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Real-Time Disparity Contrast Combination for
Onboard Estimation of the Visibility Distance

Nicolas Hautière, Raphaël Labayrade, and Didier Aubert

Abstract—An atmospheric visibility measurement system capa-
ble of quantifying the most common operating range of onboard
exteroceptive sensors is a key parameter in the creation of driving
assistance systems. This information is then utilized to adapt
sensor operations and processing or to alert the driver that his on-
board assistance system is momentarily inoperative. Moreover, a
system capable of either detecting the presence of fog or estimating
visibility distances constitutes in itself a driving assistance. In this
paper, the authors present a technique to estimate the mobilized
visibility distance through a use of onboard charge-coupled device
cameras. The latter represents the distance to the most distant
object on the road surface having a contrast above 5%. This
definition is very close to the definition of the meteorological
visibility distance proposed by the International Commission on
Illumination. The method combines the computations of local
contrasts above 5% and of a depth map of the vehicle environment
using stereovision within 60 ms on a current-day computer. In
this paper, both methods are described separately. Then, their
combination is detailed. The method is operative night and day
in every kind of meteorological condition and is evaluated; thanks
to video sequences under sunny weather and foggy weather.

Index Terms—Charge coupled devices camera, contrast im-
pairment, driving assistance, fog, meteorological visibility,
stereovision.

I. INTRODUCTION

P ERCEPTION sensors (cameras, laser, radar, etc.) are being
introduced into certain vehicles. These sensors have been

designed to operate within a wide range of situations and
conditions (weather, luminosity, etc.) with a prescribed set of
variation thresholds. Effectively detecting when a given operat-
ing threshold has been surpassed constitutes a key parameter in
the creation of driving assistance systems that meet the required
reliability levels. With this context in mind, an atmospheric
visibility measurement system may be capable of quantifying
the most common operating range of onboard exteroceptive
sensors. This information is then utilized to adapt sensor oper-
ations and processing, to automate tasks such as turning on fog
lamps or alert the driver that his onboard assistance system is
momentarily inoperative. Moreover, a system capable of either
detecting the presence of fog or estimating visibility distances
constitutes, in itself, driving assistance. Indeed, during foggy
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weather, humans actually tend to overestimate visibility dis-
tances [1], which can lead to excessive driving speeds.

Koschmieder’s law [2] models the fog effects on the at-
mospheric visibility. One of its parameters is the extinction
coefficient k of fog. This parameter is strongly related to the
meteorological visibility distance suggested by the Interna-
tional Commission on Illumination (CIE). Thus, we developed
a technique estimating k [3]. However, in order to cover more
situations, that is, solely daytime foggy weather, we have
developed a more generic approach, which is the topic of this
paper. Thus, we estimate the greatest distance at which a picture
element on the road surface is visible. We called it the mobilized
visibility distance. We will see that this concept is close to the
meteorological visibility. Then, to estimate this distance, we
must carry out two tasks. First, we have to compute contrasts
higher than a given threshold in the image. Then, we need to
compute a depth map of the vehicle environment. Finally, we
have to combine both.

II. CURRENT STATE OF KNOWLEDGE

In this section, we present Koschmieder’s model, on which
our work is based. Then, we describe quickly what exists in the
literature.

A. Koschmieder’s Model

In 1924, Koschmieder [2] proposed his theory on the appar-
ent luminance of objects observed against background sky on
the horizon. In noting that a distant object winds up blending
in with the sky, he established a simple relationship between
the distance d of an object with intrinsic luminance Lo and its
apparent luminance L as follows:

L = Loe
−kd + Lf (1 − e−kd) (1)

where Lf denotes the luminance of the sky, and k the extinction
coefficient of the atmosphere.

Based on these results, Duntley [2] derived an attenuation
law of atmospheric contrasts

C = Coe
−kd (2)

where C designates the apparent contrast at distance d and Co

the intrinsic contrast of the object against its background.
This law is only applicable in the case of uniform illumina-

tion of the atmosphere. In order for the object to be just barely
visible, the value of C must equal the contrast threshold ε. From
a practical standpoint, the CIE [2] has adopted an average value
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of ε = 0.05 for the contrast threshold so as to define a conven-
tional distance called the “meteorological visibility distance”
Vmet, i.e., the greatest distance at which a black object (Co = 1)
of a suitable dimension can be seen in the sky on the horizon

Vmet = −1
k

ln(0.05) � 3
k
. (3)

B. Visibility Distance Estimation Through a Use of a Camera

The use of a camera to estimate the visibility distance has
only received minimal attention in literature. Most relevant ap-
proaches employ a camera fastened to the road structure, which
simplifies the measurement operation given that a reference
image is always available. Bush and Debes [4] relied upon
a fixed camera placed above the roadway for the purpose of
measuring visibility distances.

