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Abstract

In foggy weather, the contrast of images grabbed by in-
vehicle cameras in the visible light range is drastically de-
graded, which makes the current applications very sensitive
to weather conditions. An onboard vision system should
take fog effects into account. The effects of fog varies across
the scene and are exponential with respect to the depth
of scene points. Because it is not possible in this context
to compute the road scene structure beforehand contrary
to fixed camera surveillance, a new scheme is proposed.
Weather conditions are first estimated and then used to re-
store the contrast according to a scene structure which is
inferred a priori and refined during the restoration process.
Based on the aimed application, different algorithms with
increasing complexities are proposed. Results are presented
using sample road scenes under foggy weather and assessed
by computing the contrast before and after restoration.

1. Weather and Onboard Vision
Under degraded weather conditions, the contrast of im-

ages which are grabbed by a classical in-vehicle camera in
the visible light range is drastically degraded, which makes
current in-vehicle applications relying on such sensors very
sensitive to weather conditions. An in-vehicle vision sys-
tem should take fog effects into account to be more reli-
able. A first solution is to adapt the operating thresholds of
the system or to deactivate it momentarily if these thresh-
olds have been surpassed. A second solution is to remove
fog effects from the image beforehand. Unfortunately, haze
effects vary across the scene. They are exponential with
respect to the depth of scene points. Consequently, space
invariant filtering techniques cannot be used directly to ad-
equately remove weather effects from images. A judicious
approach is to detect the weather conditions so as to esti-
mate the decay in the image and then to remove it.

The majority of sensors dedicated to measuring visibility
distances (scatterometer, transmissometer) are expensive to
operate and quite often complicated to install and calibrate
correctly. Moreover, this type of equipment cannot easily
be placed onboard a vehicle. Using a camera does not en-
tail such obstacles. Bush [5] and Kwon [11] relied upon a
fixed camera placed above the roadway for the purpose of
measuring visibility distances. However, systems that meet
this purpose with an onboard camera are encountered less
frequently. Pomerleau [23] estimates visibility by means
of measuring the contrast attenuation of road markings at
various distances in front of a moving vehicle. Hautière
et al. [9] detect the presence of daytime fog and estimate
the meteorological visibility distance. An extension of their
method using stereovision is presented in [8].

Methods which restore image contrast under bad weather
conditions are encountered more often in the literature. Un-
fortunately, they all have rather constraints too strong to be
used onboard a moving vehicle. Some techniques require
prior information about the scene [22]. Others require ded-
icated hardware in order to estimate the weather conditions
[26]. Some techniques rely only on the acquired images
and exploit the atmospheric scattering to obtain the range
map of the scene [20, 6]. This range map is then used to
adequately restore the contrast. However, these methods re-
quire fog conditions to change between image acquisitions.
Techniques based on polarization can also be used to reduce
haziness in the image [24]. Unfortunately, they require two
differently filtered images of the same scene. Some tech-
niques assume a flat world scene like [21]. The authors
compute the extinction coefficient of fog and assume a flat
world seen from a forward-looking airborne camera. How-
ever, they approximate the distribution of radiances in the
image with a simple Gaussian with known variance. Fi-
nally, it is proposed in [18] to restore the contrast of more
complex scenes. However, the user must manually specify
a location for sky region, vanishing point and an approxi-
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mation of distance distribution in the image.
In this paper, we propose to restore automatically the

contrast of images grabbed by an in-vehicle camera. Be-
cause it is not possible in this context to compute the road
scene structure beforehand, we propose a scheme quite op-
posite to the one proposed in [20]. Thus, weather condi-
tions are first estimated and used to restore the contrast ac-
cording to a road scene structure, which is inferred a pri-
ori and then refined during the contrast restoration process.
According to the aimed in-vehicle application, different al-
gorithms with increasing complexities are proposed. Re-
sults are presented using sample frames from three different
video clips of road scenes under foggy weather.

The paper is organized as follows. We first present a
model of fog visual effects. Then, a technique estimating
the extinction coefficient of the atmosphere in the current
image from a single camera is presented. Once the weather
condition is known, a contrast restoration principle is pro-
posed with its associated tools. Finally, we present three
different applications implementing the principle presented
in the previous section. The assessment of the principle is
done by first computing the pixels which have been dis-
torted during the contrast restoration process and second
computing the contrast of the images before and after scene
restoration.

