the embedding dimension p ranging from 1
to 12. This allows to weigh the effect of the data intrinsic dimension in the classification performance
of these two new classifiers, since this dimension is known for these data sets, at least the simulated
ones.

On each data set, 4 distances have been put in competition, in order to assess the effect of the
dissimilarity type on our 2 classifiers performance. The competing distances in our experiments are
(where X = (xi ) and Y = (yi ) ∈ Rd ):

1. the Euclidean or L2-distance: d2 (X, Y ) =
√∑d

i=1(xi − yi )2 ;

2. the absolute deviation or L1-distance: d1 (X, Y ) =
∑d

i=1 | xi − yi |;

3. the maximum norm or L∞-distance: d∞ (X, Y ) = maxd
i=1 | xi − yi |;

4. a kind of normalized L1-distance: d1,st (X, Y ) =
∑d

i=1
| xi−yi |

1+| xi−yi | .

The interest in this last distance lies in the fact that it somehow tends to avoid that bigger coordinates
outweighs the others in the classification process. Such a manoeuvre is also likely to augment chances
that the computed distances come closer to be normally distributed, which is a pairwise assumption in
our models. This is a consequence of the Central Limit Theorem (CLT) of Probability Theory which
asserts that the sum of d independent random variables tends to be normally distributed when d is
(moderately) large and none of the random variables variances dominates the other ones in magnitude.
An argument already advocated in [33, 34] where, however, standardization is achieved using the more
classical statistical approach of subtracting the mean of each coordinate and dividing by its standard
deviation, both estimated from the training sample. One then uses d1 or d2 to compute the pairwise
distances. Another alternative to d1,st could have been the Canberra distance, but this is rather suited
for data with positive attributes.

7.1.2 The data sets

The data sets considered were:

Data set S1: A simulated data set [20, page 301] consisting of two classes of 100 observations each
obtained as follows:

• For class 1, the 100 observations are iid vectors in R10 which coordinates are iid univariate
standard Gaussian constrained so that these vectors have each a squared Euclidean norm
> χ2

10(0.5) ' 9.34.
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• For class 2, the 100 observations are iid vectors in R10 which coordinates are iid univariate
standard Gaussian.

Data set S2: Another simulated data set of 225 observations consisted in 5 Gaussian classes in R4

with the following characteristics:

• Class 1: mean = (10, 12, 10, 12), variance = I4, π̂ 1 = 0.12;

• Class 2: mean = (8.5, 10.5, 8.5, 10.5), variance = I4, π̂ 2 = 0.16;

• Class 3: mean = (12, 14, 12, 14), variance = I4, π̂ 3 = 0.2;

• Class 4: mean = (13, 15, 7, 9), variance = 4I4, π̂ 4 = 0.24;

• Class 5: mean = (7, 9, 13, 15), variance = 9I4, π̂ 5 = 0.28.

This gaussian mixture is attributed to Bozdogan [4] who used it to investigate his ICOMP
criterion and pointed out that the resulting mixture contains 5 highly overlapping classes.

Data set S3: The training sample of the waveform data found on the accompanying website of the
book [20], and credited to Breiman et al. [5]. The sample is of size 300 split in 3 classes of
respectively 106, 94 and 100 observations, given in dimension d = 21.

Data set S4: The test sample of the ZIP Code data found on the accompanying website of the
book [20]. These are deslanted and normalized 16 × 16 grayscale images of handwritten digits,
automatically scanned from envelopes by the U.S. Postal Service, and due to the neural network
group at AT&T research labs [24]. The data are thus given in dimension d = 256. The sample
is of size 2007. Since this was too huge for the memory requirements of our PC on which all the
computations were performed, we extracted a random subsample of size 400 while respecting
the proportions of the 10 decimal digits (which constitute the classes to recognize) in the test
sample.

We point out that, to be consistent, for data sets for which both a training and a test samples
were available, we used only either the training sample or the test sample (or a randomly extracted
part of one of these), estimating the success rate through 5-blocks Cross validation on this sample as
for the other data sets, alongside a standard error estimate of that success rate estimate.

It needs also to be emphasized that, for real world data, the dimension d at which a data set was
sampled needs not be the true intrinsic dimension of those data. To distinguish, we shall call the
former the sampling dimension. The intrinsic dimension might be much smaller.

The results are summarized in Table 1.