Systems that entail a use of an onboard camera, however,
are encountered much less frequently. Pomerleau [5] estimated
visibility by means of measuring a contrast attenuation per
meter on the road markings at various distances in front of
a moving vehicle. Instead of estimating a contrast attenuation
per meter, he could have estimated the meteorological visibility
distance. Owing to (1), we know Lm (road luminance) and LM

(road marking luminance) variations according to the distance
to the camera. By taking two distances d1 and d2, k could be
expressed as follows:

k =
1

d2 − d1
ln
(
LM1 − Lm1

LM2 − Lm2

)
. (4)

Finally, we could obtain the meteorological visibility distance

Vmet = 3
d2 − d1

ln
(

LM1−Lm1
LM2−Lm2

) . (5)

However, this approach, based on the “RALPH” system [5],
requires the presence and detection of road markings in order
to proceed.

Yahiaoui and Da Silva Dias [6] estimate the quality of im-
ages for the human eye by comparing the modulation transfer
function of current images to the contrast sensibility function
from Mannos and Sakrison [7] but only returns a potential
visibility distance.

In [3], Hautière and Aubert succeed to instantiate Kosch-
mieder’s model and then to estimate the meteorological visibil-
ity distance. This method, when its operation assumptions are
met, lead to good results under daytime foggy weather.

III. GENERIC METHOD PROPOSAL

A. Mobilized Visibility Distance

For the CIE, the meteorological visibility distance is the
greatest distance at which a black object of a suitable dimension
can be seen in the sky on the horizon. We have decided to build
a method that is close to this definition. In this aim, we propose
to study the distance to the most distant object having enough
contrast with respect to its background.

Fig. 1. Examples of mobilized and mobilizable visibility distances. The
mobilized visibility distance Vmob is the distance to the most distant visible
object existing on the road surface. The mobilizable visibility distance Vmax is
the greatest distance at which a potential object on the road surface would be
visible.

In Fig. 1, we represent a simplified road with dash road mark-
ing. In Fig. 1(a), we suppose that the most distant visible object
is the extremity of the last road marking (it could have been
the border of the road too). In Fig. 1(b), the vehicle has moved
and a new road marking is now visible. We call this distance
to the most distant visible object, which depends on the road
scene, the mobilized visibility distance Vmob. This distance has
to be compared to the mobilizable visibility distance Vmax. This
is the greatest distance at which a picture element on the road
surface would be visible.

Consequently, we have the following relationship:

Vmax ≥ Vmob. (6)

B. Mobilizable Visibility Distance

In this section, we are going to establish the link between the
mobilizable visibility distance and the meteorological visibility
distance. The mobilized visibility distance is the distance to the
most distant object W considered as visible. We denote Lbo and
Lwo the intrinsic luminances and Lb and Lw the luminances at
the distance d of the road B and the object W .

Koschmieder’s law gives us the theoretical variations of these
values according to the distance d. Let us express the contrast
CBW of W with respect to B like Weber does (15):

CBW =
∆L

L
=

(Lwo − Lbo) e
−kd

Lboe
−kd + Lf (1 − e−kd)

. (7)

We deduce the expression of d according to the photometric
parameters, the contrast CBW , and the fog density k:

d = −1
k

ln
(

CBWLf

Lwo − Lbo + CBW (Lf − Lbo)

)
. (8)
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That is to say the distance where an object W is perceived
with a contrast of CBW . Owing to (3), we can express this value
according to the meteorological visibility distance Vmet

d = −Vmet

3
ln
(

CBWLf

Lwo − Lbo + CBW (Lf − Lbo)

)
. (9)

Like CIE does, we can choose a threshold C̃BW below
where the object is considered as being not visible. Like for
the computation of the meteorological visibility distance, we
assume that the road intrinsic luminance is equal to zero. Then,
we define the mobilizable visibility distance Vmax valid for
every threshold contrast

