
A Fast Monte Carlo Algorithm for
Collision Probability Estimation

Alain Lambert Dominique Gruyer, Guillaume Saint Pierre
IEF, UMR CNRS 8622 LIVIC
Université Paris Sud-XI INRETS/LCPC

Bat. 220, Centre d’Orsay Bat 824, 14 route de la minière
91405 Orsay cedex - France 78000 Versailles Satory - France

Abstract—In order to navigate safely, it is important to detect
and to react to a potentially dangerous situation. Such a situation
can be underlined by a judicious use of the locations and the
uncertainties of both the navigating vehicle and the obstacles.
We propose to build an estimation of the collision probability
from the environment perception with its probabilistic modeling.
The probability of collision is computed from a sum of integral
of a product of Gaussians. The integrals takes into account the
uncertain configurations and the volume of both the vehicle and
the obstacles.

I. INTRODUCTION

The anticipation of collision is necessary for a safe naviga-
tion. The prediction of collisions could be used for obstacle
avoidance, speed monitoring or path planning. Such a predic-
tion has been computed in various way during the last years.

[1] defines a security area modeled by a circle (centered
on the robot position) whose radius is proportional to the
speed. A collision judgment is based on an intersecting test
between this circle and high-confidence position error ellipses.
Controlling the speed and steering of the mobile robot along
a preplanned path is done by using the collision judgment. [2]
uses an interaction component (deformable virtual zone) of the
robot with the environment which leads to avoidance-oriented
control laws. Furthermore an emergency area around the robot
causes an emergency stop if it is broken by an obstacle. [3]
performs an on line speed monitoring by computing a time
to collision. The farthest is the collision and the highest is
the speed. In order to detect a collision, the authors grow
a mobile robot with its uncertainty ellipse and they do a
collision test between the resulting shape and the obstacles.
The process is repeated all along the path so as to compute a
time to collision. [4] computes a distance to undecided regions
(unknown region) or to nearby obstacles. Next they use this
distance information to compute a speed.

We think that only using a measured distance to collision
[4][5] is not sufficient as the real distance could be quite
different and lead to unexpected collision. Using a security
area [1][2] around the vehicle is a good idea only if this
security area represents the uncertainty on the vehicle location.
Nevertheless such an area (an ellipse [3]) is a discrete and
binary representation of a continuous probability of presence.
Most authors uses an ellipse which represents the probability
of presence of the vehicle at 90%. It is a shame to define a
threshold and to loose information for higher level algorithms.

That’s why in this paper we propose to use the entire
available information (the pdf of the vehicle and the obstacles)
for defining a probability of collision. Such an approach have
been followed in [6] for a punctual robot and a geometrical
obstacle without considering the uncertainty in orientation.
We are going to overcome those restrictions (punctual and
no uncertainty in orientation) in order to compute a realistic
collision probability for real world application. To the best
of our knowledge, it is the first time that the 3D uncertainty
and the volume of the objects are used when calculating the
probability of collision.

In the next section we introduce the necessary models. In
section 3 we propose an analytical formula for computing
the probability of collision between two configurations. We
have no analytical solution when considering objects instead
of configurations. That is why we propose an algorithm in
section 4. In section 5 we consider the probability of collision
between multiple objects.

II. PROBLEM STATEMENT

A. Vehicle and obstacle models

The vehicle configuration is denoted xv = (xv, yv, θv)T

where (xv, yv) are the coordinates of a characteristic point
which is located midway between the two rear wheels of our
vehicle and θv is its orientation. All variables are defined with
respect to the global frame.

The obstacles configuration is denoted xo = (xo, yo, θo)T .
Both vehicle and obstacles are represented as polygonal lines
in a 2D world map and their surfaces are denoted Vv and Vo.
The geometric center of Vo is xo.

