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Abstract

A stereovision method is presented in this paper, to compute reliable and quasi-dense disparity maps of road scenes using
in-vehicle cameras. It combines the advantages of the "v-disparity" approach and a quasi-dense matching algorithm. In this aim,
road surface and vertical planes of the scene are first extracted using the sparse "v-disparity" approach. The knowledge of these
global surfaces of the scene is then used to guide a quasi-dense matching algorithm and to propagate disparity information on
horizontal edges. Both algorithms are presented and compared. Then, our approach is presented and examples of quasi-dense
disparity maps are given. Finally, the efficiency of the method is illustrated by the accurate positioning of a bounding box around
a vehicle in a bad contrasted video sequence.
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Road Scene Analysis by Stereovision:
a Robust and Quasi-Dense Approach

I. INTRODUCTION

Stereovision techniques aiming to analyse outdoor scenes
are numerous. Among them, some techniques are devoted to
in-vehicle obstacle detection [1]–[5]. Due to real-time con-
straints, most techniques rely on sparse matching techniques
to estimate depth maps of the scene. This type of techniques
poorly reconstruct the scene. Consequently, using a sparse
disparity map, a direct segmentation of the scene is hazardous.
To ensure a high rate of robustness, a solution is to use voting
techniques which have already shown good properties. That’s
why "v-disparity" approach [4] which enables to compute the
longitudinal road profile and to estimate the distance to objects
above the road surface has met a certain success and is now
widely used [6]–[8].

However, a generic and robust method based on stereovi-
sion, which provide an accurate lateral position of obstacles is
still missing. Indeed, using rectified images, sparse techniques
relying on horizontal gradients to match the stereo pairs
can not entirely reconstruct objets composed of both vertical
and horizontal gradients. Consequently, even using a robust
technique like a "u-disparity" approach, left and right sides of
obstacles are often disconnected leading to incomplete objects
segmentations.

A LIDAR is often used to fill this gap. Thus, combined
with a LIDAR which provide the lateral position of objects,
our system based on the "v-disparity" approach has proved
to be very efficient to detect near obstacles [9]. A collision
mitigation system has even been demonstrated with a great
success [10].

On the other hand, in the field of 3D reconstruction, some
techniques are devoted to the computation of dense disparity
maps. However most of these techniques are very costly to
implement.

Lhuilier [11] developed a quasi-dense matching algorithm,
which can be considered as a in between method. Its principle
is first to compute a sparse disparity map and then to perform a
region growing in the disparity space to progressively densify
the disparity map.

In this paper, we propose a method which allows to compute
a quasi-dense and reliable disparity map, combining the "v-
disparity" semi-global approach and the quasi-dense matching
algorithm. In the following, both methods are successively
described. Then, the proposed approach is presented and is
applied to the accurate estimate of the position of obstacles.
The techniques are illustrated by means of a bad contrasted
road sequence (foggy weather), because such weather con-
ditions are interesting to test the robustness of the different
methods.

II. THE "V-DISPARITY" APPROACH

A. The Image of a Plane in the "v-disparity" Image

The stereovision algorithm uses the "v-disparity" transform,
in which the detection of straight lines is equivalent to the
detection of planes in the scene. In this aim, we represent the
v coordinate of a pixel towards the disparity ∆ (performing
accumulation from the disparity map along scanning lines)
and detect straight lines and curves in this "v-disparity" image
(denoted by Iv∆ ) [4].

This algorithm assumes the road scene is composed of set
of planes: obstacles are modelized as vertical planes, whereas
the road is supposed to be an horizontal plane (when it is
planar), or a set of oblique planes (when it is not planar), as
shown in Fig. 1.

According to the modeling of the stereo sensor given in
Fig. 1, the plane of equation Z = d, corresponding to a vertical
object, is projected along the straight line of Eq. (1) in Iv∆ :

∆ =
b

d
(v − v0) sin θ +

b

d
α cos θ (1)

The plane of equation Y = 0, corresponding to the road
surface, is projected along the straight line of Eq. (2) in Iv∆ :

∆ =
b

h
(v − v0) cos θ +

b

h
α sin θ (2)

The different parameters are as follows: (u, v) denotes the
position of a point in the image, (u0, v0) is the projection of
the optical center in the image, α is the ratio between the focal
length and the size of pixels, θ is the angle between the optical
axis of the cameras and the horizontal, h is the height of the
cameras above the ground and b is the distance between the
cameras (i.e. the stereoscopic base). Mathematical details can
be found in [4].
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Fig. 1. Domain of validity of the study and coordinate systems used.
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Fig. 2. Overview of the "v-disparity" framework using a stereo pair under
foggy weather. (a) Left original image; (b) right original image; (c) rough
disparity map computed from images (a) and (b); (d) "v-disparity" image; (e)
extracted lines from the "v-disparity" image.

