
A Monte Carlo Approach for
Collision Probability Computation

Alain Lambert Guillaume Saint Pierre, Dominique Gruyer
IEF, UMR CNRS 8622 LIVIC
Université Paris Sud-XI INRETS/LCPC

Bat. 220, Centre d’Orsay Bat 824, 14 route de la minière
91405 Orsay cedex - France 78000 Versailles Satory - France

Abstract— In order to navigate safely, it is important to
detect and to react to a potentially dangerous situation. Such
a situation can be underlined by a judicious use of the
locations and the uncertainties of both the navigating vehicle
and the obstacles. We propose to build an estimation of the
collision probability from the environment perception with its
probabilistic modelling. The probability of collision is computed
from a product of integrals of a product of Gaussians. The
integrals take into account the uncertain configurations and
the volume of both the vehicle and the obstacles.

I. INTRODUCTION

The anticipation of a collision is necessary for a safe
navigation. The prediction of collisions could be used for
obstacle avoidance, speed monitoring or path planning. Such
a prediction has been computed in various ways during the
last years.

[1] defines a security area modeled by a circle (centered
on the robot position) whose radius is proportional to the
speed. A collision judgement is based on an intersecting
test between this circle and high-confidence position error
ellipses. Controlling the speed and steering of the mobile
robot along a preplanned path is done by using the collision
judgement. [2] uses an interaction component (deformable
virtual zone) of the robot with the environment which
leads to avoidance-oriented control laws. Furthermore an
emergency area around the robot causes an emergency stop
if it is broken by an obstacle. [3] performs an on-line speed
monitoring by computing a time to collision. Longer times to
collision lead the higher speed. In order to detect a collision,
the authors grow a mobile robot with its uncertainty ellipse
and they do a collision test between the resulting shape and
the obstacles. The process is repeated all along the path in
order to compute a time to collision. Uncertainty ellipses
have also been used in [4] for safe path planning. The safety
is realized thanks to a collision test between a robot enlarged
with its uncertainty ellipsoid and the obstacles. [5] computes
a distance to undecided regions (unknown region) or to
nearby obstacles. Next they use this distance information to
compute the speed.

We think that only using a measured distance to collision
[5][6] is not sufficient as the real distance could be quite
different and lead to unexpected collisions. Using a security
area [1][2] around the vehicle is a good idea only if this secu-
rity area represents the uncertainty on the vehicle location.

Nevertheless such an area (an ellipse [3][4]) is a discrete
and binary representation of a continuous probability of
presence. Most authors uses an ellipse which represents the
probability of presence of the vehicle at 90%. Unfortunately
by defining a threshold they loose information for higher
level algorithms.

That’s why in this paper we propose to use the entire avail-
able information (the pdf of the vehicle and the obstacles) for
defining the probability of collision. Such an approach has
been followed in [7] for a punctual robot and a geometrical
obstacle without considering the uncertainty in orientation.
We are going to overcome those restrictions (punctual and
no uncertainty in orientation) in order to compute a realistic
collision probability for real world application. To the best
of our knowledge, it is the first time that the 3D uncertainty
and the volume of the objects are used when calculating the
probability of collision.

In the next section we introduce the necessary models. In
section 3 we propose an analytical formula for computing
the probability of collision between two configurations. We
have no analytical solution when considering objects instead
of configurations. Nevertheless, by considering a circular
vehicle with its configuration uncertainties and a perfectly
localized obstacle, we can tackle the problem with published
algorithms (section 4). The general case (both vehicle and
obstacle with any shape and added uncertainties) is studied in
section 5. In section 6 we consider the probability of collision
between multiple objects.

II. PROBLEM STATEMENT

A. Vehicle and obstacle models

The vehicle configuration is denoted xv = (xv, yv, θv)T

where (xv, yv) are the coordinates of a characteristic point
which is located midway between the two rear wheels of our
vehicle and θv is its orientation. All variables are defined with
respect to the global frame.

The obstacles configuration is denoted xo = (xo, yo, θo)T .
The shape of both vehicle and obstacles are denoted Vv and
Vo. The geometric center of Vo is xo.