B. Uncertainty modeling

The pdf (probability density function) of a configuration x
having a C covariance matrix and an x̂ mean is :

p(x) =
1(√

2π
)n√

det Σ
e−

1
2 ((x−x̂)T Σ−1(x−x̂)) (1)

where n is the x dimension. We consider that x dimension
is 3 for the sake of simplicity : x = (x, y, θ)T(nevertheless
the x dimension can be higher).

p(x) =
1(√

2π
)3√

det Σ
e−

1
2 ((x−x̂)T Σ−1(x−x̂)) (2)

where Σ is a 3x3 covariance matrix :

Σ =

 σ2
x ρxyσxσy ρxθσxσθ

ρxyσxσy σ2
y ρyθσyσθ

ρxθσxσθ ρyθσyσθ σ2
θ

 (3)

Such a matrix could be the result of a filter process like the
Extend Kalman Filter or could be directly defined by:

Σ = E
(

(x− x̂) (x− x̂)T
)

(4)

The pdf of a v vehicle and an o obstacle are denoted pv
and po with their associated Σv and Σo matrices.

Finally, v and o are defined by : v = (xv,Σv,Vv) and
o = (xo,Σo,Vo)

III. PROBABILITY OF COLLISION BETWEEN 2 UNCERTAIN
CONFIGURATIONS

The probability of collision between a v and an o uncertain
configurations (assuming that Vv = Vo = ∅) is defined by :

pcoll(v, o) =
∫∫∫

R2×[0,2π[

pv(x, y, θ) � po(x, y, θ).dxdydθ

(5)
The integral 5 can be analytically computed. Details of the

calculations in the multivariate case can be found in appendix
A. Let’s assume that pv(x, y, θ) is the density of aNd (x̂v,Σv)
distribution, and po(x, y, θ) the density of a Nd (x̂o,Σo) . Let
us denote x = (x, y, θ), A = (x− x̂v)

′Σ−1
v (x− x̂v) +

(x− x̂o)
′Σ−1

o (x− x̂o) and B = [x−m]′Σ−1 [x−m]
with:

m = Σ−1
(
Σ−1
v x̂v + Σ−1

o x̂o
)

(6)

Σ−1 =
(
Σ−1
v + Σ−1

o

)
(7)

We have

pcoll(v, o) =
exp

[
− 1

2 (A−B)
]√

det (Σ)√
det (Σv)

√
det (Σv)

(8)

with

A−B = x̂′vΣ
−1
v x̂v + x̂′oΣ

−1
o x̂o

−
(
Σ−1
v x̂v + Σ−1

o x̂o
)′

Σ−1
(
Σ−1
v x̂v + Σ−1

o x̂o
)
(9)

Equation (8) has been used to compute the probability of
collision of figure 1. During this experiment corresponding to
a real outdoor situation, a car (so called “the vehicle”, right
part of the figure) was running on its way whereas there was
another static car (so called “the obstacle”) on the other way
(left part of the figure). The vehicle was moving from the
bottom to the top of the figure in straight line using only
its proprioceptive sensors. The pdf of the vehicle is shown
at 6 different time instants (every 4 meters). The pdf of the
collision has been computed at each of those time instants
but only 2 pdf are noticeable. The maximum height of the
biggest pdf of the collision is tiny (0.00205) compared to
the corresponding pdf of both the obstacle (0.16) and the

Figure 1. pdf of the collision between an obstacle and a vehicle moving in
straight line

vehicle (0.13). Consequently the pdf of the collision has been
multiplied by 100 on figure 1 for a better visualization. The
probability of collision computed using equation (8) is equal to
0.007. It allows us to conclude that the situation is safe which
is unrealistic considering the real situation with the volume
of the cars. We should have thought about taking into account
the volumes as they are big regarding the distance between the
vehicles. We have not investigate the interest of equation (8)
when the volume are not null because the following approach
(see the next section) provide good enough results both in term
of computing time and precision.