7.1.3 Comment on the results: M1.BC/M2.BC on the Euclidean tables

The Euclidean distance needs to be singled out because each of Models 1 and 2, on which our classifiers
are based, essentially approximates any given dissimilarity table by an Euclidean one, assuming an
error of a particular pairwise gaussian type. One would then expect a more predictable behavior of our
classifiers on Euclidean tables. Now, two striking unexpected surprises appear in Table 1 (except for
the waveform and zip Code data for which the arbitrary upper bound 12 imposed on the embedding
dimension somewhat hinders the observation) and in our other experiments not mentioned here:

Fact 1. The best success rate is not achieved at the data intrinsic dimension.

Fact 2. The success rate at that dimension is shockingly low, and often the lowest (or close to so)!

These two facts are not unrelated, but not exactly identical. The easier to explain is the second
one. For M1.BC, it stems from formulas (30)-(31) and the well known phenomenon in computer
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Table 1: Success rates (%), with standard errors, for various dissimilarities classifiers and different
distances used on Data Sets S1 to S4.

M1.BC M2.BC 1-NN RLDA-D RdQDA-D SVM-D
S1 d2 73± 6.1 (1) 90± 1.4 (3) 61.5± 4.8 92± 1.2 93.5± 1 93± 2.3

(d = 10) (54± 3.6) (51.5± 4.3)
d1 77± 1.2 (3) 87± 1.5 (2) 67± 5 88.5± 1.3 92± 0.9 91.5± 2

(73.5± 2.3) (78.5± 1.5)
d∞ 76.5± 4.2 (9) 85± 1.4 (2) 58.5± 4.3 86± 1.3 89± 2.6 88± 2.7

(77± 3.2) (76.5± 4.1)
d1,st 72± 3.3 (1) 80.5± 2.2 (3) 63.5± 5.6 83.5± 1.9 83.5± 3.8 89.5± 2.2

(61.5± 3.6) (67± 3.5)
S2 d2 93.8± 1.6 (1) 93.3± 2.4 (1) 91.6± 2.4 94.7± 1.7 93.3± 1.8 95.6± 2

(d = 4) (22.2± 2.6) (36.9± 4.4)
d1 93.8± 1.1 (2) 93.8± 2.3 (1) 90.7± 2.3 90.7± 1.6 93.3± 1.8 95.1± 2

(76.4± 3.6) (90.2± 1.5)
d∞ 86.2± 2.4 (1) 91.6± 1.9 (1) 88.9± 2.7 92.4± 0.5 94.7± 1.5 95.1± 1.8

(71.1± 2.6) (87.1± 0.8)
d1,st 89.3± 1.6 (3) 91.1± 2.2 (4) 85.3± 2.7 86.2± 1.8 94.2± 2.1 94.2± 1.8

(86.7± 2.5) (91.1± 2.2)
S3 d2 81.7± 2.9 (4) 82.3± 0.7 (3) 73.3± 1.3 83± 1.3 77± 1.6 81.7± 1.6

(d = 21) d1 79± 2.4 (2) 80± 2 (2) 73.7± 0.6 78.7± 1.3 74.7± 1.4 82± 2.1
d∞ 82.7± 0.9 (2) 82.3± 2.5 (2) 71± 3 79.3± 1.2 76.7± 0.5 77.7± 1.2
d1,st 74.3± 2.4 (2) 76.7± 1.7 (2) 72.7± 1.7 78± 1.5 75.7± 0.8 78.7± 2.4

S4 d2 63.8± 3.9 (11) 70.2± 1.2 (8) 83.2± 0.8 87.8± 1.3 71.2± 1 83.8± 1.7
(d = 256) d1 57± 0.6 (4) 70± 1.4 (6) 82.8± 0.8 83.8± 3.1 64.8± 2.3 81± 2.2

d∞ —— —— 56± 0.7 40.8± 1.5 58.2± 0.5 22± 2.8
d1,st 65.2± 3.5 (11) 70.5± 2.5 (8) 80.5± 0.9 83± 2.6 63.8± 2.2 80.5± 2.2

S1: data simulated in [20, page 301]; S2: Bozdogan’s mixture; S3: waveform; S4: zipCode;
d: data sampling dimension; —— : numerical instabilities.

Please NOTE: For M1.BC and M2.BC on data sets S1 and S2, the first line gives the highest success
rate using the “within one standard error of the maximum rate towards model parsimony” rule. and
the corresponding embedding dimension, while the second line gives the success rate at the sampling
dimension d.

Table 2: Success rates (%), with standard errors, for various dissimilarities classifiers on Data Sets
Jeffreys and proteins.

