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Abstract: The presence of an area with low visibility conditions is a relevant
information to communicate to drivers before they reach this area. In this aim, we
develop a generic sensor of visibility using an onboard camera in a vehicle equipped
with vehicle-to-infrastructure (V2I) communications. Our approach consists in
estimating the range to the most distant object belonging to the plane of the
road having at least 5% of contrast. The originality of this approach lies in the
fact that the depth map of the vehicle environment is obtained by aligning the
road plane in the successive images. This algorithm exploits the dynamics of the
vehicle which is given or observed by proprioceptive sensors. In this paper, we
present the principle of our approach in terms of image processing and explain
how the vehicle dynamics takes part in it with a sensitivity study.
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1. INTRODUCTION AND OBJECTIVES

Within the framework of the European project
REACT (REACT 2005), we are developing a
visibility sensor. One goal of the project is to
make progress in road safety with vehicle-to-
infrastructure (V2I) communications. The vehicle
is seen like a sensor, inserted into the traffic, which
communicates measurements to a traffic manage-
ment regional center. In this paper, our objective
is to be able to locally measure the visibility range
with an onboard camera, in the aim of pursuing
low visibility conditions owed by climatic factors.

Different studies about visibility distance mea-
surement exist, among which we can find:

• A method using detection of lane markings:
Pomerleau (Pomerleau 1997) estimates the
visibility distance by measuring the contrast
attenuation of lane markings at different dis-
tances in front of the vehicle.

• A mono-camera method adapted to fog us-
ing Koschmieder’s model (Middleton 1952).
We obtain, under daytime foggy weather,
an estimation of the meteorological visibility
distance (Hautière et al. 2006a).

• A method using stereo-vision: this method
is generic and not limited to fog. Thanks
to stereo-vision, a good quality depth map
is computed (Labayrade and Aubert 2003).
The distance to the farthest point of the road
surface with a contrast greater than 5% gives
the visibility distance (Hautière et al. 2006b).

The method using stereo-vision does not make any
difference between the geometric and atmospheric
visibility distance. Indeed, if there is a curve or
a uphills where the visibility is reduced due to
physical reasons, the visible road surface will be
limited by the road geometry (Brun et al. 2006).
In these cases, the visibility distance calculated
will be the geometric one.



The method we design is as generic as the one
based on stereo-vision but uses only one camera.
In this aim, we estimate the distance of the far-
thest object which is part of the road plane with
a contrast higher or equal to 5%. This method
takes into account the definition of the mete-
orological visibility distance given by the CIE
(Commission Internationale de l’Eclairage 1987)
and is decomposed in three parts:

(1) Creation of a pseudo-depth map of the vehi-
cle environment by aligning the road plane in
the successive images.

(2) Creation of a contrast map.
(3) The visibility distance is obtained by taking

the farthest point (depth map) with a con-
trast greater than 5% (contrast map).

2. IMAGE PROCESSING

Through use of a single camera, it is impossible
to get directly the depth in images. But we can
calculate with perspective projection the distance
of points belonging to the road. The most generic
way to determine the road plane is to use succes-
sive images. Objects belonging to the road plane
are at the same place from one image to another,
at the opposite, verticals objects are deformed.
In general, successive images alignment is made
with classical image processing techniques, e.g.
(Shashua 2004). These methods consist in match-
ing objects in the two images. In our degraded vis-
ibility context, this approach is not well adapted
because local contrasts are strongly deteriorated.
The originality of our approach is to align images
with the knowledge of the motion of the camera,
which is observed or measured with proprioceptive
sensors.

2.1 Image acquisition

In the coordinate system of the camera frame,
the position of a pixel in the image plane is
given by its coordinates (u, v). The image optical
center is denoted (u0, v0) in the image frame and
considered as the image center.

Fig. 1. Position of the camera and vehicle dynam-
ics

The transformation between the vehicle frame
(with origin at the center of gravity of the ve-
hicle) and the camera frame, is represented by
a vectorial translation −→

t = d
−→
X + h

−→
Z (Fig. 1)

and a rotation around the axes Y of angle β.
We denote T the translation matrix and R the
rotation matrix. The coordinate change between
the image frame and the camera frame can be ex-
pressed using a projective matrix Mproj (Horaud
and Monga 1995):

Mproj =

 u0 0 −α 0
v0 −α 0 0
1 0 0 0

 (1)

where α represents the ratio between the camera
focal length and the size of one pixel. At last,
we obtain the transformation matrix Tr from the
vehicle frame to the image frame:

Tr = MprojRT (2)

If P is a point with homogeneous coordinates
(X,Y, Z, 1) in the vehicle frame, its homogeneous
coordinates in the image frame become:

p = TrP = (x, y, z)T (3)

We can now compute the coordinates (u, v) of the
projection of P in the image frame:
u =

x

z
= u0 + α

cosβ(Z + h)− sinβ(X + d)
cosβ(X + d) + sinβ(Z + h)

v =
y

z
= v0 − α

Y

cosβ(X + d) + sinβ(Z + h)

(4)