B. Uncertainty modeling

The pdf (probability density function) of a configuration
x = (x, y, θ)T having a Σ covariance matrix and an x̂ mean

is:

p(x) =
1(√

2π
)n√

det Σ
e−

1
2 ((x−x̂)T Σ−1(x−x̂)) (1)

where n is the x dimension. We consider that x dimension
is 3 for the sake of simplicity : (nevertheless the x dimension
can be higher).

p(x) =
1(√

2π
)3√

det Σ
e−

1
2 ((x−x̂)T Σ−1(x−x̂)) (2)

where Σ is a 3x3 covariance matrix :

Σ =

 σ2
x ρxyσxσy ρxθσxσθ

ρxyσxσy σ2
y ρyθσyσθ

ρxθσxσθ ρyθσyσθ σ2
θ

 (3)

Such a matrix could be the result of a filter process like
the Extend Kalman Filter or could be directly defined by:

Σ = E
(

(x− x̂) (x− x̂)T
)

(4)

The pdf of a v vehicle and an o obstacle are denoted pv
and po with their associated Σv and Σo matrices.

Finally, v and o are defined by : v = (xv,Σv,Vv) and
o = (xo,Σo,Vo)

III. PROBABILITY OF COLLISION BETWEEN 2 UNCERTAIN
CONFIGURATIONS

The probability of collision between a v and an o uncertain
configurations (assuming that Vv = Vo = ∅) is defined by :

Pcoll(v, o) =
∫∫∫

R3
pv(x, y, θ) · po(x, y, θ) · dxdydθ (5)

The integral 5 can be analytically computed. Details of
the calculations in the multivariate case can be found in
appendix A. Let’s assume that pv(x, y, θ) is the density of
a Nd (x̂v,Σv) distribution, and po(x, y, θ) the density of
a Nd (x̂o,Σo) distribution. Let us denote x = (x, y, θ)T ,
A = (x− x̂v)

T Σ−1
v (x− x̂v) + (x− x̂o)

T Σ−1
o (x− x̂o)

and B = [x−m]T Σ−1 [x−m] with:

m = Σ−1
(
Σ−1
v x̂v + Σ−1

o x̂o
)

(6)

Σ−1 =
(
Σ−1
v + Σ−1

o

)
(7)

We have

Pcoll(v, o) =
exp

[
− 1

2 (A−B)
]√

det (Σ)√
det (Σv)

√
det (Σv)

(8)

with

A−B = x̂Tv Σ−1
v x̂v + x̂To Σ−1

o x̂o (9)

−
(
Σ−1
v x̂v + Σ−1

o x̂o
)T

Σ−1
(
Σ−1
v x̂v + Σ−1

o x̂o
)

Equation (8) has been used to compute the probabilities of
collision of Fig. 1. During this experiment corresponding to
a real outdoor situation, a car (so called “the vehicle”, right
part of the figure) was running on its way whereas there was
another static car (so called “the obstacle”) on the opposite

Fig. 1. pdf of the collision between an obstacle and a vehicle moving in
straight line

lane (left part of the figure). The vehicle was moving from
the bottom to the top of the figure in a straight line using only
its proprioceptive sensors. The pdf of the vehicle is shown
at 6 different time instants (every 4 meters). The pdf of the
collision has been computed at each of those time instants
but only 2 pdf are noticeable. The maximum height of the
biggest pdf of the collision is tiny (0.00205) compared to the
corresponding pdf’s height of both the obstacle (0.16) and
the vehicle (0.13). Consequently the pdf of the collision has
been multiplied by 100 on Fig. 1 for a better visualization.
The greatest probability of collision computed using Eq. (8)
is equal to 0.007. It allows us to conclude that the situation
is safe which is unrealistic considering the real situation
with the volume of the cars. We should have thought about
taking into account the volumes as they are big regarding
the estimated distance between the vehicles. We have not
investigated the interest of Eq. (8) when the volumes are not
null because the following approaches (see section 4 and
5) provides results that are good enough both in term of
computing time and precision.

IV. PROBABILITY OF COLLISION BETWEEN A WELL
KNOWN CIRCULAR OBJECT AND ANOTHER CIRCULAR

OBJECT WITH GAUSSIAN UNCERTAINTIES

We consider a basic situation: a circular vehicle is near
a fixed obstacle (a column for instance). In this type of
situation, there is no uncertainty on both the position and
the orientation of the obstacle (the configuration of the
obstacle is perfectly known). We want to find the collision
probability associated with a given configuration of both the
circular vehicle and the column. We consider the circular
vehicle as an x̂v =

(
x̂v, ŷv, θ̂v

)T
configuration with an

associated rv radius and pv(xv) pdf. The circular object has
an xo = (xo, yo, θo)

T configuration with an associated ro
radius.