2. Fog Effects on Vision
The literature on the interaction of light with the atmo-

sphere has been written over more than two centuries [4, 2].
Different reviews on the subject are for a long time avail-
able in the literature [16, 17, 15] and still serve as reference
for more recent works in computer vision [6, 19, 9]. In this
section, selected results dealing with fog effects on vision
are presented.

2.1. Optical Properties of Fog

In fog, a proportion of the light is scattered by water
droplets and thus deviates from its path. Because the ab-
sorption of visible light by water droplets proves to be neg-
ligible [3], the scattering and extinction coefficients tends
to be interchangeable. The relation tying the incident lumi-
nous flux Φ0 to the transmitted flux ΦT is known as Beer-
Lambert’s law and is expressed as follows:

ΦT = Φ0e
−βd (1)

where d is the distance and β is the atmospheric extinction
coefficient of the medium and is related to droplet size dis-
tribution of fog.

2.2. Visual Properties of Fog

The attenuation of luminance through the atmosphere
was studied by Koschmieder [16], who derived an equation

Figure 1. Fog or haze luminance are due to the scattering of day-
light. Light coming from the sun and scattered by atmospheric
particles towards the camera is the airlight A. It increases with
the distance. The light emanating from the object R is attenuated
by scattering along the line of sight. Direct transmission T of R
decreases with distance.

relating the apparent luminance or radiance L of an object
located at distance d to the luminance L0 measured close to
this object:

L = L0e
−βd + L∞(1− e−βd) (2)

This expression indicates that the luminance of the ob-
ject seen through fog is attenuated in e−kd (Beer-Lambert
law); it also reveals a luminance reinforcement of the form
L∞(1− e−βd) resulting from daylight scattered by the slab
of fog between the object and the observer, also named
airlight. L∞ is the atmospheric luminance. In the pres-
ence of fog, it is also the background luminance on which
the target can be detected. The previous equation may then
be written as follows:

L− L∞ = (L0 − L∞)e−βd (3)

On the basis of this equation, Duntley developed a contrast
attenuation law [16], stating that a nearby object exhibiting
contrast C0 with the background will be perceived at dis-
tance d with the following contrast:

C =
(
(L− L∞)/L∞

)
e−βd = C0e

−βd (4)

This expression serves to base the definition of a standard
dimension called "meteorological visibility distance" Vmet,
i.e. the greatest distance at which a black object (C0 =
−1) of a suitable dimension can be seen in the sky on the
horizon, with the threshold contrast set at 5% [1]. It is thus
a standard dimension that characterizes the opacity of a fog
layer. This definition yields the following expression:

Vmet = − 1
β

log(0.05) ' 3
β

(5)

2.3. Camera Response

Let us denote f the camera response function, which
models the mapping from scene luminance to image inten-
sity by the imaging system, including optic as well as elec-
tronic parts [7]. With the notations of Fig. 1, the intensity I



Figure 2. Results of the region growing on the test images: the road and the sky are partially segmented and are painted white. The black
cross indicates the position of the vanishing point: its horizontal location uh is approximated by the middle of the area obtained by the
region growing on the horizon line vh. This latter value is obtained by a priori sensor calibration.

of a pixel is the result of f applied to the sum of the airlight
A and the direct transmission T , i.e:

I = f(L) = f(T + A) (6)

In this work, we assume that the conversion process be-
tween incident energy on the CCD sensor and the intensity
in the image is linear. This is generally the case for short ex-
posure times, because it prevents CCD array to be saturated.
Furthermore, short exposure times (1 to 4 ms) are used on
in-vehicle cameras to reduce the motion blur. This assump-
tion can thus be considered as valid and (6) becomes:

I = f(T ) + f(A) = f(L0e
−βd) + f(L∞(1− e−βd))

= f(L0)e−βd + f(L∞)(1− e−βd)
= Re−βd + A∞(1− e−βd) (7)

where R is the intrinsic intensity of the pixel, i.e. the inten-
sity corresponding to the intrinsic luminance value of the
corresponding scene point and A∞ is the background sky
intensity.