Vmax = max
Lwo∈]0,M ]

−Vmet

3
ln

(
C̃BWLf

Lwo + C̃BWLf

)
. (10)

The energy received by the object W is not entirely re-
flected toward the camera. Consequently, we have the following
relationship:

Lwo ≤ Lf . (11)

We deduce the value of Vmax

Vmax = −Vmet

3
ln

(
C̃BW

1 + C̃BW

)
. (12)

Then, we easily obtain the value C̃BW so that Vmax = Vmet

C̃BW =
1

e3 − 1
≈ 5%. (13)

Therefore, by choosing a contrast threshold C̃BW of 5%, the
mobilizable visibility distance is close to the meteorological
visibility distance Vmet for a black object.

Actually, the road is never black and the sky rarely white.
The mobilizable visibility distance represents a maximum of
visibility distance rarely reachable, since it is the greatest
distance at which the clearest object is visible on a black road.
On the other hand, the mobilized visibility distance, which only
takes into account the gray objects encountered in the image, is
the distance that we are able to estimate directly. This distance
is precisely the one we want to estimate in this paper.

C. Proposed Method

In Section III-A, we have introduced the concepts of mo-
bilized and mobilizable visibility distances. Whereas the first
one depends on the road scene, the second one only depends
on the meteorological conditions. Then, in Section III-B, we
established the link between the meteorological visibility dis-
tance defined by the CIE and the mobilizable visibility distance
previously defined. In particular, we calculated the contrast
threshold so that both distances are the same, that is, to say 5%.
Consequently, we propose to estimate the mobilized visibility
distance by estimating the distance to the most distant object
on the road surface having a contrast above 5%. This method is
decomposed in two tasks. The first one consists of computing

the contrasts in the image and selecting the ones above 5%.
The second one is the depth computation of the detected picture
elements and the selection of the most distant one.

IV. COMPUTATION OF LOCAL CONTRASTS ABOVE 5%

The method to develop has to be accurate, since it must only
detect contrasts above or equal to 5%. Then, it has to go fast
because the application must be performed in real time on a
moving vehicle, but also be robust to the noise present in the
image. Finally, it has to be adapted to the contrast definition
used by the CIE to define the meteorological visibility distance.

Moreover, our work is based on the assumption that the
conversion process between incident energy on the charge-
coupled device (CCD) sensor and the grey level value in the
image is linear, which is generally the case for short exposure
times. In fact, we use short exposure times on our onboard
cameras, so as to reduce the motion blur. Consequently, our
assumption can be considered as valid.

In this part, we present first the literature on contrast mea-
surement. Then, we focus on our technique and explain why it
is well fitted to our objectives.

A. Related Work

Different definitions of the contrast exist. One of the most
famous is Michelson’s contrast [7]. It has been introduced to
quantify the visibility of sinusoidal gratings

CM =
Lmax − Lmin

Lmax + Lmin
. (14)

where Lmin and Lmax are the minimal and maximum lumi-
nance values of the image. The use of sinusoidal gratings
and of this contrast definition has met a great success in psy-
chophysics. In particular, it has been used to study the human
eye by building contrast sensitivity functions (CSF).

Weber [7] defined the contrast as being a relative luminance
variation ∆L with respect to the background L. This has been
used to measure the visibility of targets

CW =
∆L

L
. (15)

This contrast definition is sometimes called psychophysical
contrast and is used in the definition of the meteorological
visibility distance.

These definitions are good estimators of contrast for the
stimuli previously mentioned: sinusoïdal gratings for Michel-
son, uniform targets for Weber. However, they are not well
adapted when the stimulus becomes more complex. Moreover,
none of these definitions are adapted to estimate the contrast in
natural images. This is mainly due to the fact that the contrast
perception is local. This is these local methods on which we
focused our attention.

In the image quality assessment field, other contrast defi-
nitions exist [7], [8]. Many of them try to model the human
vision by a contrast sensitivity function. However, in this case,
spatial frequency of the encountered objects in the image has
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Fig. 2. Images captured in the vehicle (a) under sunny weather, (b) under foggy weather, and (c) under dense foggy weather before nightfall. Examples of
computation of contrasts above 5% on the whole images (d) for image (a), (e) for image (b), and (f) for image (c).

to be known as well as their depth. Without hypothesis on the
scene structure, like a flat world (cf. [6]), such a modeling is
hazardous.

