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Abstract— An atmospheric visibility measurement system ca-
pable of quantifying the most common operating range of
onboard exteroceptive sensors is a key parameter in the creation
of driving assistance systems. This information is then utilized
to adapt sensor operations and processing or to alert the driver
that the onboard assistance system is momentarily inoperative.
Moreover, a system capable of either detecting the presence of
fog or estimating visibility distances constitutes in itself a driving
assistance. In this paper, we present a measurement framework of
different visibility distances using onboard CCD cameras, that we
beforehand defined: meteorological visibility, obstacle visibility,
mobilized visibility. The methods to estimate these different
visibility distances are detailed. Whereas the first one is based
on a physical model of light diffusion by the atmosphere, the
two other methods are based on the ”v-disparity” approach and
local contrasts computation. The methods are evaluated thanks
to video sequences under sunny weather and foggy weather.

I. INTRODUCTION

Perception sensors (cameras, laser, radar...) are being in-

troduced into certain vehicles. These sensors have been de-

signed to operate within a wide range of situations and

conditions (weather, luminosity, etc.) with a prescribed set

of variation thresholds. Effectively detecting when a given

operating threshold has been surpassed constitutes a key

parameter in the creation of driving assistance systems that

meet required reliability levels. With this context in mind, an

atmospheric visibility measurement system may be capable

of quantifying the most common operating range of onboard

exteroceptive sensors. This information is then utilized to

adapt sensor operations and processings or to alert the driver

that the onboard assistance system is momentarily inoperative.

Moreover, a system capable of either detecting the presence

of fog or estimating visibility distances constitutes in itself

a driving assistance. Indeed, during foggy weather, humans

actually tend to overestimate visibility distances [2], which

can lead to excessive driving speeds. Nevertheless, this topic

has been hardly tackled in the literature. Only Pomerleau

[10] estimated visibility by means of measuring the contrast

attenuation of road markings at various distances in front of

a moving vehicle. This approach, based on the ”RALPH”

system, nonetheless requires the presence and detection of road

markings in order to proceed.

Koschmieder’s law models the fog effects on atmospheric

visibility. One of its parameters is the extinction coefficient of

fog k. This parameter is strongly linked to the meteorolog-

ical visibility proposed by the International Commission on

Illumination [1]. So, we tried to develop a method estimating

k. This technique is summarized in the section II. In order

to cover more situations than solely daylight foggy weather,

we developed a more generic approach. Thus, we estimate

the distance to the most distant object having enough contrast

and belonging to the surface of the road. We called this

distance the mobilized visibility distance. We will see that this

distance is very close to the definition of the meteorological

visibility. The method is presented in the section III. Finally, in

section IV, we present our measurement framework based on

stereovision, which estimates at the same time the different

visibility distances and is also able to detect road obstacles

thanks to the ”v-disparity” approach [7].

II. KOSCHMIEDER’S MODEL AND METEOROLOGICAL

VISIBILITY

In this section, we present Koschmieder’s model, on which

part of our work is based. We define the meteorological

visibility distance. Then, the method to estimate this distance

is briefly presented.

A. Koschmieder’s Model

In 1924, Koschmieder [8] proposes his theory on the appar-

ent luminance of objects observed against background sky on

the horizon. In noting that a distant object winds up blending

in with the sky, he establishes a simple relationship between

the distance d of an object with intrinsic luminance Lo and

its apparent luminance L as follows:

L = Loe
−kd + Lf (1 − e

−kd) (1)

where Lf denotes the luminance of the sky and k the extinc-

tion coefficient of the atmosphere.

Based on these results, Duntley [8] derives an attenuation

law of atmospheric contrasts:

C = Coe
−kd (2)

where C designates the apparent contrast at distance d and Co

the intrinsic contrast of the object against its background.

This law is only applicable in the case of uniform illumi-

nation of the atmosphere. In order for the object to be just

barely visible, the value of C must equal the contrast threshold

ε. From a practical standpoint, the CIE [1] has adopted an

average value of ε = 0.05 for the contrast threshold so as
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to define a conventional distance, called the ”meteorological

visibility distance” Vmet, i.e. the greatest distance at which a

black object (Co = 1) of a suitable dimension can be seen in

the sky on the horizon.

Vmet = −
1

k
ln(0.05) �

3

k
(3)

B. Estimation of the Meteorological Visibility

In [3], we succeed to instantiate Koschmieder’s model and

then to estimate the meteorological visibility distance under

daytime foggy weather. For this purpose, we measure the

intensity variation of the road vertically in the image and we

search the position of an inflection point on this curve. The

value of k is then expressed as follows :

k =
2(vi − vh)

λ
(4)

where vi is the position of the inflection point, vh the position

of the horizon line and λ depends on the intrinsic and

extrinsic parameters of the camera. vh can be estimated by

intersecting vanishing lines [11]. Using a stereo sensor and

the ”v-disparity” approach, the position of the horizon line and

consequently the pitch angle of the camera can be computed

dynamically [7]. One advantage of this method is that we only

need one camera and the presence of the road and the sky in

the image. The latter are detected thanks to a region growing

process, which is used to detect the fog presence (cf. Fig. 8i).