IV. PROBABILITY OF COLLISION BETWEEN 2 OBJECTS
WITH GAUSSIAN UNCERTAINTIES

A. Analytical description of the problem

The probability of collision between a v and an o polygonal
objects is the probability that v and o share a same part of
the space. Consequently, given a v configuration (with a pv
associated probability and a Vv volume) and an o configuration
(with a po associated probability and a Vo volume) the
probability of collision is given by:

pcoll(v, o) =
∫
D pv(xv, yv, θv)� (10)
po(xo, yo, θo)dxvdyvdθvdxodyodθo

with

D = { (xv, yv, xo, yo) ∈ R4, (θv, θo) ∈ [0, 2π[2

\ Vv(xv, yv, θv) ∩ Vo(xo, yo, θo) 6= ∅} (11)

If v and o are punctual objects then equation 10 turn to
equation 5. If v and/or o have an infinite volume then v and
o always collide and equation 10 equals one.

Algorithm 1 Probability of collision between v and o
1: function SLOWPROBABILITYOFCOLLISION(v, o)
2: pcoll(v, o)← 0
3: for i←1 to N do
4: xv ← randc(x̂v,Σv)
5: for j ←1 to N do
6: xo ← randc(x̂o,Σo)
7: if Vv(xv) ∩ Vo(xo) 6= ∅ then
8: pcoll(v, o)← pcoll(v, o) + 1
9: end if

10: end for
11: end for
12: pcoll(v, o)←pcoll(v,o)

N2

13: return(pcoll(v, o))
14: end function

Algorithm 2 Faster computing of the probability of collision
between v and o

1: function FASTPROBABILITYOFCOLLISION(v, o)
2: pcoll(v, o)← 0
3: for j ←1 to N do
4: xv ← randc(x̂v,Σv)
5: xo ← randc(x̂o,Σo)
6: if Vv(xv) ∩ Vo(xo) 6= ∅ then
7: pcoll(v, o)← pcoll(v, o) + 1
8: end if
9: end for

10: pcoll(v, o)←pcoll(v,o)
N

11: return(pcoll(v, o))
12: end function

B. Monte Carlo solution

As we have no analytical solution to equation 10, we
propose to use a MC (Monte Carlo) method.

Firstly, we need to rewrite Eq. (10) as :

pcoll(v, o) =
∫ 2π

0

∫ +∞

−∞

∫ +∞

−∞
[pv(xv, yv, θv).∫ 2π

0

∫ +∞

−∞

∫ +∞

−∞
po(xo, yo, θo).

Υ.dxodyodθo].dxvdyvdθv (12)

Where Υ = Υ(Vv(xv, yv, θv),Vo(xo, yo, θo)) is a collision
test between the volume Vv of the vehicle and the volume Vo
of the obstacle:

Υ(Vv(xv, yv, θv),Vo(xo, yo, θo)) ={
1 if Vv(xv, yv, θv) ∩ Vo(xo, yo, θo) 6= ∅
0 if Vv(xv, yv, θv) ∩ Vo(xo, yo, θo) = ∅

(13)

Secondly we know that we can approximate the integral of

the product of two functions f and h by :∫
f(y)h(y)dy =

1
m

m∑
j=1

h(yj) (14)

Inside this Monte Carlo approximation, (y1, ..., ym) are
samples generated by following the pdf f(y).

Thanks to Eq. (14) we can rewrite the right part of Eq. (12)
as: ∫ 2π

0

∫ +∞

−∞

∫ +∞

−∞
po(xo, yo, θo).Υ.dxodyodθo

=
1
m

m∑
j=1

Υ(V(xv, yv, θv),V(xoj
, yoj

, θoj
)) (15)

and using Eq. (14) and (15) allows us to rewrite Eq. (12)
as:

pcoll(v, o) =
∑m
i=1

m

∑m
j=1

m
Υ
(
V(xvi , yvi , θvi),V(xoj , yoj , θoj)

)
(16)

Which can be rewritten as:

pcoll(v, o) =
1
m2

m∑
i,j=1

Υ
(
V(xvi , yvi , θvi),V(xoj , yoj , θoj)

)
(17)

Where ((xv1 , yv1 , θv1), ..., (xvm
, yvm

, θvm
)) and

((xo1 , yo1 , θo1), ..., (xom , yom , θom)) are samples generated by
following the pdf pv(xv, yv, θv) and po(xo, yo, θo). Drawing
of samples is done as explained in appendix B. We assume
that such a drawing is done by a randc() function.