Thus, the following integral needs to be computed:∫
D

pv(xv, yv, θv)dxvdyvdθv (10)

where

D = {uv = (xv, yv) ∈ R2\ (11)

(uv −Qv)
T E (uv −Qv) < (ro + rv)

2
, and θv ∈ R},

Qv ∈ R2 the ellipse center, E the positive semi-definite
ellipsoid matrix (E = Id in the case of a circular base of
the obstacle), and ro + rv the new radius. We compute the
integral of the pv(xv) pdf over a circular region whose radius
is the radius of the column plus the diameter of the vehicle.

This simple case is not analytically tractable: multivariate
normal integrals computation is often a difficult problem. For
the bivariate case, there are now many algorithms available
for integrals computation over various integration regions
(spherical, ellipsoidal, rectangular, circular, etc.). In a com-
parative study of these algorithms, Terza and Welland [8]
show that the quality of these algorithms has a significant
variation. Recently, after a study of different algorithms,
Patefield and Tandy [9] developed an hybrid double precision
algorithm. In the case of dimensions higher than 2, the
computation objective for multivariate normal integrals can
be reached either by using a numerical approximations
involving Monte-Carlo methods [10], or a locally adaptive
numerical integration strategy based on Simson’s rule [11], or
sub-region adaptive multiple integration method [12]. Such
algorithms are now well known, and give accurate results for
the multivariate normal integrals computation problem.

We chose to use the AS 106 algorithm (which is described
in [13]) in order to compute Eq. (10). Given that the n-
dimensional vector xv has a multivariate normal distribution
with expected mean value vector x̂v and non-singular co-
variance matrix Σv , this algorithm computes the distribution
function of the quadratic form (x + a)T V−1 (x + a) for a
fixed vector a and symmetric positive definite matrix V. The
quadratic form is expressed as an infinite series in central
χ2 distribution functions: both the distribution functions and
the series coefficients are evaluated recursively. The Matlab
used implementation is available at the following location:
http://www.math.wsu.edu/faculty/genz/homepage.

The AS106 algorithm can also be used when considering
an elliptical object rather than a circular one (in this case
E 6= Id). This algorithm is very fast: the average comput-
ing time is less than 0.1 millisecond on our Pentium IV
processor (2Ghz). Unfortunately, the integral computation
has no related work if we consider 2 objects with Gaussian
uncertainties as described below.

V. PROBABILITY OF COLLISION BETWEEN ANY 2
OBJECTS WITH GAUSSIAN UNCERTAINTIES

A. Analytical description of the problem

The probability of collision between a v and an o polygo-
nal object is the probability that v and o share a same part of
the space. Consequently, given an x̂v configuration (with a
pv associated pdf and a Vv volume) and an x̂o configuration
(with a po associated pdf and a Vo volume) the probability

Algorithm 1 Probability of collision between v and o
1: function PROBABILITYOFCOLLISION(v, o)
2: Pcoll(v, o)← 0
3: for j ←1 to N do
4: xv ← randc(x̂v,Σv)
5: xo ← randc(x̂o,Σo)
6: if Vv(xv) ∩ Vo(xo) 6= ∅ then
7: Pcoll(v, o)← Pcoll(v, o) + 1
8: end if
9: end for

10: Pcoll(v, o)←Pcoll(v,o)
N

11: return(Pcoll(v, o))
12: end function

of collision is given by:

Pcoll(v, o) =
∫
D

pv(xv, yv, θv)· (12)

po(xo, yo, θo) · dxvdyvdθvdxodyodθo

with

D = { (xv, yv, θv, xo, yo, θo) ∈ R6

\ Vv(xv, yv, θv) ∩ Vo(xo, yo, θo) 6= ∅} (13)

If v and o are punctual objects then Eq. (12) turns to Eq.
(5). If v and/or o have an infinite volume then v and o always
collide and Eq. (12) equals one. If o is a well known circular
object and v a circular object with Gaussian uncertainties
then (12) turns to Eq. 10.