If there is no fog, i.e. the region growing does not cross the

image from bottom to op, our method is also able to detect it

like on Fig. 1a. This is very useful and important to create a

reliable driving assistance.

(a) (b)

Fig. 1. Results of fog detection and measurement of the meteorological
visibility distance; (a) under sunny weather, the region growing does not cross
the image from bottom to top. Consequently, the method indicates that there
is no fog on the picture using a small triangle; (b) under foggy weather, the
method detects fog. The curve on the left represents the luminance variation
measured between the right and left borders painted black on the figure. The
visibility distance is represented by an horizontal black line.

III. MEASUREMENT OF THE MOBILIZED VISIBILITY

DISTANCE

In this section, we estimate the ”mobilized visibility dis-

tance”, which is the distance to the most distant object having

enough contrast and belonging to the surface of the road.

This definition is close to the definition of the meteorological

visibility. The link between these two distances is the topic of

the first paragraph. Then, to estimate this ”mobilized visibility

distance”, we must achieve two different tasks. We have to

compute a depth map of the environment ahead of the vehicle.

This is the topic of the paragraph III-B. Moreover, we detect

obstacles which occlude part of the road and the traffic. Then,

we have to compute the contrasts above a certain threshold in

the image. The threshold to consider is discussed. Finally, we

have to combine the depth map and the selected contrasts.

A. Definition of New Visibility Distances
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Fig. 2. Examples of (a) obstacle Vobs, (b) mobilized Vmob and (c)
mobilizable Vmax distances of visibility.

On Fig. 2, we represent a simplified road with dash road

marking and at least one vehicle moving on it. The first vis-

ibility distance is obstacle visibility Vobs. Indeed, an obstacle

which is big enough to mask the field of view prevents the

driving entity to see its trajectory. This is the case on Fig. 2a.

If there is no obstacles, we can see from the Fig. 2b that

the most distant visible object is the extremity of the last

road marking. However, the extremity location depends on the

vehicle position, like on Fig. 2c. We call this distance, which

depends on the road scene, the mobilized visibility distance

Vmob. This distance ought to be compared to the ”mobilizable

visibility distance” Vmax, which is the greatest distance at

which a potential object on the road surface would be visible.

The mobilizable visibility distance can be expressed as a

function of the meteorological visibility distance defined by

the CIE [1] and the contrast threshold C̃BW between a ”black”

object and a ”white” object. We denote Lb0 and Lw0
, the

intrinsic luminances and Lb et Lw the luminances at the

- 194 -



distance d of the ”black” object B and the ”white” object

W .

Koschmieder’s law gives us the theoretical variations of this

values according to the distance d. Let’s express the contrast

CBW of W with respect to B:

CBW =
∆L

L
=

(Lw0
− Lb0)e

−kd

Lb0e
−kd + Lf(1 − e−kd)

(5)

We deduce the expression of d according to the photometric

parameters, the contrast CBW and the meteorological visibility

distance Vmet:

d = −
Vmet

3
ln

(
CBW Lf

Lw0
− Lb0 + CBW (Lf − Lb0)

)
(6)

It is the distance to which an object W is perceived with a con-

trast of CBW . Like CIE does, we can choose a threshold C̃BW

below which the object is considered as being not visible. Like

for the computation of the meteorological visibility distance,

we assume that the intrinsic road luminance is equal to zero.

Thus, after maximisation, we obtain the value of Vmax:

Vmax = −
Vmet

3
ln

(
C̃BW

1 + C̃BW

)
(7)

We obtain easily the value C̃BW so that Vmax = Vmet:

C̃BW =
1

e3 − 1
≈ 5 % (8)

Consequently, by choosing a threshold of 5 %, the mobiliz-

able distance of visibility is very close to the meteorological

visibility distance, that we are able to compute under daytime

foggy weather (cf. section II). These definitions lead to the

following relationship:

Vobs < Vmob ≤ Vmax ≈ Vmet (9)

B. Computation of a Depth Map of the Environment by

Stereovision

In this section, we introduce our stereoscopic sensor. Then,

we present our technique to detect obstacles and compute

a depth map of the environment using the ”v-disparity”

approach. The various computation stages are detailed.

1) Modeling of the Stereo Sensor: The two image planes

of the stereo sensor are supposed to belong merely to the

same plane and are at the same height above the road (see

Fig. 3). This camera geometry means that the epipolar lines

are parallel.