Algorithm 1 is the implementation of equation 17. The
complexity of this algorithm is 0(N2) where N = m is a
number that determine the accuracy of the integral computa-
tion. Unfortunately we need a value of N of the order of 104

to obtain “good results” (see figures 2, 3, 4 and section IV-C).
Consequently we propose to rewrite Eq. (17) as :

pcoll(v, o) =
1
m

m∑
i=1

Υ (V(xvi , yvi , θvi),V(xoi , yoi , θoi))

(18)
The sum of sum has been replaced by a single sum and the

samples are now drawn simultaneously (in Eq. (17) we drawn
m samples of o for 1 sample of v). The equation (18) leads to
algorithm 2 with a linear complexity in O(N) which is much
more better than algorithm 1. Unfortunately we need an higher
number for N (in algorithm 2 comparatively to algorithm 1) in
order to achieve a good accuracy. Nevertheless we are going
to see in the next section that the N value needed in algorithm
2 is very inferior to N2 value needed in algorithm 1.

C. Experimental results

Results provided by algorithms 1 and 2 have been compared
on figures 2, 3 and 4. The two algorithms have approximated 3
different values of the probability of collision : an high (figure
2), an medium (figure3) and a low value (figure4).

For each value the algorithms have been ran 10 times
(although one run is sufficient to obtain an estimate of the

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of samples

P
ro

ba
bi

lit
y

of
 c

ol
lis

io
n

SlowProbabilityOfCollision Algorithm
Exact probability of collision

(a) "Slow Probability Of Collision" algorithm

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of samples

P
ro

ba
bi

lit
y

of
 c

ol
lis

io
n

FastProbabilityOfCollision Algorithm
Exact probability of collision

(b) "Fast Probability Of Collision" algorithm

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of samples

R
oo

t m
ea

n
sq

ua
re

 e
rr

or
 o

f t
he

 p
ro

ba
bi

lit
y

of
 c

ol
lis

io
n

SlowProbabilityOfCollision Algorithm
FastProbabilityOfCollision Algorithm

(c) Comparison of errors between both algorithms

Figure 2. Comparison between the Slow and Fast algorithms for a high probability of collision

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of samples

P
ro

ba
bi

lit
y

of
 c

ol
lis

io
n

SlowProbabilityOfCollision Algorithm
Exact probability of collision

(a) "Slow Probability Of Collision" algorithm

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of samples

P
ro

ba
bi

lit
y

of
 c

ol
lis

io
n

FastProbabilityOfCollision Algorithm
Exact probability of collision

(b) "Fast Probability Of Collision" algorithm

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of samples

R
oo

t m
ea

n
sq

ua
re

 e
rr

or
 o

f t
he

 p
ro

ba
bi

lit
y

of
 c

ol
lis

io
n

SlowProbabilityOfCollision Algorithm
FastProbabilityOfCollision Algorithm

(c) Comparison of errors between both algorithms

Figure 3. Comparison between the Slow and Fast algorithms for a medium probability of collision

probability) with until 104 samples for each run (N = 100
in algorithm 1 and N = 104 in algorithm 2). Consequently
subfigures .a and .b have 10 curves (plus the line of the exact
value) and we can analyze various results of the algorithms on
three typical situations. For each figure the “exact probability”
is the mean between the two algorithms after 106 samples.

On each figure the slow algorithm defines a large corridor
around the exact value whereas the fast algorithm defines a
thinner corridor. It shows the property of the fast algorithm to
define (in a lower time) better and more regular results than
the slow algorithm. It is underlined on figures 2.c, 3.c and 4.c
where the root mean square error (RMSE) is computed for
both algorithms. RMSE is always lower (2 to 10 times after
more than 500 samples) for the fast algorithm than for the
slow algorithm on each of our attempts. For high and medium
probability of collision, the accuracy (maximum error) after
1000 samples is about 0.15 for the slow algorithm whereas it
is less than 0.05 for the fast algorithm. Considering the low
(0.011) probability of collision (figure 4), the accuracy is 0.03
for the slow algorithm and 0.005 for the fast algorithm.