B. Monte Carlo solution

As we have no analytical solution to Eq. (12), we propose
to use a MC (Monte Carlo) method.

First, we need to rewrite Eq. (12) as :

Pcoll(v, o) =
∫

R6
Υ · pv(xv,yv, θv) · po(xo, yo, θo)

· dxvdyvdθvdxodyodθo (14)

Where Υ = Υ(Vv(xv, yv, θv),Vo(xo, yo, θo)) is a collision
test between the volume Vv of the vehicle and the volume
Vo of the obstacle:

Υ(Vv(xv, yv, θv),Vo(xo, yo, θo)) ={
1 if Vv(xv, yv, θv) ∩ Vo(xo, yo, θo) 6= ∅
0 if Vv(xv, yv, θv) ∩ Vo(xo, yo, θo) = ∅

(15)

Denoting z = (xv, yv, θv, xo, yo, θo) (and Z the associated
random variable), Eq. (14) can be rewritten as:

Pcoll(v, o) =
∫

R6
Υ(z)f(z)dz, (16)

with f(z) = pv(xv, yv, θv) · po(xo, yo, θo) and Υ(z) =
Υ(Vv(xv, yv, θv),Vo(xo, yo, θo)).

Secondly we know [14] that for evaluating the integral∫
R6

Υ (z) f (z) dz = Ef [Υ(Z)] (17)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Number of generated observations

P
ro

ba
bi

lit
y

of
 c

ol
lis

io
n

ProbabilityOfCollision Algorithm
Exact probability of collision

(a) High probability

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

Number of generated observations

P
ro

ba
bi

lit
y

of
 c

ol
lis

io
n

ProbabilityOfCollision Algorithm
Exact probability of collision

(b) Medium probability

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Number of generated observations

P
ro

ba
bi

lit
y

of
 c

ol
lis

io
n

ProbabilityOfCollision Algorithm
Exact probability of collision

(c) Low probability

Fig. 2. Result of the proposed algorithm for an high, a medium and a low probability of collision

we can use a sample (z1, ..., zm) generated from the density
f . Therefore, Eq. (17) can be approximated by the empirical
average

Ῡm =
1
m

m∑
j=1

Υ(zj), (18)

since Ῡm converges almost surely to Ef [Υ(Z)] by the
Strong Law of Large Numbers. Variable z is Gaussian as
(xv, yv, θv) and (xo, yo, θo) are both Gaussian and indepen-
dent. Therefore, the sample (z1, ..., zn) can be obtained by
generating separately (xvj

, yvj
, θvj

) ∼ pv(xv, yv, θv) and
(xoj , yoj , θoj) ∼ po(xo, yo, θo).

Thanks to Eq. (18) we can rewrite Eq. (14) as:

Pcoll(v, o) =
1
m

m∑
j=1

Υ(Vv(xvj
, yvj

, θvj
),Vo(xoj

, yoj
, θoj

)).

(19)

Drawing samples (xv, yv, θv) and (xo, yo, θo) is done as
explained in appendix B. We assume that such drawing
is done by an existing randc() function (many excellent
generators exist to do such a job).
The Eq. (19) leads to algorithm 1 with a linear complexity
in O(N) where N = m is a number that determines the
accuracy of the integral computation.

C. Experimental results

Results provided by algorithm 1 for different values of
probability of collision have been shown on Fig. 2. The
algorithm has approximated 3 different values of probability
of collision : a high (Fig. 2.a), a medium (Fig. 2.b) and
a low value (Fig. 2.c). Both vehicle and obstacles were
represented as polygonal lines for the collision test inside
the probabilistic collision test.

For each value the algorithm has been ran 10 times
(although one run is sufficient to obtain an estimate of the
probability) with until 104 samples for each run (N = 104 in
algorithm 1). Consequently the subfigures of Fig. 2 have 10
curves (plus the line of the exact value) and we can analyze
various results of the algorithm on three typical situations.
For each figure the “exact probability” corresponds to the

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.01

0.02

0.03

0.04

0.05

0.06

Number of generated observations
R

oo
t m

ea
n

sq
ua

re
 e

rr
or

 o
f t

he
 p

ro
ba

bi
lit

y
of

 c
ol

lis
io

n

High probability of collision
Medium probability of collision
Low probability of collision

Fig. 3. Comparison of errors for an high, a medium and a low probability
of collision

mean after 106 samples. On each subfigure the algorithm
defines a corridor around the exact value.