In their logarithmic image processing framework, Jourlin
and Pinoli [9] defined the logarithmic contrast available in
transmitted light between two pixels x and x1 of an image f .
They are among the first to define the concept of local contrast

Cx,x1(f) =
M |f(x) − f(x1)|

M − min (f(x), f(x1))
(16)

where M is the maximum gray value in the considered scale.
Gordon’s method [10] also defines the concept of local con-

trast. This method computes Michelson’s contrast between the
mean value of two concentric regions. Beghdadi [8] proposed
a method inspired from Gordon’s method. It takes into account
the mean value of the edges detected in the considered location.

On the opposite, methods that restore image contrast under
adverse weather conditions are much more encountered in lit-
erature. Unfortunately, they have all of them strong constraints
and, consequently, they cannot be installed onboard a moving
vehicle. Some techniques require prior information about the
scene (constant altitude) [11], while others require dedicated
hardware in order to estimate the weather conditions (diffu-
siometer, transmitiometer. . .). Some techniques rely only upon
the acquired images and exploit the atmospheric scattering to
obtain the range map of the scene [12], [13]. However, they
require weather conditions to change between image acquisi-
tions. Narasimhan and Nayar [12] proposed such an impressive
method. Otherwise, polarization filter techniques can be used to
reduce haziness in the image. Unfortunately, they require two
differently filtered images of the same scene. This is the case
for Schechner [14] who analyzed two filtered images taken in
adverse weather to compute scene structure and dehaze them.

B. Measuring the Contrast With Köhler’s
Thresholding Technique

We propose an original method, inspired from Köhler’s
technique, and we show why it is suitable to our situation.

1) Principle: Köhler’s technique [15] finds the threshold
that maximizes the contrast between two parts of the image.
Let f be a gray level image. A couple of pixels (x, x1) is said
to be separated by the threshold s if two conditions are met.
First, x1 ∈ V4(x). Second, we have

min (f(x), f(x1)) ≤ s < max (f(x), f(x1)) . (17)

Let F (s) be the set of all couples (x, x1) separated by s, such
as x ∈ V4(x1). With these definitions, for every value of s
belonging to [0,255[, F (s) is built. For every couple belonging
to F (s), the contrast Cx,x1(s) is calculated as

Cx,x1(s) = min (|s− f(x)| , |s− f(x1)|) . (18)

The mean contrast (19) associated to F (s) is then performed

C(s) =
1

card (F (s))

∑
(x,x1)∈F (s)

Cx,x1(s). (19)

The best threshold so respects the following condition:

C(so) = max
s∈[0,255[

C(s) (20)

where so is the threshold that has the best mean contrast along
the associated border F (so). Instead of using this method to
binarize images, we use it to measure the contrast locally.
The evaluated contrast is equal to 2C(so) along the associated
border F (so). Examples of contrast computations are shown in
Fig. 2.
2) Adaptation to the Logarithmic Contrast: The previous

method is suitable for different definitions of local contrast. We
only need to use the adequate definition in the place of (18). In
our case, we have chosen to estimate the logarithmic contrast
[9], which is also used by the CIE to define the meteorological
visibility distance. Thus, (18) becomes

Cx,x1(s) = min
( |s− f(x)|

max (s, f(x))
,

|s− f(x1)|
max (s, f(x1))

)
. (21)
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Fig. 3. Noise robustness of Köhler’s method adapted to the logarithmic contrast. One-dimensional edge modified by Gaussian noise (a) σ = 1 and (b) σ = 17.
The dotted line represents the optimal threshold found by the method. The mean contrast C(s) associated with each threshold value s is plotted for (c) σ = 1 and
(d) σ = 17.

For the Michelson contrast, Cx,x1 would be expressed in the
following way:

Cx,x1(s) = min
( |s− f(x)|

s + f(x)
,
|s− f(x1)|
s + f(x1)

)
. (22)

3) Noise Robustness: The method derived from Köhler is
robust to noise. We assume that the noise of the camera is
Gaussian. This assumption is confirmed in Section VI-B. Let
us consider two Gaussian distributions of means L1 and L2

and standard deviations σ1 and σ2. We can show that, as long
as both distributions are not intersected, the optimal threshold
so found by Köhler’s technique is a Gaussian distribution with
mean (L1 + L2)/2 and standard deviation (1/2)

√
σ2

1 + σ2
2 .