3. Estimation of the Extinction Coefficient of
Fog

In this section, a method to compute the extinction co-
efficient β using a single camera behind the vehicle wind-
shield is recalled from [9, 13].

3.1. Flat World Hypothesis

In the image plane, the position of a pixel is given by its
(u,v) coordinates. The coordinates of the optical center pro-
jection in the image are designated by (u0,v0). H denotes
the height of the camera, θ the angle between the optical
axis of the camera and the horizontal, and vh the horizon
line. The intrinsic parameters of the camera are its focal
length fl, and the horizontal size tpu and vertical size tpv

of a pixel. We have also made use herein of αu = fl

tpu
and

αv = fl

tpv
, and have typically considered: αu ≈ αv = α.

The hypothesis of a flat road is adopted, which makes it

possible to associate a distance d with each line v of the
image:

d =
λ

v − vh
if v > vh, where λ =

Hα

cos2 θ
(8)

3.2. Recovery of Koschmieder’s Law Parameters

Following a variable change from d to v based on (8), (7)
then becomes:

I = R− (R−A∞)(1− e
−β λ

v−vh ) (9)

By twice taking the derivative of I with respect to v, one
obtains the following:

d2I

dv2
= βϕ(v)e−β λ

v−vh

(
βλ

v − vh
− 2

)
(10)

where ϕ(v) = λ(R−A∞)
(v−vh)3 . The equation d2I

dv2 = 0 has two
solutions. The solution β = 0 is of no interest. The only
useful solution is given in (11):

β =
2(vi − vh)

λ
(11)

where vi denotes the position of the inflection point of I(v).
In this manner, the parameter β of Koschmieder’s law is
obtained once vi is known. Finally, thanks to vi, vh and β
values, the values of the other parameters of (7) are deduced
through use of Ii and dI

dv |v=vi
, which are respectively the

values of the function I and its derivative in v = vi:

R = Ii − (1− e−βdi)
(vi − vh)
2e−βdi

dI

dv |v=vi

(12)

A∞ = Ii +
(vi − vh)

2
dI

dv |v=vi

(13)

where R is the mean intrinsic intensity of the road surface.

3.3. Implementation

3.3.1 Estimation of the inflection point

To estimate the parameters of (7), the median intensity on
each line of a vertical band is estimated and an inflec-
tion point is detected. So as to be in accordance with



Figure 3. Black segments: measurement bandwidth. Curve on the left: vertical variation of intensity within the bandwidth. Horizontal line:
image line representative of the meteorological visibility distance.

Koschmieder’s law assumptions, this band should only take
into account a homogeneous area and the sky. Thus, a re-
gion within the image that displays minimal line-to-line gra-
dient variation when browsed from bottom to top is identi-
fied thanks to a region growing process, illustrated in Fig. 2.
A vertical band is then selected in the detected area. Finally,
taking the median intensity of each segment, yields the ver-
tical variation of the intensity of the image and the position
of the inflection point.

3.3.2 Estimation of the horizon line position

To obtain the values of the parameters of (7), the position of
the horizon line must be estimated. It can be estimated by
means of the pitching of the vehicle when an inertial sensor
is available, but is generally estimated by an additional im-
age processing. Generally, this type of processing seeks to
intersect the vanishing lines in the image. However, under
foggy weather, the vanishing lines are only visible close to
the vehicle. It is thus necessary to extrapolate the position
of the horizon line through the fog. Consequently, this kind
of process is prone to a significant standard deviation and,
for the moment, we use the a priori sensor calibration.

Having now the vertical positions of both the inflection
point and the horizon line, the parameters of (7) can be re-
covered and the position of the image line representative of
the meteorological visibility distance is deduced. Fig. 3 il-
lustrates the process.

4. Tools for Contrast Restoration
In this section, we present three tools for contrast restora-

tion: a restoration method based on Koschmieder’s law, a
scene depth modeling and an image quality attribute used
to evaluate the quality of the restoration.

4.1. Restoration Method

In this section, we describe a simple method to restore
scene contrast from an image of a foggy scene. Let us con-
sider a pixel with known depth d. Its intensity I is given by
(7). (A∞, β) characterizes the weather condition and is es-
timated thanks to section 3. Consequently, contrary to (12),

R can be estimated directly for all scene points from:

R = Ieβd + A∞(1− eβd) (14)

To correctly restore the scene contrast, the remaining prob-
lem is the estimation of the depth d of each pixel.