The root mean square error (RMSE) is computed on Fig.
3 from the 3 subfigures of Fig. 2. The RMSE value is ac-
ceptable for the high and the medium probability values (less
than 0.02 for 0.91 and 0.5 mean values after 1000 generated
observations). Nevertheless the RMSE is big regarding the
low probability value (less than 0.005 for 0.01 mean value
after 1000 generated observations).

The proposed algorithm computes the probability of col-
lision with 104 samples (one run) in about 0.01 second
on a Pentium IV processor (2 Ghz). Approximating the
probability of collision takes 1 millisecond if we consider
that only 103 samples are necessary. Consequently such
algorithm can be embedded on a vehicle and deals with
multiple obstacles as described in the next section.

VI. PROBABILITY OF COLLISION BETWEEN AN OBJECT
AND OTHER OBJECTS WITH GAUSSIAN UNCERTAINTIES

A. Analytical description of the problem

The probability that v collides with at least one obstacle
can be calculated through the probability that v does not
collide with any obstacles :

Pcoll(v, o1...on) = 1− Pcoll(v, o1) · . . . · Pcoll(v, on) (20)

The probability that v do not collide with oi obstacle is

Pcoll(v, oi) =
∫

R6
Υ · pv(xv, yv, θv) · poi

(xoi
, yoi

, θoi
)

dxvdyvdθvdxodyodθo (21)

with Υ = Υ(Vv(xv, yv, θv),Voi
(xoi

, yoi
, θoi

)).

B. Monte Carlo solution

Using Eq.s (20) and (21) (Eq. 21 being computed via a
MC algorithm like algorithm 1) leads to algorithm 2 which
is explained beneath.

• Lines 2-4: The probability Pcoll(v, oi) that the v vehicle
does not collide with the oi obstacle is initialized to 0
for each of the n obstacles.

• Lines 5 and 13: This first loop activates the computation
of Pcoll(v, oi) for each of the n obstacles.

• Lines 6 and 12: This second loop computes Pcoll(v, oi)
using a new pair of samples at each iteration. The bigger
the number N of samples the better the accuracy.

• Lines 7 and 8: A xv (respectively xo) sample is drawn
following the pdf of the vehicle (respectively the i
obstacle).

• Lines 9-11: If the volume of the vehicle on xv does not
intersect the volume of the i obstacle on xo then the
variable Pcoll(v, oi) rises in increment of 1. The division
of Pcoll(v, oi) by the number of samples corresponds to
the probability that the v vehicle and the oi obstacle do
not collide.

• Line 14 : The probability Pcoll(v, o1..n) that the vehicle
does not collide with the obstacles is initialized to 1.

• Lines 15-17: Pcoll(v, o1..n) is updated according to
Pcoll(v, oi) (a variable which is proportional to the
probability of collision with each of the obstacles).

• Line 18: The probability Pcoll(v, o1...on) that the
vehicle collides with the obstacles is computed.
Pcoll(v, o1..n) is divided n times by N where N is the
number of samples and n is the number of obstacles.

• Line 19 returns the result.

The complexity of this algorithm is O(nN) which is n
times the complexity of algorithm 1 This is verified by
experimental results (with N = 103) where the computing
time is n milliseconds.

VII. CONCLUSION

We have defined the probability of collision for a vehicle
in a cluttered environment as a product of integrals of a
product of Gaussians. The probability of collision takes into
account the uncertainties and the volume of both vehicle
and obstacles. We have proposed a Monte Carlo method
to compute the integrals because we do not have analytical
solution. Experimental results show the soundness of our
algorithm which can deal with any shape (and modelling)
of both vehicle and obstacles. As our algorithm relies on a
classical geometrical collision test, it can easily replace any
classical collision test by a probabilistic one.