B. "V-disparity" Image Construction and 3D Surface Extrac-
tion

The algorithm performs a robust extraction of these planes
from which it deduces many useful information about the road
and the obstacles located on its surface. Fig. 2 illustrates the
outline of the process. From two stereo images (a) and (b), a
disparity map I∆ (c) is computed (Sum of Square Differences
-SSD- criteria is used for this purpose along edges). The
disparity values are represented by a grey level. Then an
accumulative projection of this disparity map is performed to
build the "v-disparity" image Iv∆ (d). For the image line i, the
abscissa uM of a point M in Iv∆ corresponds to the disparity
∆M and its grey level iM to the number of points with the
same disparity ∆M on the line i : iM =

∑
P∈I∆

δvP ,iδ∆P,∆M

where δi,j denotes the Kronecker delta.
From this "v-disparity" image, a robust extraction of straight

lines is performed through a Hough transform. This extraction
of straight lines (e) is equivalent to the extraction of the planes
of interest taken into account in the modelization of the road
scene.

C. Disparity Map Improvement
In order to quickly compute the "v-disparity" image, a

sparse and rough disparity map has been built. This disparity
map may contain numerous false matches, which prevents
us to use it as a depth map of the environment. Thanks to
the global surfaces extracted from the "v-disparity" image,
false matches can be partially removed. In this aim, we check
wether a pixel of the disparity map belongs to any global
surface extracted using the same matching process. If it is
the case, the same disparity value is mapped to the pixel and
leads to Fig. 3a. Obstacles areas, that is to say objects above
the road surface, can be deduced using the same matching
process. This leads to Fig. 3b. Details of this process can be
found in [12].

� � � � � �
Fig. 3. (a) Improved disparity map (b) Results of obstacles areas detection.

D. Lateral Position of Obstacles

In-vehicle stereovision approaches usually use a rectified
geometry, in order to minimize the computational cost. Indeed,
using such a configuration, matches are on same line of the
stereo pair. Hence, sparse techniques rely only on horizontal
gradients to match the stereo pairs. The disadvantage of this
sensor configuration is that disparity can not be computed on
horizontal edges. In this way, we can not entirely reconstruct
objets composed of both vertical and horizontal gradients, like
the backside of a vehicle for example.

To solve the problem, some solutions have been proposed
using symmetry [13]. However, such a method is not generic.
Labayrade [14] proposed to perform an accumulative projec-
tion of this disparity map along the horizontal axis, in order
to build a "u-disparity" image Iu∆. Unfortunately, even using
a robust technique like "u-disparity", left and right sides of
obstacles are often disconnected leading to incomplete objects
segmentations.

This problem is illustrated in Fig. 4. In this figure, we
present two images of a test video sequence and the cor-
responding "u-disparity" images. The horizontal segments,
which correspond to the projection of the vehicle have some
holes. Hence, if we detect the different segments in order
to position a bounding box around the vehicle, this lead to
incomplete segmentations, which is problematic.

In the following, we are going to propose a solution based
on a quasi-dense matching algorithm to densify the disparity
map and solve this problem.

III. THE QUASI-DENSE MATCHING APPROACH

Lhuilier [11] developed a quasi-dense matching algorithm.
Its principle is first to compute a sparse disparity map and
then to perform a region growing in the disparity space to
progressively densify the disparity map.

A. Seed selection

The first step of the algorithm is the computation of a sparse
disparity map using the ZNCC correlation measure:

∑
i

(
I(x + i)− Ī(x)

)(
I ′(x + ∆ + i)− Ī ′(x + ∆)

)
√∑

i

(
I(x + i)− Ī(x)

)2 ∑
i

(
I ′(x + ∆ + i)− Ī ′(x + ∆)

)2

(3)
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Fig. 4. (a)(c) Results of "u-disparity" image Iu∆ computations using only
vertical edges; (b)(d)left and right sides of the vehicle are disconnected and
lead to incomplete bounding boxes.

where Ī(x) and Ī ′ are the means of pixel intensities for
the window centered at x and ∆ is the considered shift. A
cross correlation is then used to reduce the number of false
matchings.