M1.BC M2.BC 1-NN RLDA-D RdQDA-D SVM-D
Jeffreys 67.9± 0.9 (2) 79.5± 2.7 (1) 72.1± 2.9 78.7± 2 71.3± 2.1 79.1± 2.8

proteins (5 cl.) 71± 2.2 (5) 75.6± 2.3 (3) 77± 2.4 84.4± 0.7 72.2± 2.3 84.7± 1
proteins (2 cl.) 92± 0.6 (4) 93.5± 0.9 (5) 92.4± 1 94.7± 1.5 92± 1.2 94.9± 1
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arithmetic called numerical cancellation. Indeed, starting with dissimilarities dij which are exact
Euclidean distances, when they are projected at the right dimension, the MDS algorithms provide a
close to exact configuration of points for those distances. It then comes that the computed Euclidean
distances δij (X̂) between points in the obtained configuration X̂ can result, for certain data sets,
in close to machine precision approximations to the starting distances dij ’s. Whence the differences
dij − δij (X̂) are numerically meaningless quantities, just being an accumulation of rounding errors
(which, as is well documented [22], seldom exhibit any probabilistic random pattern). So, in that
situation, the coefficients σ2

kl are estimated by (30)-(31) with no correct significant digit, and any
information about the classes is thus lost during the Learning Phase. This results in a classification
nearly always done to the widest class, if any. When this happens, it remains so at higher dimensions.
The same reasoning applies to Model 2 as well because, in that model, when projecting exact Euclidean
distances at the right dimension, the estimated coefficients âkl quite often come very close to 1, as is
obvious from formulas (37)-(39), which brings us back to the case of Model 1 just discussed.

To summarize, by their very structures (4) and (5), our models actually classify according to
dissimilarities error measurement w.r.t. Euclidean distances. Now, when the error measurement
w.r.t. Euclidean distances is negligible, our models are lost in their classification endeavors, having
no concrete information about the classes to rely upon. At present, our solution to this somewhat
disturbing phenomenon is the Cross validation dimension selection procedure, which gives interesting
results in the above examples. However, for the data sets in these examples, since they were initially
given through their attributes in an Euclidean space, an obvious alternative exists to try to cope
around the identified problem. It is to use a distance other than the Euclidean in computing their
pairwise dissimilarity matrix to which one then applies our classification procedures, which is discussed
hereafter. For the future, other solutions of wider applicability are being investigated for this problem.

Fact 1 is more interesting because it exhibits that a data set may be better separated, and thus
classifiable, when projected at a dimension much lower than its intrinsic dimension. Indeed, in many
of our numerical experiments, the best classification rate was recorded at dimension 1, especially for
M1.BC. One can regard this as a serious compensation for the deficiency posed by Fact 2.

7.1.4 Comment on the results: M1.BC/M2.BC for the other distances

The most obvious general pattern discernable in the results for non Euclidean tables is the clear su-
periority of M2.BC over M1.BC, except in some few cases. This is observed in terms of the highest
rate across dimensions as well as the overall dimensionwise comparison of success rates. Which con-
firms the a priori feeling that M2.BC has an intrinsically greater flexibility to adapt to the type of
dissimilarity computed on the data. This classifier thus appears much less adversely affected by the
departure of the dissimilarity from Euclideanicity. The farther the dissimilarity is to the Euclidean
distance, the positively higher is the difference between M2.BC success rate and that of M1.BC. This
can be seen through the fact that this difference is generally smallest for Euclidean tables, followed
by L1−distance tables.

Another general pattern is that the effect of the intrinsic data dimension seems completely blurred
and hardly interpretable when applying M1.BC and M2.BC to classify non Euclidean tables. This
somewhat unexpected phenomenon is probably worth an investigation in the future.

On the other hand, no distance seems to exhibit a discernable superiority or inferiority over the
others in terms of classification performance. Nevertheless, the two ones less closest to the Euclidean
(i.e. d∞ and d1,st ) appear to present the most dimensionwise stable classification results (i.e. smaller
success rate variability across varying values of the embedding dimension p). And, when it does
not cause instabilities in the MDS algorithms, d∞ comes the closest to rank first in terms of overall
classification performance.