4.2. Scene Depth Modeling

If we assume that the whole scene is flat, (8) is enough to
estimate the depth of scene points and consequently to re-
store the contrast of the image. Unfortunately, in this way,
all the contrast of all vertical objects of the scene (other ve-
hicles, trees...) will be falsely restored. In order to estimate
the depth of scene points, [18] proposes some depth heuris-
tics to interactively restore contrast. In this aim, the user
selects a region of the sky to obtain the sky intensity A∞
and inputs the approximate location of the vanishing point
of the image along the direction of increasing distances in
the image. Here, the sky region and the vanishing point
location are automatically extracted, thanks to the region
growing process described in paragraph 3.3.1. Thus, the
sky region is assumed to be the region of the image above
the horizon line where intensity is higher than the intensity
taken at the horizon line. The coordinate system is given
in Fig. 4(a). The horizontal location of the vanishing point
uh is approximated by the center of the area obtained by
the region growing on the horizon line. For our test images,
the location of the vanishing point is marked with a black
cross in Fig. 2. Then, we propose to use a depth heuristic in
conjunction with the flat world assumption. Following (8),
we use the flat world assumption for points belonging to
the road surface, except for big distances which are clipped
using parameter c to reduce the modeling errors (in particu-
lar, flat world and non flat world are mixed near the horizon
line):

d1 =
{ λ

v−vh
if v − vh > c

λ
c−vh

if 0 < v − vh ≤ c
(15)

Then, we use a depth heuristic issued from [18] to model
the depth of points not belonging to the road surface:

d2 =
κ

u− uh
or

κ√
(u− uh)2 + (v − vh)2

(16)



Figure 4. Construction of the depth modeling for the test image of Fig. 3a. (a) a cylindrical scene where a small value of κ is assumed. (b)
a cylindrical scene where a bigger value of κ is assumed, resulting in a larger road surface than in Fig. 4a. (c) The sky region has been
added.

where κ ≥ λ. The first heuristic can be used to model
vertical objects like building in urban streets. The second
heuristic is better suited to model cylindrical scenes like ru-
ral roads. The final depth d of a pixel (u,v) which does not
belong to the sky region is finally:

d = min(d1, d2) (17)

In these depth heuristics, the value of κ controls the rel-
ative importance of the flat world against the vertical sur-
roundings. Fig. 4 illustrates the depth modeling for the test
image of Fig. 3(a). In order to restore correctly the contrast,
the remaining problem is to determine the optimal values of
κ and c.

4.3. Image Quality Attribute

According to (14), if the depth of a point is overes-
timated, its restored intensity becomes null or negative,
which creates some artefacts in the restored image and al-
ters its visual quality. During the restoration process, the
challenging problem is thus to detect the degradations. We
have to cope with a blind image quality assessment prob-
lem. Such a problem is generally encountered in the im-
age compression area, where quality attributes are generally
based on blur, noise and compression artefacts [25]. These
quality attributes do not match with our problem. We pro-
pose another quality attribute better suited for our problem:
Q is the norm of the local normalized correlation between
the original image I and the restored image R:

Q =
∣∣∣∣h(I, R)

∣∣∣∣ (18)

where h denotes a normalized correlation formula. Cur-
rently, we use the ZNCC criteria, that is to say:

h(I, R) = H

[ ∑
i(I(x + i)− I)(R(x + i)−R)√∑

i(I(x + i)− I)2
∑

i(R(x + i)−R)2

]
(19)

where H denotes the Heaviside function, I and R the means
of pixel intensities for the neighborhoods of I and R cen-
tered at x. Indeed, we can assume that within small neigh-
borhoods containing visual information, the depth of the

points are not very different. Consequently, the normalized
correlation score between the original and the restored ver-
sions of a neighborhood should remain high. A decreasing
normalized correlation means that the content of the origi-
nal and restored neighborhoods differ. Criteria (18) can be
used to automatically estimate κ and c, as explained in the
following.

5. In-Vehicle Applications

Depending on the developed in-vehicle application, the
principles that have been presented in the previous section
can be used and combined differently to restore the con-
trast of images. In this section, three applications with an
increasing complexity are detailed.