B. Propagation

The idea consists in propagating the initial seeds in a way
similar to a region growing, guided not by a criterion of
homogeneity but by a score of correlation. All seed matches
are the starting point of concurrent propagations. At each
stage, a match (a,A) with the best ZNCC score is removed
from the current set of seed matches. Then new matches are
searched in the "match neighborhood" and are added to the
current set of seeds and to the set of accepted matches. The
neighbors of pixels a and A are taken to be all pixels within
the 5 × 5 window centered at a and A (cf. Fig. 5). For
each neighboring pixel in the first image, the possible match
candidates are all pixels of a 3×3 window in the neighborhood
of its corresponding location in the second image. One thus
incites the gradient of displacements not to exceed a pixel.

Lhuillier also defines s(x) = max{|I(x + ∆) − I(x)|∆ ∈
N4(x)}, an estimate of the luminance roughness for the pixel
at x, which is used to stop propagation into insufficiently
textured areas a with s(a) < t and 0 ≤ I(a) ≤ 1. I(a)
denotes the normalized intensity value for the pixel at a of
image I . A typical value for t is 0.01.

C. Application to Road Scene Analysis

Compared to classical stereo images, typical road images are
textureless, especially when the road scene is bad contrasted
like under foggy weather. To prove it, we compared the
roughness of two images. Fig. 6a is our bad contrasted road

a

c

b B

A

C

Neighborhood of pixel a in I1 Neighborhood of pixel A in I2

a

c

b

a

c

b B

A

C

B

A

C

Neighborhood of pixel a in I1 Neighborhood of pixel A in I2

Fig. 5. Definition of neighborhood N(a, A) of pixel match (a, A). It is a
set of matches included in the two 5 × 5-neighborhood N5(a) and N5(A)
of pixels a and A. Possible matches for b (resp. C) are in the 3 × 3 black
frame centered at B (resp. c).

image under foggy weather. Fig. 6b is a classical image in
computer vision and is used by Lhuillier [11] to illustrate his
algorithm. The areas, where pixels are low textured (0 < t <
0.05) and very low textured (0 < t < 0.01), are respectively
given in white in Figs. 6cd and Figs. 6ef. We can see in it
that the road surface is very low textured compared to the
classical image. Consequently, the propagation will be quickly
stopped on low textured areas and it will be difficult to recover
disparity information on the entire road surface.

We have applied the quasi-dense matching algorithm to
our bad contrasted stereo pair. The idea is first to compute
a quasi-dense disparity map and thereafter to compute the
"v-disparity" image, so as detect the road surface and the
obstacles.

Thus, Fig. 7 gives different results of disparity map com-
putations using different values of t. The corresponding "v-
disparity" images are also given. We can state that if the
threshold t is too low, too much correlated matching errors
occur and prevent us to accurately detect the global surface of
the image using the "v-disparity" approach.

Indeed, in Fig. 7d, the straight lines corresponding to
the road shape and the vertical plane of the vehicle can
be detected, because correlated matching errors are not too
numerous in Fig. 7a. On the contrary, in Fig. 7e and Fig. 7f,
the straight line corresponding to the road surface and the
vertical segment are too thick to be accurately detected.

Finally, whereas the quasi-dense matching algorithm en-
ables to propagate disparity on horizontal edges, this exper-
iment shows that it is not adapted to compute a reliable
disparity map of a road scene.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6. Comparison of roughness of (a) our road image under foggy weather;
(b) image used by Lhuillier; (c)(d) white pixels x where 0 < s(x) < 0.05;
(e)(f) white pixels x where 0 < s(x) < 0.01.
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Fig. 7. Results of the quasi-dense matching algorithm on our test images
for different values of t: (a) t = 0.05, (b) t = 0.02, (c) t = 0.01.
(d)(e)(f) corresponding "v-disparity" images. When the threshold t is lowered,
numerous correlated errors appear and straight lines in the "v-disparity" image
get thicker.

IV. ROBUST AND QUASI-DENSE APPROACH

A. Problem Statement

On one hand, the "v-disparity" approach is quite robust,
thanks to the accumulation technique used. So far, the method,
which rely only on horizontal gradients to match the stereo
pairs, can not compute the disparity on the horizontal edges.
On the other hand, the quasi-dense matching algorithm allows
to propagate disparity information on both vertical and hor-
izontal edges. However, it is difficult to obtain a dense and
accurate disparity information on the road surface, because
it is textureless (Fig. 6). The threshold s which stops the
propagation can be lowered. Unfortunately, this leads to cor-
related errors. Thus, the road shape in the "v-disparity" image
is thicker, like the vertical objects. Road shape and obstacles
can not be accurately detected (cf. Fig. 7ef).