Algorithm 2 Probability of collision between v and o1, ..., on

1: function PROBABILITYOFCOLLISIONS(v, o1, ..., on)
2: for i←1 to n do
3: Pcoll(v, oi)← 0
4: end for
5: for i←1 to n do
6: for j ←1 to N do
7: xv ← randc(x̂v,Σv)
8: xo ← randc(x̂oi

,Σoi
)

9: if Vv(xv) ∩ Voi
(xo) = ∅ then

10: Pcoll(v, oi)← Pcoll(v, oi) + 1
11: end if
12: end for
13: end for
14: Pcoll(v, o1..n)← 1
15: for i←1 to n do
16: Pcoll(v, o1..n)← Pcoll(v, o1..n) · Pcoll(v, oi)
17: end for
18: Pcoll(v, o1...on)←1− Pcoll(v,o1..n)

Nn

19: return(Pcoll(v, o1...on))
20: end function

REFERENCES

[1] H. Hu, M. Brady, and P. Probert, “Navigation and control of a mobile
robot among moving obstacles,” in Proc. of the 30th IEEE Inter-
national Conference on Decision and Control (CDC’91), Brighton,
England, 11-13 Dec 1991, pp. 698–703.

[2] R. Zapata, P. Lepinay, and P. Thompson, “Reactive behaviors of fast
mobile robots,” Journal of Robotic Systems, vol. 11, pp. 13–20, 1994.

[3] L. Codewener and D. Meizel, “On line speed monitoring of mobile
robots tasks,” Engineering applications of artificial intelligence, vol.
7(2), pp. 152–160, 1994.

[4] A. Lambert and N. LeFort-Piat, “Safe task planning integrating uncer-
tainties and local maps federation,” International Journal of Robotics
Research, vol. 19(6), pp. 597–611, 2000.

[5] J. Miura, Y. Negishi, and Y. Shirai, “Adaptive robot speed control by
considering map and motion uncertainty,” Robotics and Autonomous
Systems, vol. 54(2), pp. 110–117, 2006.

[6] K. M. Krishna, R. Alami, and T. Simeon, “Safe proactive plans and
their execution,” Robotics and Autonomous Systems, vol. 54, pp. 244–
255, 2006.

[7] P. Burlina, D. DeMenthon, and L. Davis, “Navigation with uncertainty:
reaching a goal in a high collision risk region,” in Proc. of the IEEE
International Conference on Robotics and Automation, Nice, France,
12-14 May 1992, pp. 2440–2445 vol.3.

[8] J. V. Terza and U. Welland, “A comparison of bivariate normal
algorithms,” Journal of Statist. Comput. Simul., vol. 19, pp. 115–127,
1988.

[9] M. Patefield and D. Tandy, “Fast and accurate computation of owen’s
t-function,” Journal of Statistical Software, vol. 5 (5), 2000. [Online].
Available: http://www.jstatsoft.org

[10] A. Genz, “Numerical computation of multivariate normal probabili-
ties,” J. Comput. Graph. Statist., vol. 1, pp. 141–150, 1992.

[11] M. Schervish, “Multivariate normal probabilities with error bound,”
Applied Statistics, vol. 33, pp. 81–87, 1984.

[12] J. Berntsen, T. O. Espelid, and A. Genz, “Algorithm 698: Dcuhre-an
adaptive multidimensional integration routine for a vector of integrals,”
ACM Transactions on Mathematical Software, vol. 17, pp. 452–456,
1991.

[13] J. Sheil and I. O’Muircheartaigh, “Algorithm as 106: The distribution
of non-negative quadratic forms in normal variables,” Applied Statis-
tics, vol. 26, pp. 92–98, 1977.

[14] C.P. Robert and G. Casella, Monte Carlo statistical methods. Springer
Verlag, 2004.

[15] R.Y. Rubinstein, Simulation and the Monte Carlo method. John Wiley
& Sons, 1981.

[16] G. Box and M. Muller, “A note on the generation of random normal
deviates,” The Annals of Mathematical Statistics, vol. 29(2), pp. 610–
611, 1958.

APPENDIX

A. Multivariate Gaussian distribution on Rd

Nd (x;m,Σ) ∼
exp

(
− 1

2 (x−m)′ Σ−1 (x−m)
)√

(2π)d det (Σ)
,

with m ∈ Rd, and Σ a symmetric, positive semi-definite
square matrix of dimension d.