5.1. Contrast Restoration of the Road Surface

The first application consists in restoring the road surface
only. Vertical objects are ignored and the values of κ and c
are chosen a priori. In this way, vertical objects may be
distorted. This is adequate to enhance the detection of road
markings under foggy weather. Used in conjunction with
a driving assistance relying on lane markings extraction, it
can lead to a better prevention of road departures [14]. An
example of such a contrast restoration is given in Fig. 5.
The distorted pixels are shown in Fig. 8(a). As expected, the
contrast of the road surface is restored. It is interesting to
notice that the contrast of the trees in the background of the
image is enhanced. One may distinguish a car at the bottom
of those trees. These facts are confirmed by the computation
of the local contrasts above 5% (see section 6.1).

5.2. Contrast Enhancement of the Road Scene

A second application consists in taking into account the
vertical objects that are present in the road scene including
the borders and the objects on the road itself. The method
aims at restoring the contrast of the road surface, while en-
hancing contrast on vertical objects without distorting them
too much. Thus, we seek the best scene depth model which
maximizes the contrast and minimizes the number of dis-



Figure 5. Example of contrast restoration of a road surface. (a)
Original image. (b) Image with restored contrast. (c) Contrasts
greater than 5% on the original image and (d) on the restored im-
age. Used parameters: λ = 700, κ = 6λ, c = 12, A∞ = 220.
Estimated parameters: vh = 69, β = 0.026, Vmet ≈ 116m, .

torted pixels, i.e. the optimal values of κ and c. The prob-
lem can be formulated as a minimization process:

(κ∗, c∗) = argmax
κ>1
c>0

(
Q(κ, c) + κ− c

)
(20)

In this application, the `1 norm is used in (18) for evaluat-
ing the quality Q. Currently, (20) is solved using Powell’s
method. An example is given in Fig. 6. The distorted pix-
els are shown in Fig. 8(b). When the first car and the road
surroundings are partially distorted, the contrast is well re-
stored on the second vehicle, which is now visible within
the white circle. This is confirmed by Fig. 6(d), which
shows that the second car now has a contrast greater than
5%. Furthermore, the method copes with curved road by
decoupling the slope estimation of κ of the left and right
border planes.

5.3. Iterative Contrast Restoration

The previous method enhances but sometimes distorts
the contrast of vertical objects on the road. By merging
an object (sign, vehicle, etc.) detection algorithm within
the restoration process, contrast can be restored on both
the detected objects and the road surface, and enhanced on
the borders. The method becomes iterative and alternates
restoration and detection processes. Its principle is first
to restore the contrast using a small value of κ (typically
κ = 1) and then to progressively increase its value until the
restored image gets degraded. In this way, the flat world is
extended as much as possible according to the vertical ob-
jects which are present in the scene. Then, to temporarily
stop the restoration, we look at the strong variations of the
quality attribute Q with respect to the value of κ. Thus, we

Figure 6. Example of contrast enhancement of a road scene. (a)
Original image. (b) Image with restored contrast. (c) Contrasts
greater than 5% on the original image and (d) on the restored im-
age. Used parameters: λ = 700. Estimated parameters: vh = 70,
β = 0.034, Vmet ≈ 87m, c∗ = 14, κ∗ = 8.6λ A∞ = 208.

search κ∗, such as:

∂Q

∂κ
(κ∗) > t (21)

In this application, the `∞ norma is used for estimat-
ing Q. If a strong variation is detected, objects belonging
to the desired class are searched in the image. If objects
are found, their positions are estimated and their contrast
correctly restored thanks to a bounding box fitted around
them. Then, the restoration restarts and avoids the different
bounding boxes. Like for the previous application, the esti-
mation of the left and right border planes is decoupled. An
example is given in Fig. 7 within a vehicle detection process
using [12] which allows to cope with non flat road geome-
try. On this scene, a bad contrasted vehicle is in front of the
equipped vehicle. The result of the initial contrast restora-
tion process is given in Fig. 7(b). It is stopped at κ = 1.25λ
(cf. left peak of Fig. 9). Because contrast has been enhanced
on the vehicle, it can be detected more easily by a dedicated
method and a bounding box can be fitted around it, as il-
lustrated in Fig. 7(c). Finally, contrast restoration restarts
and stops at κ = 4.25λ (cf. right peak of Fig. 9). The final
image with the contrast of the vehicle properly restored and
not saturated (contrary to Fig. 7(b)) is given in Fig. 7(d).
The improvement of contrast is shown in Figs. 7(e)(f).