B. Computation of a Reliable and Quasi-Dense Disparity Map

To compute a better disparity map, we then propose to use
the advantages of both previously described methods. We use
the "v-disparity" approach to estimate the longitudinal profile
of the road and to detect the presence of obstacles. The quasi-
dense matching algorithm is used to propagate the disparity
information along the horizontal edges.

Thus, seed matches of the quasi-dense matching algorithm
are used to compute the "v-disparity" image, in order to extract
the road surface and the positions of the different vertical
planes of the scene. Then, we propagate the initial seeds like
Lhuillier does [11], except that for each match candidate we
check if it belongs to one of the planes of the "v-disparity"
image. If it is the case, the match candidate is added to the
current set of seeds and to the current set of accepted matches,

which is under construction. Otherwise, the match candidate
is removed from the current set of seeds.

Compared to the previous section, the propagation is done
after the computation of the "v-disparity" image. Because the
computation of this image rely on the matches of vertical
edges, its computation is robust as well.

In this way, we add a global constraint to the quasi-dense
matching algorithm. Thus, the number of correlated errors is
drastically reduced and the number of pixels belonging to a
global surface with known disparity is increased. Disparity
information can be propagated along the horizontal edges
without changing the estimated geometry of the scene.

C. Results

This method is illustrated in Fig. 8 for different values
of the threshold t. Reconstructed "v-disparity" images are
given. Contrary to Fig. 7, the number of matching errors is
reduced and dense disparity information is obtained on the
road surface. Reconstructed "v-disparity" images are good
and do not differ if the threshold t is lowered. However, as
previously said, disparity information in front of the vehicle
is difficult to obtain because the image is very low textured
(cf. Fig. 6f). There are remaining matching errors due to half
occluded contours. However, numerous methods are devoted
to the detection of such contours [15].

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 8. Results of our method on our test images for different values of
t: (a) t = 0.05, (b) t = 0.02, (c) t = 0.01, (d) t = 0.001. (e)(f)(g)(h)
Corresponding "v-disparity" images.
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V. APPLICATION TO THE LATERAL POSITION OF
OBSTACLES

Once we have a quasi-dense disparity map, we can use it to
detect the lateral position of obstacles and compare the results
with those presented in paragraph II-D.

A. Robust "u-disparity" Image Computation
Thanks to the proposed method, the disparity map is quasi-

dense, especially on the vertical objects, like on the vehicle of
our test image. We can now compute a quasi-dense and reliable
"u-disparity" image. A sample is given in Fig.9b. Compared
with Fig. 4, the obtained "u-disparity" image is much better,
because vertical and horizontal edges are taken into account
to compute it. Consequently, the lateral segmentation of the
object is easier.

B. Computation of a Bounding Box around Objects
To position an accurate bounding box around an object, we

need three parameters: the longitudinal position, the height and
the lateral position of this object. The longitudinal position of
objects is given by the vertical plane in the "v-disparity" image.
The height is also computed thanks to the "v-disparity" image.
Details can be found in [14].

The lateral position is given by the "u-disparity" image.
Indeed, it is enough to detect the horizontal segment, which
is now quasi-dense, to ensure a good detection of the lateral
position of the vertical objects. Finally a good positioning of
the bounding boxes can be made, like in Fig. 9. Thus, using
this approach, the risk that the same object is split into different
bounding boxes is reduced.

C. Results
Our method has been tested using a bad contrasted video

sequence, where a vehicle is moving away. In Fig. 10, we give
some samples of this video sequence. Although the vehicle is
bad contrasted, the bounding box is correctly positioned, even
when the vehicle is quite far away.

We have also applied our technique to other type of scenes.
In Figs. 11ab, we present some results with a pedestrian and
a vehicle. In Figs. 11cd, we present some results with two
cars on a paved road, where classical disparity maps usually
contain a lot of false matches.

VI. CONCLUSION

In this paper, we present a stereovision based technique,
which enables to compute a quasi-dense and reliable disparity
map of road scenes. The method has the advantages of the "v-
disparity" approach and of a quasi-dense matching algorithm,
which allows us to propagate disparity information along
horizontal edges. The three different approaches are compared
and the robustness of our approach is demonstrated through
use of a bad contrasted video sequence under foggy weather.
Finally, this technique allows us to compute a quasi-dense "u-
disparity" image, which leads to a generic and robust method
to detect the lateral position of vertical objects. In the future,
we would like to use this disparity map in other applications,
such as contrast restoration.

S=0.01 Hautiere

(b)

(a)(c)

Fig. 9. Result of (a) "v-disparity" image (b) "u-disparity" image computations
using our modified quasi-dense matching algorithm. (c) This leads to the
computation of robust and precise bounding boxes around obstacles without
any arbitrary thresholds.
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