A first explanation to the complete numerical instability recorded by M1.BC/M2.BC in the MDS
algorithms on the d∞ distance table for the zipCode data (for all embedding dimensions) seems to stem
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from the fact this table contains only a small proportion of distinct dissimilarities (a few hundreds out
of several tens of thousands). Indeed, in many instances, the d∞ distance behaves more like a discrete
distance, which appears to be an advantage in the M1.BC/M2.BC classifying methodology since the
error with respect to the Euclidean distance is then significant (see the Comment in Section 7.1.3) and
explains the generally good performance. However, when the discreteness character is too severe for a
given data set, the SMACOF algorithm we used to solve our MDS problems is in irrecoverable trouble.
A solution here would be to use other MDS algorithms, which is currently under investigation.

Finally, the d1,st distance is to be singled out here for two reasons:

• For yet to be clarified reasons, the success rate for both M1.BC and M2.BC at the embed-
ding dimension p = 1 is very often abnormally low for dissimilarity tables computed with that
distance.

• On the other hand, for other embedding dimensions, M1.BC success rate generally exhibits very
small variability for d1,st , and comparable to the best success rates for other distances on each
data set. The same for M2.BC success rate.

It thus looks as if, except when the embedding is at dimension 1, this distance significantly smoothes
away the effect of the intrinsic data dimension. This is quite an interesting phenomenon which needs
exploration and confirmation in the future. This might suggest that classifying dissimilarities and
finding their intrinsic data dimension are not inherently related issues.

7.1.5 Comment on the results: M1.BC/M2.BC vs. other dissimilarities classifiers

Since M2.BC nearly always outperforms M1.BC, we restrict the comparison here to a confrontation
between the former and already existing classifiers. The keys issues here are: classification performance
and sensitivity to the dissimilarity data type. Nevertheless, before proceeding, one should not overlook,
in comparing them with other classifiers for dissimilarity data, the distinctive feature that M1.BC and
M2.BC in a sense try to optimize the MDS embedding of these data with regard to classification
purposes.

For the success rate, on the considered data sets, M2.BC is nearly always better than 1-NN (only
exception here: the zipCode data, see hereafter), overall slightly worse than RLDA-D and SVM-D,
and close to a dead heat with RdQDA-D. It turns out that M2.BC is disfavored mainly here by its
performance on the zipCode data. Now, this data set was mostly included in our experiments to
have a first idea of our classifiers behavior on a data set gathered at a high sampling dimension.
The results show that there is still work to do in order to better handle the intrinsic data dimension
problem in our methodology aimed at efficiently combining the classification and the embedding tasks
for dissimilarity data.

On the ground of the sensitivity to the dissimilarity data type, for these data sets and the distances
considered, M2-BC is neck to neck with RLDA-D, RdQDA-D and SVM-D. But, probably, more
extensive experiments are needed here to deliver a conclusive statement.

7.2 Type 2 experiments: true dissimilarity data sets

Here, our classifiers are applied to a small set of “true” dissimilarity data matrices, i.e. with no
pre-given coordinates in an Euclidean space.

We considered two dissimilarity data sets named “Jeffreys” and “proteins” of unknown intrinsic
data dimension. The Jeffreys data (distances between images from the Corel Database and described
in [16]) consist of 473 observations spread in 4 classes of 102, 110, 140 and 121 observations respectively,
and were already used in [15]. The proteins data consist of 569 observations spread in 4 classes of
298, 151, 23 and 97 observations respectively. For these latter data, we tested our classifiers both on
the whole data set and on the subset consisting of the 2 most probable classes. This last subset of
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449 observations is the one considered in [15]. The motivation behind such a restriction is that, quite
often, for proteins data, a premier preoccupation is to find whether there are not too many classes,
and if, indeed, some classes would not better be merged.

The results are gathered in Table 2. The main feature is that M2.BC exhibits a clear superior
discriminatory power over M1.BC, although more striking for the Jeffreys data, and somewhat less
for the proteins data. Compared to other classifiers, M2.BC outperforms RdQDA-D on these data,
slightly dominates also 1-NN, and lags behind RLDA-D and SVM-D on the full proteins data set (with
5 classes).

In the whole “proteins” data set, two classes nearly overlap. That is why they are harder to
classify. They should probably better be merged.

8 Conclusion

In this work, we developed two new methods for classifying objects on the basis of their pairwise
dissimilarities. Each method is derived from a postulated probability model for such data. These
methods thus yield two model-based classifiers constructed on purely statistical grounds (mainly ML
estimation), avoiding heuristics of any kind. A key assumption in that construction is that the
unobserved objects are regarded as parameters lying in an Euclidean space which are estimated during
the learning phase through an iterated MDS algorithm, alongside other model parameters. Using the
unknown dimension of the Euclidean space as a tuning parameter in the classification allows to choose
the dimension with the highest success rate for each method by Cross Validation.