Both algorithms compute the probability of collision with
104 samples (one run) in about 0.01 second on a Pentium
IV processor (2 Ghz). Consequently, the fast algorithm out-
performs the slow algorithm considering both computing time
and precision.

Approximating the probability of collision takes 1 mil-
lisecond if we consider that only 103 samples are necessary
(for algorithm 2). Consequently such an algorithm can be
embedded on a vehicle and deals with multiple obstacles as
described in the next section.

V. PROBABILITY OF COLLISION BETWEEN AN OBJECT AND
OTHER OBJECTS WITH GAUSSIAN UNCERTAINTIES

A. Analytical description of the problem

The probability that v collides with at least one obstacle
can be calculated through the probability that v do not collides
with any obstacles :

pcoll(v, o1...on) = 1− pcoll(v, o1) · . . . · pcoll(v, on) (19)

The probability that v do not collide with oi obstacle is

pcoll(v, oi) =
∫ 2π

0

∫ +∞

−∞

∫ +∞

−∞
[pv(xv, yv, θv).∫ 2π

0

∫ +∞

−∞

∫ +∞

−∞
poi(xoi , yoi , θoi).

Υ.dxoi
dyoi

dθoi
].dxvdyvdθv (20)

with Υ = Υ(Vv(xv, yv, θv),Voi
(xoi

, yoi
, θoi

)).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Number of samples

P
ro

ba
bi

lit
y

of
 c

ol
lis

io
n

SlowProbabilityOfCollision Algorithm
Exact probability of collision

(a) "Slow Probability Of Collision" algorithm

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Number of samples

P
ro

ba
bi

lit
y

of
 c

ol
lis

io
n

FastProbabilityOfCollision Algorithm
Exact probability of collision

(b) "Fast Probability Of Collision" algorithm

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.01

0.02

0.03

0.04

0.05

0.06

Number of samples

R
oo

t m
ea

n
sq

ua
re

 e
rr

or
 o

f t
he

 p
ro

ba
bi

lit
y

of
 c

ol
lis

io
n

SlowProbabilityOfCollision Algorithm
FastProbabilityOfCollision Algorithm

(c) Comparison of errors between both algorithms

Figure 4. Comparison between the Slow and Fast algorithms for a low probability of collision

B. Monte Carlo solution

Using equations 19 and 20 (equation 20 being computed via
a MC algorithm like algorithm 2) leads to algorithm 3 which
is explained beneath.
• Lines 2-4: The probability pcoll(v, oi) that the v vehicle

does not collide with the oi obstacle is initialized to 0 for
each of the n obstacles.

• Lines 5 and 13: This first loop activates the computation
of pcoll(v, oi) for each of the n obstacles.

• Lines 6 and 12: This second loop computes pcoll(v, oi)
using a new pair of samples at each iteration. The bigger
is the number N of samples the better is the accuracy.

• Lines 7 and 8: A xv (respectively xo) sample is drawn
following the pdf of the vehicle (respectively the i obsta-
cle).

• Lines 9-11: If the volume of the vehicle put on xv does
not intersect the volume of the i obstacle put on xo then
the variable pcoll(v, oi) rises in increment of 1. When
pcoll(v, oi) will be divided by the number of samples it
corresponds to the probability that the v vehicle and the
oi obstacle does not collide.

• Line 14 : The probability pcoll(v, o1..n) that the vehicle
does not collide with the obstacles is initialized to 1.

• Lines 15-17: pcoll(v, o1..n) is updated according to
pcoll(v, oi) (a variable which is proportional to the prob-
ability of collision with each of the obstacles).

• Line 18: The probability pcoll(v, o1...on) that the vehicle
collides with the obstacles is computed. pcoll(v, o1..n) is
divided n times by N where N is the number of samples
and n is the number of obstacles.

• Line 19 returns the result.
The complexity of this algorithm is 0(nN) which is n time the
complexity of algorithm 2. This is verified by experimental
results (with N = 103) where the computing time is n
millisecond.

