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Abstract

This paper presents a technique, which determines
whether an edge is visible for a human eye or not. First,
a threshold function is built according to the optical char-
acteristics of the sensor and a contrast sensitivity function
(CSF). Then, the DCT coefficients of each 8 × 8 block are
computed. For each one, the computed spectrum is com-
pared with the previous threshold function, which enables
to conclude about the presence of visible picture elements.
Finally, this information is applied to edges detection us-
ing a binarization technique. Results are given on images
grabbed onboard a moving vehicle.

1. Introduction

Edge detection is a classical problem in computer vision.
Different reviews of work on edge detection are for a long
time available in the literature [11, 14]. Gradient magnitude
[12], optimality criteria [4], zero-crossing [7] are among the
most used techniques. However, a problem faced by edge
detectors is the choice of relevant threshold values, which
are often empirically chosen. In order to automatically find
the best threshold, standardizations of gradient magnitudes
according to the surrounding pixels have been proposed. In
this aim, statistical approaches have been developed [13].
Otherwise, approaches inspired by the human visual system
(HVS) characteristics have been tested [1, 10]. Actually,
our method belongs to this family.

In this paper, we propose a technique based on the con-
trast sensitivity function (CSF) of a human eye [2] to au-
tomatically find visible edges in images. In this aim, we
compute the angular resolution of the device used to grab
the pictures using its optical characteristics. Then, a con-
trast threshold function is built by taking into account the
angular resolution of the sensor and a classical model of
CSF. We compute the algebraic area between the previous
threshold function and the DCT coefficients of each 8 × 8
block of pixels to determine wether it is visible or not. This
information is finally applied to edges detection in outdoor

images. The use of a CSF has been earlier proposed for in-
vehicle visibility evaluation [16]. However, this approach
does not take the optical characteristics of the sensor into
account, which is problematic.

2 Angular Resolution of a Camera

In this section, we compute the angular resolution of a
CCD camera, which will be expressed in cycles per degree
(cpd). This unit is used to measure how well details of an
object can be seen separately without being blurry. This is
the number of lines that can be distinguished in a degree of
a visual field. The first section presents a geometric model
of the camera. The second section presents the link between
the aperture of the camera and its resolution.
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Figure 1. Geometric camera model to com-
pute its angular resolution. Parameters : f
focal length, C optical center.

2.1 Geometrical optics based model

With the notations of Fig. 1, the length d for a visual
field θ of one degree is expressed by d = 2f tan θ

2 . To
obtain the maximum angular resolution of the camera r∗cpd,
it is enough to divide d by the size tpix of two pixels (black
and white alternation) of the CCD array:

r∗cpd =
f

tpix
tan

θ

2
(1)
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2.2 Wave optics based model

2.2.1 Diffraction and Airy spot

We now model the camera by the set (camera objective and
sensor) described on Fig. 2. The objective is composed of
both a lens of focal f and a diaphragm of diameter D. If we
consider an objet placed at the infinite, its image is projected
on the focal plane of the objective.
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Figure 2. Simplified optical model of a cam-
era

However, the consequence of the undulatory nature of
light is the diffraction phenomena [8], that is to say the im-
age of a point by a perfect optical system is not a point but
an Airy spot of diameter ε, expressed by:

ε = 2, 44 × λf

D
(2)

where λ is the wavelength of the light. Generally, objectives
are characterized by their aperture number N , expressed by:

N =
f

D
(3)

Consequently, ε can be written as:

ε = 2.44 × λ.N (4)

2.2.2 Effects on the camera resolution

On a CCD array, where the size of the pixels is tpix, two
situations can arise:

1. ε ≤ tpix. The Airy spot is smaller than the pixels. The
resolution of the camera is r∗cpd, given on Eq. 1.

2. ε > tpix. The resolution of the camera is now:

rcpd =
f

ε
tan

θ

2
=

tpix

2.44λN
r∗cpd (5)

2.3 Application to our camera

Our camera is a CCD 1/2" (tpix= 8.3 µm) equipped with
an auto-iris objective 8.5 mm allowing N ∈ [1.3, 360]. On
Fig. 3, we plot its resolution with respect to the aperture
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Figure 3. Evolution of the angular resolution
(cpd) of our camera according to its aperture
number N .

number. For this figure, we consider a wavelength λ cen-
tered in the visible spectrum [0.4 µm , 0.8 µm], that is to
say 0.6 µm.

In this section, we modeled the angular resolution of the
camera according to its geometric model and the diffraction
phenomena. A more complete model could also take into
account the noise and the depth of field.

3 Human Vision System Modeling

In the previous section, we studied the angular resolution
of a CCD camera. Let’s now study some characteristics of
the Human Visual System (HVS).

It is remarkable that our ability to discern low contrast
patterns varies with the size of the pattern, that is to say
its spatial frequency, which is often expressed in cycle per
degrees (cpd). The Contrast Threshold Function (CTF) is
a measure of the minimum contrast needed for an object to
become visible. This CTF is defined as 1/CSF, where CSF is
a Contrast Sensitivity Function. Several CSF models have
been proposed in the literature. We chose the widely ac-
cepted CSF of Mannos [6], plotted on Fig. 4 and expressed
by:

CSF (f) = 2.6(0.0192 + 0.114f)e−(0.114f)1.1
(6)

4 Design of a Visibility Criteria

4.1 DCT transform

In this section, we design a method, which decides if a
block of pixels contains some "visible" edges for a human
eye. In this aim, we compare the spectrum of each block
with the minimum required to be visible by a human eye.