2) The image of a plane in the ”v-disparity” image: In

this study, we segment the environment into planes which

are horizontal, vertical or oblique with respect to the plane

of the stereoscopic sensor. In a cross-section of the scene in

the optical axis of the camera, the projection of any of these

planes is a straight line. In the remaining of this paper, we

will build and use a specific image in which the detection

(a)

(b) (c)

Fig. 3. (a) The stereo sensor and the coordinate systems used. (b) Cameras
currently in use in the prototype cars of the LIVIC. (c) Calibration site on
the test track of Versailles Satory.

of straight lines will be equivalent to the detection of planes

in the scene. Indeed, we will represent the v coordinate of

a pixel towards the disparity ∆ and detect straight lines and

cuves in this 2D image. Mathematical framework is given in

[7].

3) ”V-Disparity” Image Construction and Obstacle

Detection: To compute a disparity map I∆, the primitives

used are horizontal local maxima of the gradient. The

matching process is quite simple and fast. It is based on

normalized correlation around the local maxima. Once I∆

has been computed, the ”v-disparity” image Iv∆ is built

by accumulating the pixels of same disparity in I∆ along

the �v axis. Then straight lines are detected in Iv∆ thanks

to a hough transform. This leads to extract global surfaces,

which correspond either to the road surface, or to obstacles.

Details of this method are given in [7] and an example of

”v-disparity” image is given on Fig. 8f.

4) Disparity Map Improvement: In order to quickly com-

pute the ”v-disparity” image, a sparse and rough disparity map

has been built (cf. Fig. 8c). This disparity map may contain

numerous false matches, which prevents us to use it as a

depth map of the environment. Thanks to the global surfaces

extracted from the ”v-disparity” image, false matches can be

removed. In this aim, we check wether a pixel of the disparity

map belongs to any global surface extracted using the same
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(b)(a) 

Fig. 4. Examples of disparity map of the vehicle environment (a) under sunny
weather, (b) under foggy weather. White points are considered as obstacles
points. The gray level of other points is proportional to their disparity.

matching process. If it the case, the disparity value is mapped

to the pixel. Details of this process can be found in [6]. Finally,

this enhanced disparity can be used as a depth map of the

environment ahead of the vehicle. Some examples of improved

disparity maps are shown on Fig. 4.

C. Computation of Contrasts above 5 %

Local contrasts computation has only received minimal

attention in the literature. We developed a technique using

sliding windows, inspired from Köhler’s binarization tech-

nique [5], which goes quite fast and is robust to noise. The

original technique finds the threshold which maximizes the

mean contrast C(s0) between two parts of the image along the

associate border F (s0) for a given definition of local contrast

Cx,x1
between two pixels x and x1.

C(s0) = max
s∈[0,255]

1

card(F (s))

∑
(x,x1)∈F (s)

Cx,x1
(s) (10)

We chose to estimate the logarithmic contrast [4] defined

by (11), so as to be in accordance with the definition of the

meteorological visibility distance:

Cx,x1
(s) = min

(
|s − x|

max(s, x)
,

|s − x1|

max(s, x1)

)
(11)

Finally, the evaluated contrast is equal to 2C(s0) along the

associated border F (s0). Some examples of local contrasts

computations are shown on Fig. 5.

(b) (a) 

Fig. 5. Examples of contrasts computation above 5 % on the whole images,
(a) under sunny weather, (b) under foggy weather.

D. Fast Disparity-Contrast Combination

Once the improved disparity map is achieved, we scan it

starting from the horizon line. Indeed, most distant objects

on the road surface are on the horizon line. The contrast

is calculated within each neighborhood which contains no

obstacle points and where the disparity of a pixel is known.

The process stops when a contrast above 5 % is met. The

visibility distance Vmob is then the distance associated with

the disparity ∆ of the pixel with a contrast above 5 %. The

algorithm is summarized on Fig. 6 and some final results are

given on Fig. 7.

Enhanced

disparity map

Contrast

computation
C>5%

Yes

No

Visibility

distance
Scanning

Fig. 6. Algorithm overview

(a) (b) 

Fig. 7. Final result: the most distant window having a contrast above 5 %,
on which a point of disparity is known, is painted white. The known disparity
point is represented with a black cross on the white window. (a) sunny weather
(Vmob ≈ 250m), (b) foggy weather (Vmob ≈ 75m).

IV. IMPLEMENTATION AND EVALUATION OF THE

METHODS

A. Experimental Platform

The different methods have been tested on our experimental

prototypes. The whole process is performed within 100 ms

with a current-day PC. The hardware used for the experiments

is an Intel Pentium IV 2.4 GHz. Images are grabbed using a

Matrox Meteor II graphic card. The focal length is 8.5 mm.