Let X ∼ Nd (m1,Σ1) and Y ∼ Nd (m2,Σ2) where
Nd (m,Σ) denotes the d-dimensional Gaussian distribution
with mean m and covariance Σ, with density Nd (x;m,Σ) .
We need to evaluate the following integral :∫

Nd (x;m1,Σ1)Nd (x;m2,Σ2) dx

where x ∈ Rd. This should be written∫
exp

(
− 1

2 [α1 + α2]
)

(2π)d
√

det (Σ1)
√

det (Σ2)
dx

with
α1 = (x−m1)′Σ−1

1 (x−m1)
α2 = (x−m2)′Σ−1

2 (x−m2)
Let’s study the term

∫
exp

(
− 1

2 (A)
)
dx where

A = (x−m1)′Σ−1
1 (x−m1) + (x−m2)′Σ−1

2 (x−m2) .

One can show that

A = B +m′1Σ−1
1 m1 +m′2Σ−1

2 m2

−
(
Σ−1

1 m1 + Σ−1
2 m2

)′ (
Σ−1

1 + Σ−1
2

)−1 (
Σ−1

1 m1 + Σ−1
2 m2

)
.

With
B = [x−m]′Σ−1 [x−m] ,

and

m =
(
Σ−1

1 + Σ−1
2

)−1 (
Σ−1

1 m1 + Σ−1
2 m2

)
Σ−1 =

(
Σ−1

1 + Σ−1
2

)
.

Therefore ∫
exp

(
− 1

2A
)

(2π)d
√

det (Σ1)
√

det (Σ2)
dx

=
exp

[
− 1

2 (A−B)
]

(2π)d
√

det (Σ1)
√

det (Σ2)

×
∫

exp
(
−1

2
B

)
dx.

With∫
exp

(
−1

2
B

)
dx

=
√

(2π)d
√

det (Σ)
∫

exp
(
− 1

2 (x−m)′ Σ−1 (x−m)
)√

(2π)d
√

det (Σ)
dx

=
√

(2π)d
√

det (Σ)

B. Generating Gaussian pseudo-random numbers

Most authors (see [15]) use a classical random number
function (that returns a number from an uniform distribution
in the range from 0 to 1) in order to generate Gaussian
pseudo-random numbers.

1) Generating Gaussian numbers with zero mean and a
standard deviation of one:

a) The Box-Muller transformation: The most poupular
ways of generating Gaussian pseudo-random numbers with
zero mean and a standard deviation of one (see [15]) is
the famous Box-Muller [16] transformation. It allows us
to transform uniformly distributed random variables, to a
new set of random variables with a Gaussian (or Normal)
distribution. The most basic form of the transformation looks
like:

y1 =
√
−2ln(x1)× cos(2πx2)

y2 =
√
−2ln(x1)× sin(2πx2)

We start with two independent random numbers:
x1=rand() and x2=rand(). Then apply the above transforma-
tions to get two new independent random numbers which
have a Gaussian distribution with zero mean and a standard
deviation of one. This particular form of the transformation
has two problems with it : it is slow because of many calls to
the math library and it can have numerical stability problems
when x1 is very close to zero.

b) The polar form of the Box-Muller transformation:
The polar form of the Box-Muller transformation is both
faster and more robust numerically then the Box-Muller
transformation. The algorithmic description of it is:
do {

x1 = 2.0 * rand() - 1.0;
x2 = 2.0 * rand() - 1.0;
w = x1 * x1 + x2 * x2;

} while (w >= 1.0);
w = sqrt((-2.0 * ln(w)) / w);
y1 = x1 * w;
y2 = x2 * w;
The polar form is faster because it does the equivalent

of the sine and cosine geometrically without a call to the
trigonometric function library. But because of the possibility
of many calls to rand(), the uniform random number genera-
tor should be fast. That’s why we recommend the use of the
R250 algorithm.

2) Random multivariate normal numbers: The random
multivariate normal numbers are produced by multiplying a
vector of random univariate normal numbers by the Cholesky
decomposition of the correlation matrix according to the
formula: Y = LX where
• Y = a vector of random multivariate normal numbers
• L = the Cholesky decomposition of the correlation

matrix.
• X = a vector of random univariate normal numbers

Here the Cholesky decomposition is stored in the lower
triangle and main diagonal of a square matrix; elements in
the upper triangle of the matrix are 0.