6. Checking Contrast Improvement
To check contrast improvement, we first detect the local

distorted pixels using Q values (cf. Fig. 8). Then, in the
following, we compute the local contrasts C(s) before and
after the contrast restoration. Following CIE recommenda-



Figure 7. Example of iterative contrast restoration of a road scene.
(a) Original image. (b) Restored image after initial contrast
restoration κ1 = 1.25λ. (c) Result of vehicle detection using
the first restored image. (d) Final restored image with the vehi-
cle properly restored κ2 = 4.25λ. (e) Contrasts greater than 5%
on the original image and (f) on the restored image. Used param-
eters: λ = 700, c = 1, t = 0.01. Estimated parameters: vh = 60,
β = 0.05, Vmet ≈ 58m, A∞ = 250.

tions [1], a visibility threshold of 5% is used. C(s) mea-
sures linear contrast enhancement, whereas Q is invariant
to linear contrast variations but not to contrast saturations.

6.1. Computation of local contrasts above 5 %

We adapted Köhler’s binarization technique [10] in or-
der to measure the local contrasts of images. A pair of
pixels (x,x1) is said to be separated by s if two condi-
tions are met. First, x1 ∈ N4(x). Second, the condition
min(I(x), I(x1)) ≤ s < max(I(x), I(x1)) is respected.

Figure 8. Distorted pixels on the restored images (a) distortion
computed on Fig.5(d) and (b) on 6(d). As expected, only verti-
cal objects are distorted.

Figure 9. Variation of the image quality attribute (`∞ norm) with
respect to the value of κ. Blue curve: initial restoration stopped at
κ1 = 1.25λ. Pink curve: final restoration stopped at κ = 4.25λ.

Let F (s) be the set of all couples (x, x1) separated by s.
With these definitions, for every value of s belonging to
[0,255], F (s) is built. For every couple belonging to F (s),
the mean logarithmic contrast (22) associated to F (s) is
then:

C(s) =
1

#F (s)

X

(x,x1)∈F (s)

min

(
|s − I(x)|

max(s, I(x))
,

|s − I(x1)|
max(s, I(x1))

)
(22)

The best threshold s0 verifies the following condition:

s0 = argmax
s∈[0,255]

C(s) (23)

It is the threshold which has the best mean contrast along
the associated border F (s0). Instead of using this method
to binarize images, we use it to measure the contrast locally.
The evaluated contrast equals 2C(s0) along the associated
border F (s0).

6.2. Experimental validation

The methods have been tested using different video se-
quences as illustrated in Figs. 5, 6&7 to present the three
different applications. Samples of a more complicated se-
quence are shown in Fig. 10 where road scene enhancement
is performed (see section 5.2). In this sequence, many inter-
esting situations appear: curves, vegetation (trees, hedges),
road signs, a cyclist, other cars. The proposed method copes
quite well with these different situations. In particular, dis-
tant cars with low contrast are restored, especially in the
first image.

7. Conclusion
In this paper, a framework for restoring the contrast of

images grabbed from a moving vehicle has been presented.
Contrary to usual methods where the scene structure is com-
puted before restoring the contrast, we first compute the
weather conditions and then we infer the scene structure
which is refined during the restoration process. Due to our
application context, the initial structure is based on a flat



Figure 10. Example of contrast restoration on a video sequence
implementing the road scene enhancement application. Row 1&3:
original images. Row 2&4: corresponding restored images. Many
situations appear: curves, vegetation, road signs, a cyclist, cars.

world assumption merged with some depth heuristics. To
optimize the parameters of the scene, we proposed a met-
ric of image quality based on a norm of local normalized
correlation. We have applied our framework to three in-
vehicle applications: road lane markings restoration, road
scene enhancement and iterative road scene restoration, by
fusing our restoration algorithm with a detection algorithm.
Finally, results are assessed by computing the contrast of
sample images before and after scene restoration.
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