The small number of experiments performed on real or simulated data sets suggest that this new
approach for dissimilarity data classification can be regarded as a promising step in attempts aimed at
devising a general purpose classifier for (arbitrary) dissimilarity data. And, generally, as expected, the
Model 2 based classifier exhibits a better generalization performance than the one based on Model 1.
Nevertheless, further experiments with more varied data sets are needed to better assess the two
proposed methods for the classification of such data. Finally, while missing dissimilarities can be
handled by our classifiers as usual in MDS methodology by giving them zero weights, an important
aspect of dissimilarities-based classification is not yet addressed in our work: that of prototypes
selection (see, e.g., [26, 37]). This shall be part of our planned future research.
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[31] Orozco, M., Garćıa, M.E., Duin, R.P.W. and Castellanos, C.G. (2006). “Dissimilarity-Based
Classification of Seismic Signals at Nevado del Ruiz Volcano”, Earth Sciences Research Journal,
10(2):57-65.
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APPENDIX:
The computation of an initial approximation Ûk,0 to minimize Ĥk(U)

Since we intend to compute U = Ûk , the point at which the function Ĥk(U) defined by (45) reaches
its minimum value, intuitively this minimum should satisfy, as closely as possible, the approximate
equalities:

‖U − X̂i ‖ ≈ di , for i = 1, . . . , n,

which implies, by squaring and expanding the squared Euclidean norms of the differences:

2 < X̂i, U > −‖U ‖2 ≈ ‖ X̂i ‖2 − d2
i , for i = 1, . . . , n,

or
2 x̂i1u1 + · · · + 2 x̂ipup − up+1 ≈ ‖ X̂i ‖2 − d2

i , for i = 1, . . . , n, (50)

where U = (u1 , . . . , up )T , up+1 = ‖U ‖2 and X̂i = (x̂i1, . . . , x̂ip), for i = 1, . . . , n. Now, (50) can be
regarded as an approximate linear system of n equations in the p + 1 scalar unknowns u1 , . . . , up+1 .
The unknown up+1 introduces a nonlinear constraint: up+1 = u2

1 + · · · + u2
p . This constraint can be

eliminated by suppressing an arbitrarily chosen equation from (50) while subtracting it from all the

25



remaining n − 1 ones, therefore obtaining an approximate linear system of n − 1 equations in the p
unknowns u1 , . . . , up , which one then solves by Least Squares. Instead we chose the simpler strategy
to directly solve (50) by Least Squares and merely discard the estimation obtained for up+1.

In any event, whatever the strategy chosen between the two outlined above to approximately solve
(50), it is important to note that the matrix of the solved Least Squares system is entirely determined
by the estimated learning configuration X̂. Thus, its QR factorization can be computed once for all
after the Learning Phase for use throughout the Prediction Phase to quickly solve (50) for each new
explicit observation d to classify.

However, since n � p, there are obvious far more economical ways to approximately solve (50).
For instance (see [23, 27]), one could retain just p + 1 equations among the n in (50) and solve a
(hopefully) Cramer system for u1 , . . . , up+1 (or for u1 , . . . , up by first suppressing one of the p + 1
equations and subtracting it from the p others). The reason we chose not to follow these cheap paths
is twofold:

1. One would have to devise a cheap selecting criterion for the p + 1 equations among the initial
n in (50). Now, the two simplest choices are that of the first p + 1 ones or a random choice,
but this may result in undesirable effects for the numerical stability of the resulting system in
certain cases and/or the convergence of the numerical minimization algorithm starting from the
obtained initial approximation of Ûk . On the other hand, more sophisticated selecting criteria
may imply a significant overhead in computation with no appreciable gain over the use of all the
equations. Whereas, since n � p, using all the equations almost certainly guarantees that we
least squarely solve a linear system of full rank p.

2. By using all the equations in (50) for computing an initial approximation Ûk,0 to Ûk , we increase
our chances of obtaining a good one in order to guarantee fast convergence in the numerical
nonlinear minimizer used to minimize the function Ĥk(U) defined by (45).

However, pushing this latter argument further, one may legitimately argue that, considering the
structure of the function Ĥk(U), weighted least squares should be the right strategy in solving our
suggested linear systems approximately to obtain Ûk,0. This is right, but would entail a serious increase
in computational cost, since the weights would then vary according to each implicit object U and each
possible group label in {1, . . . , G}.
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