Consequently, the method is robust to noise, because in
average, the returned threshold is the one without noise at
the same distance of both distributions. This property is still
verified when using the local formula of logarithmic contrast.
Fig. 3 illustrates this property.

Fig. 3(a) and (b) has the same distributions with additive
Gaussian noise of standard deviation σ = 1 and σ = 17, re-
spectively. The optimal threshold found by Köhler’s technique,
which is represented by the horizontal dashed line, is the same
for both distributions. It is the one that gives the maximum
contrast [cf. Fig. 3(c) and (d)].

On the opposite, if both distributions are intersected, i.e.,
if max(3σ1, 3σ2) > (L2 − L1)/2, Köhler’s technique is no
longer so efficient.

4) Algorithm Improvements: From an algorithmic point
of view, the technique is rather expensive, in particular, the
computation of the border F (s) for each threshold of the gray
scale. A first improvement consists in decreasing the number
of thresholds considered by seeking the minimal and maximum
intensities. To compute F (s), the scanning of the computation
window is made from top to bottom and from left to the right.
Thus, to consider only the vicinity V ∗

4 (cf. Fig. 4) makes it
possible to take into account each couple of items only once,
reducing the computing time. We can also consider the vicinity
V ∗

8 . However, the tests carried out show that the difference is
tiny between the approaches V4 and V8. Taking into account
the saving of computing time in approach V4, we thus use the
vicinity V ∗

4 to carry out the scanning process. The last major
improvement consists in computing the images Ig

max, Ig
min,

Ih
max, and Ih

min before scanning the image I

Ig
max = {p ∈ I/p = max(p, pg)}
Ig
min = {p ∈ I/p = min(p, pg)}

Ih
max = {p ∈ I/p = max(p, ph)}
Ih
min = {p ∈ I/p = min(p, ph)}

where pg is the pixel on the left and ph the pixel above the
current pixel.

Thereafter, instead of computing the minimum and maxi-
mum to build the border, it is enough to look at the adequate
image. In this way, the method is much faster to carry out.
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Fig. 4. Different vicinities of a pixel. (a) V4, (b) V ∗
4 , (c) V8, and (d) V ∗

8 . In particular, V ∗
4 is the one we have chosen to compute the min–max images.

TABLE I
COMPUTATION TIME OF CONTRASTS ABOVE 5% ACCORDING TO FOURMODES : WITHOUT OPTIMIZATION, WITH MINIMIZATION OF THE NUMBER OF

THRESHOLDS CONSIDERED, WITH PRECALCULATION OF THE MIN-MAX IMAGES, AND WITH BOTH PRECEDING OPTIMIZATIONS.
THE RATIO BETWEEN THE COMPUTING TIME WITHOUT AND WITH IN C LANGUAGE

If one wishes to use a vicinity V ∗
8 , there are as many images

to precompute.
Table I shows the interest of algorithmic optimizations pre-

viously described. The computing time of contrasts above 5%
is given according to fourmodes: without optimization, with
minimization of the number of thresholds considered, with
precalculation of the min–max images, and with both preceding
optimizations. The ratio between the computing time without
and with optimization is given between brackets. The saving of
computation time is higher than ten times for the vicinity sizes
usually considered. The tests are carried out on an Intel Pentium
IV 2.4 GHz in C language without specific compilation. By
using compiler Intel C++ 8.0, the computing time is less than
350 ms.

V. ROBUST ESTIMATION OF PICTURE-ELEMENT DEPTH

A. Background

If just a single camera is used, we are unable to gain access to
the image depth. This problem can be overcome by adopting the
hypothesis of a flat world, which makes it possible to associate
a distance with each line of the image. However, the depth on
vertical objects is incorrect and is unknown without another
assumption. In a first approach, we can detect picture elements
belonging to the road surface. Techniques that search the road
surface are numerous. A first family of methods finds the road
surface by a segmentation process. Color segmentation [16] and
texture segmentation [17] are the main approaches. A second
family of methods finds the road surface by detection of its
edges [18]–[20].

Conversely, we can detect the objects above the road surface.
Some techniques are based on optic flow computation [21].
However, it is time consuming, and the main hypothesis is
not always verified (spatio-temporal luminous flow preserved).
Some methods rely on template matching [22] or local symme-
try [23] but are necessarily not generic.