Image size is 380x289. The program runs on the RT-Maps

platform [9] and is compiled with the Intel C++ Compiler

8.0. The Fig. 8 presents an overview of the image processing

framework.

B. Test video sequences

This method has been tested on two video sequences, each

containing over 1000 images. In the first sequence, the instru-

mented vehicle is following another car at various distances

and stops in front of different obstacles. The weather is sunny

and clear. In the second sequence, the instrumented vehicle is

following another car, which disappears progressively through

the thick fog. Both sequences take place on a part of the test

track of Versailles Satory. A sample of each sequence is used

to illustrate the methods.
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Fig. 8. Visibility distance measurement framework. (a) Left original image; (b) right original image; (c) rough disparity map computed from images (a)
and (b); (d) extracted lines from the ”v-disparity” image; (e) road-obstacle contact line and time to collision measurement; (f) obstacle areas (in white) and
disparity values (in gray levels) on the road surface; (g) contrast above 5 % computed on the whole image; in the algorithm, the contrast is computed in only
few windows; (h) the most distant window having a contrast above 5 %, on which the disparity of a pixel is known, is painted white. The known disparity
point is represented with a black cross on the white window;(i) region growing process detecting picture elements compatible with the Koschmieder model;
(j) measurement of the meteorological visibility distance represented by an horizontal black line.

C. Results

On Fig. 1 and Fig. 8i, the results of fog detection and

measurement of the meteorological visibility distance are

represented. On Fig. 1a, the method does not detect fog and

says it using a small triangle. Conversely, on Fig. 1b and

Fig. 8j, the method detects fog. The visibility distance is

represented by a horizontal black line. We also represented

the curve of the luminance variation measured on each line of

a bandwidth, which borders are represented vertically on the

picture. As we can see, this bandwidth is able to get round

the obstacle to take into account only the road and the sky.

On Fig. 4 and Fig. 8f, the results of disparity map computa-
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Fig. 9. curves of measures: (−·−) mobilized distance of visibility , (—-)
meteorological visibility distance, (. . . ) obstacle distance of visibility (a) under
sunny weather; (b) under foggy weather.

tions are presented. On Fig. 4a, the pedestrian, the car, points

beyond horizon line are considered as obstacles points. The

disparity of the points on the road surface is computed. In the

same way, on Fig. 4b and Fig. 8f, the car is considered as

an obstacle. On the latter, far less disparity points are known

because of the reduced visibility.

On Fig. 5 and Fig. 8g, the results of local contrast computa-

tion on the whole images are represented. In fact, as explained

in section III-D, the contrast is not computed on the whole

image to save computing time. On Fig. 7 and Fig. 8h, the

final result is represented. The most distant window having a

contrast above 5 %, on which the disparity of a pixel is known,

is painted white. This pixel is represented with a black cross

inside the white window.

On Fig. 9, the curves of measured visibility distances are

plotted. On Fig. 9a, under sunny weather, the mobilized

visibility distance is equal to the maximum detection range

of the sensor. Conversely, under foggy weather, on Fig. 9b,

the mobilized visibility distance is strongly reduced due to

the presence of fog. This curve is very similar to the one of

the meteorological visibility distance, what is not surprising.

Finally, we also plotted the curves of obstacle visibility dis-

tance.

V. CONCLUSION

In this paper, we presented an image processing framework

able to measure different visibility distances, including obsta-

cle detection and fog detection. Obstacle detection is made

using the ”v-disparity” approach. Thanks to an instantiation

of Koschmieder’s model, we are able to detect fog and to

estimate the meteorological visibility distance. What we called

mobilized visibility distance is estimated using a combination

of an original local contrast computation and an improved

disparity map. The whole process is performed within 100

ms using a Pentium IV 2.4 GHz. Finally, we evaluated the

methods with two different video sequences of 1000 images

each under sunny and foggy weather. Other environmental

conditions (rain, snowstorm, sandstorm...) are taken into ac-

count, insofar as the contrast in the road scene is impaired in

these situations. On the other hand, estimating their effects on

the windshield is not considered. Finally, in order to evaluate

the performance of our methods and to calibrate them, we

are currently building targets on the test track of Versailles

Satory so as to provide a reference measure of the atmospheric

diffusion. To be able to give a probabilistic output of the

certainty of the measurements is also an interesting prospect.
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rear lights in fog,” Human Factors, vol. 43, pp. 442–451, 2001.

[3] N. Hautière and D. Aubert, “Driving assistance: automatic fog detection
and measure of the visibility distance,” in ITS World Madrid, November
2003.

[4] M. Jourlin and J.-C. Pinoli, “Logarithmic image processing,” Advances
In Imaging and Electron Physics, vol. 115, pp. 129–196, 2001.
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