VI. CONCLUSION

We have defined the probability of collision for a vehicle
in a cluttered environment as a sum of integral of a product
of Gaussian. The integrals takes into account the uncertainties

Algorithm 3 Probability of collision between v and o1, ..., on

1: function PROBABILITYOFCOLLISIONS(v, o1, ..., on)
2: for i←1 to n do
3: pcoll(v, oi)← 0
4: end for
5: for i←1 to n do
6: for j ←1 to N do
7: xv ← randc(x̂v,Σv)
8: xo ← randc(x̂oi

,Σoi
)

9: if Vv(xv) ∩ Voi
(xo) = ∅ then

10: pcoll(v, oi)← pcoll(v, oi) + 1
11: end if
12: end for
13: end for
14: pcoll(v, o1..n)← 1
15: for i←1 to n do
16: pcoll(v, o1..n)← pcoll(v, o1..n) · pcoll(v, oi)
17: end for
18: pcoll(v, o1...on)←1− pcoll(v,o1..n)

Nn

19: return(pcoll(v, o1...on))
20: end function

and the volume of both the vehicle and the obstacles. We
have proposed a Monte Carlo method to compute the inte-
grals because we have no analytical solution. Next we have
enhanced this MC algorithm (in term of computing time and
quality of result). Experimental results show the soundness of
the enhanced algorithm.

REFERENCES

[1] H. Hu, M. Brady, and P. Probert, “Navigation and control of a mobile
robot among moving obstacles,” in Proc. of the 30th IEEE International
Conference on Decision and Control (CDC’91), Brighton, England, 11-13
Dec 1991, pp. 698–703.

[2] R. Zapata, P. Lepinay, and P. Thompson, “Reactive behaviors of fast
mobile robots,” Journal of Robotic Systems, vol. 11, pp. 13–20, 1994.

[3] L. Codewener and D. Meizel, “On line speed monitoring of mobile robots
tasks,” Engineering applications of artificial intelligence, vol. 7(2), pp.
152–160, 1994.

[4] J. Miura, Y. Negishi, and Y. Shirai, “Adaptive robot speed control by
considering map and motion uncertainty,” Robotics and Autonomous
Systems, vol. 54(2), pp. 110–117, 2006.

[5] K. M. Krishna, R. Alami, and T. Simeon, “Safe proactive plans and
their execution,” Robotics and Autonomous Systems, vol. 54, pp. 244–
255, 2006.

[6] P. Burlina, D. DeMenthon, and L. Davis, “Navigation with uncertainty:
reaching a goal in a high collision risk region,” in Proc. of the IEEE
International Conference on Robotics and Automation, Nice, France, 12-
14 May 1992, pp. 2440–2445 vol.3.

[7] R.Y. Rubinstein, Simulation and the Monte Carlo method. John Wiley
& Sons, 1981.

[8] S. Kirkpatrick and E. Stoll, “A very fast shift-register sequence random
number generator,” Journal of Computational Physics, vol. 40, pp. 517–
526, 1981.

[9] G. Box and M. Muller, “A note on the generation of random normal
deviates,” Annals Math. Stat, vol. 29, pp. 610–611, 1958.

APPENDIX

A. Multivariate Gaussian distribution on Rd

Nd (x;m,Σ) ∼
exp

(
− 1

2 (x−m)′Σ−1 (x−m)
)√

(2π)d det (Σ)
,

with m ∈ Rd, and Σ a symmetric, positive semi-definite
square matrix of dimension d.

Let X ∼ Nd (m1,Σ1) and Y ∼ Nd (m2,Σ2) where
Nd (m,Σ) denotes the d-dimensional Gaussian distribution
with mean m and covariance Σ, with density Nd (x;m,Σ) .
We need to evaluate the following integral :∫

Nd (x;m1,Σ1)Nd (x;m2,Σ2) dx

where x ∈ Rd. This should be written∫
exp

(
− 1

2 [α1 + α2]
)

(2π)d
√

det (Σ1)
√

det (Σ2)
dx

with
α1 = (x−m1)′ Σ−1

1 (x−m1)
α2 = (x−m2)′ Σ−1

2 (x−m2)
Let’s study the term

∫
exp

(
− 1

2 (A)
)
dx where

A = (x−m1)′ Σ−1
1 (x−m1) + (x−m2)′Σ−1

2 (x−m2) .