In addition, techniques like depth from scattering [12], depth
from focus/defocus [24], and depth from shading [25] are not
adapted to our objectives.

If we use stereovision, we are not limited to the flat world
hypothesis, and we are able to gain access to the depth of nearly
every pixels in the image [26]. However, because of real-time
constraints, most approaches compute a sparse disparity map.
Our approach belongs to this family, because we only need
depth information where contrast is above 5%, that is, to say
on the edges. We present our approach in the next section.

B. “v-Disparity” Approach

1) Image of a Plane in the “v-Disparity” Image: The stere-
ovision algorithm uses the “v-disparity” transform, in which the
detection of straight lines is equivalent to the detection of planes
in the scene. In this aim, we represent the v coordinate of a
pixel toward the disparity ∆ (performing accumulation from
the disparity map along scanning lines) and detect straight lines
and curves in this “v-disparity” image (denoted by Iv∆) [27].

This algorithm assumes the road scene is composed of set of
planes: obstacles are modelized as vertical planes, whereas the
road is supposed to be a horizontal plane (when it is planar),
or a set of oblique planes (when it is not planar), as shown in
Fig. 5.

According to the modeling of the stereo sensor given in
Fig. 6, the plane of equation Z = d, corresponding to a vertical
object, is projected along the straight line of (23) in Iv∆

∆ =
b

d
(v − vo) sin θ +

b

d
α cos θ. (23)

The plane of equation Y = 0, corresponding to the road
surface, is projected along the straight line of (24) in Iv∆

∆ =
b

h
(v − vo) cos θ +

b

h
α sin θ. (24)
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Fig. 5. Domain of the validity of the study.

Fig. 6. (a) Stereo sensor and coordinate systems used, (b) cameras currently in use in the prototype cars of the LIVIC, and (c) calibration site on the test track at
Versailles Satory.

The different parameters are as follows: (u, v) denotes the
position of a point in the image, (uo, vo) is the projection of
the optical center in the image, α is the ratio between the focal
length and the size of pixels, θ is the angle between the optical
axis of the cameras and the horizontal, h is the height of the

cameras above the ground, and b is the distance between the
cameras (i.e., the stereoscopic base). Mathematical details can
be found in [27].
2) “V-Disparity” Image Construction and Three-

Dimensional (3-D) Surface Extraction: The algorithm



208 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 7, NO. 2, JUNE 2006

Fig. 7. Overview of the “v-disparity” framework. (a) Left original image; (b) right original image; (c) rough disparity map computed from images (a) and (b);
(d) “v-disparity” image; (e) extracted lines from the “v-disparity” image; and (f) improved disparity map.

performs a robust extraction of these planes from which it
deduces many useful information about the road and the
obstacles located on its surface. Fig. 7 illustrates the outline
of the process. From the two stereo images Fig. 7(a) and
(b), a disparity map I∆ Fig. 7(c) is computed (sum-of-
square-differences (SSD) criteria are used to this purpose
along edges). The disparity values are represented by a grey
level according to the corresponding scale given on the left.
Then, an accumulative projection of this disparity map is
performed to build the “v-disparity” image Iv∆ Fig. 7(d).
For the image line i, the abscissa uM of a point M in Iv∆

corresponds to the disparity ∆M and its grey level iM to
the number of points with the same disparity ∆M on the
line i : iM =

∑
P∈I∆

δvP ,iδ∆P,∆M
, where δi,j denotes the

Kronecker delta.
From this “v-disparity” image, a robust extraction of straight

lines is performed through a Hough transform. This extraction
of straight lines Fig. 7(e) is equivalent to the extraction of the
planes of interest taken into account in the modelization of the
road scene.
3) Disparity-Map Improvement: In order to quickly com-

pute the “v-disparity” image, a sparse and rough disparity map

has been built. This disparity map may contain numerous false
matches, which prevent us to use it as a depth map of the
environment. Owing to the global surfaces extracted from the
“v-disparity” image, false matches can be removed. In this aim,
we check whether a pixel of the disparity map belongs to any
global surface extracted using the same matching process. If
this is the case, the same disparity value is mapped to the pixel
and leads to Fig. 7(f). Details of this process can be found in
[28]. Finally, this enhanced disparity map can be used as a depth
map of the vehicle environment, since the depth D of a pixel of
disparity ∆ is expressed by

D =
b (α cos θ − (j − vo) sin θ)

∆
. (25)

VI. VISIBILITY-DISTANCE MEASUREMENT

A. Direct Disparity–Contrast Combination

Our first approach was to replace the computation of the
horizontal local maxima of the gradient by the horizontal con-
trasts above 5%. Therefore, the visibility distance is the distance
to the pixel having the smallest disparity. This approach is
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Fig. 8. Algorithm overview.

simple. Its main advantage is to replace the gradient threshold
of the stereovision process, which is empirically chosen, by the
contrast threshold of 5%.