We use the discrete cosinus transform (DCT) to trans-
form the image from the spatial domain to the frequency

2
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Figure 4. CSF (—) and CTF (– –) of the Human
Visual System, proposed by Mannos [6].

domain. We denote A = {aij}, a block of the original
image and B = {bij}, the corresponding block in the trans-
formed image. With these notations, the bij coefficients are
expressed by:

bij =
2
n

cicj

n−1∑
k=0

n−1∑
l=0

cos

[
(2k + 1)iπ

2n

]
cos

[
(2l + 1)jπ

2n

]
akl

(7)
where c0 = 1/

√
2, ci = 1 for i = 1. . . n-1 and n denotes

the block size. Like for JPEG format [15], we have chosen
n = 8.

Then, to convert the DCT coefficients in cycles per de-
grees, we simply consider that the maximum frequency of
the DCT transform, i.e. a spatial period of two pixels, is
obtained for the maximum resolution of the sensor, that is
to say r∗cpd. Thus, with (7) and (1), we have:

2tpix =
4n

2n − 1
(8)

r∗cpd =
2(2n − 1)

4n
f tan

θ

2
(9)

Thanks to (9), we are now able to convert the DCT co-
efficients {bij} of a block B to cycles per degree and then
to plot the DCT coefficients of a block with respect to the
corresponding values of the CTF.

4.2 Visibility criteria

To decide wether a block is visible or not, we propose
to compute the algebraic area Ā between the spectra of the
block and the CTF given in section 3. However, the sensor
is not always able to reproduce all the frequencies of the
CTF model. Consequently, the CTF must be restricted to
the angular resolution of the sensor, that is to say rcpd. Thus,
the proposed criteria is:

Ā =
∫

R
∗
+

(
B|f<rcpd

− CTF|f<rcpd

)
df (10)

=

(n∗−1,
n∗−1)∑

(i,j) �=(0,0)

(
bij − CTFij

)
(11)

Figure 5. Illustration of the proposed visibility
criteria. When the block is visible, the gray
level of the block is proportionnal to Ā.

where n∗ =
⌊

1
2

[
(2n − 1) rcpd

r∗
cpd

− 1
]⌋

is obtained thanks to

(7) and (9). We denote �x� the integer part of x.
Finally, if Ā is positive, the block is considered to be vis-

ible. In the contrary case, the block is supposed to contain
no visible information. We applied this criteria on sample
images on Fig. 5. If Ā is positive, the gray level of the
blocks is directly proportional to this value.

5 Application to Edges Detection

Once we know in which blocks there is some visible pic-
ture elements, we can detect the visible edges. However,
this must be achieved without adding an arbitrary threshold,
for example on the magnitude of the gradient. That’s why
we propose to find the border which maximizes the contrast
between two parts of a block, without adding a threshold on
this contrast value. The edges will then be the pixels on this
border.

We proposed to use Köhler’s approach [5], which is quite
efficient and relies on spatial information. Let I be a gray
level image. A couple of pixels (x,x1) is said to be separated
by the threshold s if two conditions are met. First, x1 ∈
V4(x). Secondly, the condition (12) is respected:

min(I(x), I(x1)) ≤ s < max(I(x), I(x1)) (12)

Let F (s) be the set of all couples (x, x1) separated by s.
With these definitions, for every value of s belonging to
[0,255], F (s) is built. For every couple belonging to F (s),
the contrast Cx,x1(s) is computed:

Cx,x1(s) = min
(|s − I(x)|, |s − I(x1)|

)
(13)
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The mean contrast (14) associated to F (s) is then per-
formed:

C(s) =
1

card(F (s))

∑
(x,x1)∈F (s)

Cx,x1(s) (14)

The best threshold s0 verifies the following condition:

s0 = argmax
s∈[0,255]

C(s) (15)

s0 is the threshold which has the best mean contrast along
the associated border F (s0), which becomes the set of vis-
ible edges. This algorithm can be directly applied to the
visible blocks. Examples of such edges detection are given
on Fig. 6.

Figure 6. Edges detected on our sample im-
ages using Köhler’s technique on the visible
blocks.

6 Discussion

The results obtained with the method are quite good.
However, some improvements are possible. Firstly, by
thresholding the 8 × 8 blocks by Köhler’s method, we im-
plicitly assume that there is only one object in the block.
One could recursively implement the method in each block.
Secondly, the size 8 × 8 of the blocks can be increased to
16× 16 to improve the sensitivity of the method. However,
these improvements have a high computational cost.

In addition, other models of CSF could be used, like the
ones proposed in [9] or [3].

7 Conclusion

In this paper, we have proposed a method to detect the
visible edges in a digital image. We have first built a model
of the resolution of a CCD camera by taking into account its
geometric model and the effect of light diffusion. Knowing
the ability of this sensor to reproduce some given spatial fre-
quencies, the spectrum of blocks of our image are compared
with the required minimum for a human eye to be visible.
In this way, we have obtained visibility maps, where all vis-
ible blocks are highlighted. Finally, from this information
the visible edges are deduced by using a efficient binariza-
tion technique.
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