One can show that

A = B +m′1Σ−1
1 m1 +m′2Σ−1

2 m2

−
(
Σ−1

1 m1 + Σ−1
2 m2

)′ (
Σ−1

1 + Σ−1
2

)−1 (
Σ−1

1 m1 + Σ−1
2 m2

)
.

With

B = [x−m]′ Σ−1 [x−m] ,

and

m =
(
Σ−1

1 + Σ−1
2

)−1 (
Σ−1

1 m1 + Σ−1
2 m2

)
Σ−1 =

(
Σ−1

1 + Σ−1
2

)
.

Therefore ∫
exp

(
− 1

2A
)

(2π)d
√

det (Σ1)
√

det (Σ2)
dx

=
exp

[
− 1

2 (A−B)
]

(2π)d
√

det (Σ1)
√

det (Σ2)

×
∫

exp
(
−1

2
B

)
dx.

With∫
exp

(
−1

2
B

)
dx

=
√

(2π)d
√

det (Σ)
∫

exp
(
− 1

2 (x−m)′ Σ−1 (x−m)
)√

(2π)d
√

det (Σ)
dx

=
√

(2π)d
√

det (Σ)

B. Generating Gaussian pseudo-random numbers

Most authors (see [7]) use a classical random number func-
tion in order to generate Gaussian pseudo-random numbers.
The name of such a function is rand() in most programming
language; we made the same choice for the following sections.
The rand() function returns a number from a uniform distribu-
tion in the range from 0 to 1. If it it is available, we recommend
the use of the R250 algorithm as the rand() function for most
applications ([8]).

1) Generating Gaussian numbers with zero mean and a
standard deviation of one:

a) The Box-Muller transformation: There are many ways
of generating Gaussian pseudo-random numbers with zero
mean and a standard deviation of one (see for example [7]
for an extensive discussion of this topic) but we will only go
into one important method here. The famous Box-Muller [9]
transformation allows us to transform uniformly distributed
random variables, to a new set of random variables with a
Gaussian (or Normal) distribution. The most basic form of
the transformation looks like:

y1 =
√
−2ln(x1)× cos(2πx2)

y2 =
√
−2ln(x1)× sin(2πx2)

We start with two independent random numbers: x1=rand()
and x2=rand(). Then apply the above transformations to get
two new independent random numbers which have a Gaussian
distribution with zero mean and a standard deviation of one.

This particular form of the transformation has two problems
with it,
• It is slow because of many calls to the math library.
• It can have numerical stability problems when x1 is very

close to zero.
b) The polar form of the Box-Muller transformation: The

polar form of the Box-Muller transformation is both faster and
more robust numerically then the Box-Muller transformation.
The algorithmic description of it is:
do {

x1 = 2.0 * rand() - 1.0;
x2 = 2.0 * rand() - 1.0;
w = x1 * x1 + x2 * x2;

} while (w >= 1.0);
w = sqrt((-2.0 * ln(w)) / w);
y1 = x1 * w;
y2 = x2 * w;
The polar form is faster because it does the equivalent

of the sine and cosine geometrically without a call to the
trigonometric function library. But because of the possibility
of many calls to rand(), the uniform random number generator
should be fast. That’s why we recommend the use of the R250
algorithm.

2) Random multivariate normal numbers: The random
multivariate normal numbers are produced by multiplying a
vector of random univariate normal numbers by the Cholesky
decomposition of the correlation matrix according to the
formula: Y = LX where
• Y = a vector of random multivariate normal numbers
• L = the Cholesky decomposition of the correlation

matrix.
• X = a vector of random univariate normal numbers

Here the Cholesky decomposition is stored in the lower
triangle and main diagonal of a square matrix; elements in
the upper triangle of the matrix are 0. Standard deviations are
then multiplied and/or means added per the user specifications.