However, although the contrast computation time has been
strongly reduced, it is still too large to be performed in real time
on the whole image. Furthermore, it has to be performed on
both images. We need 350 ms on a current-day PC to compute
the horizontal contrasts on an image of resolution 380 × 288.
By comparison, the computation time of horizontal gradient is
less than 10 ms, whatever the threshold.

B. Fast Disparity-Contrast Combination

The contrast computation locates precisely the edges, but is
quite expensive in terms of computing times. Conversely, the
gradient computation goes fast but spreads on the edges. Conse-
quently, using the horizontal gradients, the “v-disparity” image
is denser and faster to compute. The three-dimensional (3-D)
surface extraction is also faster and more reliable. However, we
must ensure that the gradient threshold is small enough to take
most picture elements having a contrast above 5% into account,
but large enough so as not to take noise into account. The noise
measured on the cameras currently in use is Gaussian with a
standard deviation σ of one to two gray levels. Therefore, as not
to take noise into account, the gradient threshold to consider is
then 3σ, that is, to say six.

It is possible to draw advantage from both techniques while
decreasing the computing time compared to the only use of
horizontal contrasts. The method consists in computing the
improved disparity map using the horizontal gradients higher
than six and scanning it. Because most distant objects on
the road surface are on the horizon line, the scanning starts
from this location. Within each neighborhood where a point
of disparity is known, the contrast is calculated. The process
stops when a contrast above 5% is met. The visibility distance
is then the depth of the picture element with a contrast above
5%. The algorithm is summarized in Fig. 8 and now detailed in
the following paragraph.
1) Developed Algorithm:
Some definitions:

1) Let Id denote the right image of the stereoscopic pair.
2) Vd denotes the window belonging to Id centered on the

pixel (i, j).
3) I∆ denotes the set of computed disparity.
4) V∆ denotes the set of computed disparity belonging to Vd.
5) Io denotes the pixels labeled as obstacles.
6) Vo denotes a window belonging to Io centered on the

pixel (i, j).

Fig. 9. Test track of Versailles Satory. The method is evaluated on the bold
section of the figure between the coordinates 1000 and 1600.

7) χ denotes the operator that returns the set of pixels
belonging to Vd with a contrast above 5%.

8) D denotes the operator that returns the depth in the road
scene of a pixel P (i, j) of disparity ∆ [see (25)].

Scanning of the improved disparity map: Once the im-
proved disparity map is achieved, we scan it with a sliding win-
dow Vd from the top to the bottom and from the left to the right
starting from the horizon line. Different situations may arise.

1) The considered window contains no pixels with a dispar-
ity value attached

V∆ = ∅. (26)

In this case, we pass to the next window location.
2) The considered window contains pixels with known dis-

parity but also pixels labeled as obstacles

V∆ 
= ∅ and Vo 
= ∅. (27)

Because obstacle points can be closer to the sensor than
points on the road surface, we pass to the next location.

3) The considered window contains pixels with a disparity
value attached and no pixels labeled as obstacles

V∆ 
= ∅ and Vo = ∅. (28)

In this case, we compute χ(Vd). If χ(Vd) = ∅, we pass to
the next window location. Otherwise, we can define the
set Ev of pixels with a disparity value attached having a
contrast above 5%

Ev = V∆ ∩ χ(Vd). (29)
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Fig. 10. Examples of disparity map of the vehicle environment (a) under sunny weather, (b) under foggy weather, and (c) under dense foggy weather before
nightfall. White points are considered as obstacle points. The gray level of other points is proportional to their disparity.

Fig. 11. Final result. The most distant window with a contrast above 5%, in which a point of disparity is known, is painted white. The disparity point is
represented with a black cross inside the white window. (a) Sunny weather (Vmob ≈ 250 m), (b) foggy weather (Vmob ≈ 75 m), and (c) dense foggy weather
before nightfall (Vmob ≈ 30 m).

Two subcases are thus considered.

1) If Ev = ∅, we pass to the next window location.
2) If Ev 
= ∅, the mobilized distance of visibility is the

distance associated to the pixel belonging to Ev with the
smallest disparity, which means the greatest depth

Vmob = max
P∈Ev

D(P ). (30)

2) Potential Limits and Evolution: The described algorithm
is well adapted to the structure of our disparity map, in which
the disparity is computed only in pixels belonging to the road
surface. However, in some cases, vertical objects can be very
contrasted by day against the horizon sky and then better
perceived than objects on the road surface. Consequently, in
the future, it would be interesting to use a full 3-D disparity
map. Unfortunately, in this case, the scanning mode of the
image is not valid anymore. Consequently, we are also inves-
tigating sorting techniques to reduce the computational cost in
such a case.

VII. METHOD EVALUATION

A. Hardware Settings

The whole process for building the depth map of the vehicle
environment and computing the mobilized visibility distance by
means of our Köhler’s modified technique is performed within
60 ms. The hardware used for the experiments is a Pentium IV
2.4 GHz. Images are grabbed using a Matrox Meteor II graphic
card. The focal length is 8.5 mm and the image size is 380 ×
289. The program runs on the RT-Maps platform [29] and is
compiled with the Intel C++ Compiler 8.0.

B. Presentation of the Video Sequences Used

This method has been tested on three video sequences, each
of them containing around 1000 images. In the first sequence,
the instrumented vehicle is following another car at various
distances and stops in front of different obstacles like a pedes-
trian or a motorbike. The weather is sunny and clear. In the
second sequence, the instrumented vehicle is following another
car, which disappears progressively through the fog. On the
last sequence, the vehicle is running on the track through a
thick fog just before nightfall. All sequences were recorded
on the same portion of our test-track facilities at Versailles
Satory represented in Fig. 9. A sample of each sequence is given
in Fig. 2.

C. Results

In Fig. 10, the results of the disparity map computation are
presented. In Fig. 10(a), the pedestrian, the car, and the points
beyond the horizon line are considered as obstacle points. The
depth of the points on the road surface is computed. In the same
way, in Fig. 10(b), the car is considered as an obstacle.

In Fig. 2, the results of local-contrast computation on the
whole images are represented. In fact, as explained in Sec-
tion IV-B, the contrast will not be computed on the whole
image to save computing time. In Fig. 11, the final result is
represented. The most distant window with a contrast above
5%, in which a point of disparity is known, is painted white. The
known disparity point is represented with a black cross inside
this white window.

Finally, in Fig. 12, the curves of measured visibility distances
are plotted for both video sequences. Under sunny weather,
the maximum resolution of the stereoscopic sensor is reached.
Under foggy weather, the measures are quite stable, which let



HAUTIÈRE et al.: DISPARITY CONTRAST COMBINATION FOR ONBOARD ESTIMATION OF VISIBILITY DISTANCE 211

Fig. 12. Curves of measured mobilized visibility distances (- -) under sunny
weather, (—) under foggy weather and (. . .) under dense foggy weather before
nightfall.

us think that the method is efficient in adverse weather condi-
tions. It is operative in every kind of meteorological condition.
Because of its generic aspect and its good results, this method
has been recently patented.

However, two hard points remain and need to be improved in
the future. First, we must study the adequation of the threshold
of 5%, proposed by the CIE, in different meteorological and
illumination conditions. An adaptive threshold depending on
the surrounding luminance could be more adapted. Second, the
use of sparse disparity maps is not always adequate in our case,
where the objects are very low contrasted. Indeed, the disparity
is then known on very few pixels. We think that quasi-dense
matching techniques should improve the method.

VIII. CONCLUSION

In this paper, we presented a generic method to estimate
the mobilized visibility distance, which is the distance of the
most distant picture element on the road surface with a contrast
above 5%. This concept is close to the meteorological visibility
distance. We use the “v-disparity” stereovision approach to
build a depth map of the vehicle environment. We combine
this map with the computation of local contrasts by means of a
technique inspired by Köhler. The whole process is performed
in real time. This technique, which has been recently patented,
has very few assumptions. Consequently, it is operative under
every meteorological condition and is stable in adverse weather
conditions.
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