2.2 Creation of a transformed image

Flat World Assumption:

If we consider I1 and I2 images taken at time
t1 and t2, the knowledge of the vehicle dynamics
allows us, thanks to (4), to obtain an estimation
of the image I2 from the image I1. Let Ĩ12 be this
estimated image and P a point whose projection
in the image frame belongs to it. Let us assume
that this point belongs to the road plane, meaning
that if (X2, Y2, Z2) are the coordinates of this
point in the vehicle frame, then Z2 = 0. So the
expression of X2 and Y2 is deduced from (4):

X2 =
cosβ[dU + αh] + sinβ[hU − αd]

α sinβ − cosβU

Y2 =
−hV

α sinβ − cosβU

(5)

where U = u− u0 and V = v − v0

Vehicle motion:

If we know the vehicle motion, we can calculate
its movement between time t1 and t2. As soon as



Fig. 2. Movement of the vehicle

we have points in the vehicle frame (5) we can get
new points following this movement (see Fig.2).

From the knowledge of the coordinates of a point
P and the vehicle dynamics, we can express the
coordinates of the point P in the camera frame at
time t1:

(x12, y12, z12)T = TrM(X2, Y2, 0)T (6)

where M is the vehicle rotation/translation ma-
trix between two instants. We obtain the coordi-
nates (u12, v12) of P in the image frame of I1:

u12 =
x12

z12
and v12 =

y12
z12

(7)

Example of transformed image:

An example of transformed image Ĩ12 obtained
from an image I1 is given in Fig. 3. The compar-
ison between image I1 and the estimated image
Ĩ12 allows to obtain a depth map in the same way
as what is done in stereo-vision. As far as we have
made the hypothesis that all the points in the
image I2 belong to the road plane, a short distance
allows us to validate the flat-world assumption.

Fig. 3. left: current image / right: transformed im-
age after a 2m displacement. Result obtained
with synthetic images

2.3 Pseudo-depth map construction

As far as we can say that a pixel of coordinates
(u, v) belongs to the road plane (see Fig.4), we can
express the distance d of this pixel (8) :

d =


λ

v − vh
if v > vh

∞ if v ≤ vh

where λ =
Hα

cos2β0
(8)

where H denotes the mounting height of the
camera, α the ratio between the camera focal

length and the size of one pixel, vh the position of
the horizon in the image and β0 the camera pitch
angle.

Fig. 4. Image taken by the onboard camera. In
black: points belonging to the road plane. In
white: points not belonging to the road plane

2.4 Structure of the Image via Correlation Metrics

2.4.1. Pseudo-disparity Computation between two
Images We have to match both images. It means
that we have to find local correspondences be-
tween two neighborhoods from each image. These
correspondences are computed via the ZNCC cor-
relation metrics (a comparison of different existing
metrics is carried out in (Perrollaz 2006)). To
realize this operation, we have to select a pixel
p1 = (u1, v1) in the image I1 and another pixel
p2 = (u2, v2) in the transformed image Ĩ12. Then,
we define a centered neighborhood V (p1) around
the pixel p1 and V (p2) around the pixel p2 in
which we are computing the ZNCC correlation
metric:

ZNCC(p1, p2) =

∑
V (p1),V (p2)

Ĩ1Ĩ2√ ∑
V (p1),V (p2)

Ĩ2
1

∑
V (p1),V (p2)

Ĩ2
2

(9)

where

Ĩ1 =
(
I1(u1 + i, v1 + j)− Ī1)

)
Ĩ2 =

(
I2(u1 + i, v1 + j)− Ī2)

)
The more the correlation metrics is close to 1, the
more we can consider these two neighborhoods
as identical. Working on a single pair of (p1 and
p2) limits our study. Indeed, some matching errors
can occur and a pixel belonging to the road can
be incorrectly matched in the image Ĩ12. That’s
why we have to extend our study zone. To do it,
we have defined a search window. The correlation
neighborhood in image I1 is centered on a point
of interest. The correlation neighborhood in the
image Ĩ12 is centered successively around a pixel
varying in a search frame (this search frame is cen-
tered on the pixel p1 of image I1). This principle
is schematized in Fig. 5.

As soon as the sweeping of the search window is
done, we keep the position (u2, v2) of the pixel



Fig. 5. Correlation neighborhood and search win-
dow

with the best correlation score. With these two
positions, we calculate a pairing distance:

d =
√
|u1 − u2|2 + |v1 − v2|2

After that, we only kept points with a small
pairing distance, in considering them as points
belonging to the road plane.

2.4.2. Road or Non-Road Hypothesis To get a
good non-road hypothesis, one can notice that
objects not belonging to the road plane are de-
formed towards the top and the borders of the
image. We have defined a search frame on the
basis of these deformations. We can have an idea
of this deformation in Fig. 3. When the pixel
are on the right side of the image, the search
frame is deformed towards the top and the right.
When the pixel is on the left side, the search
frame is deformed towards the top and the left
side of the image. This idea comes from what is
done in stereovision in (Williamson 1998). This is
schematized in Fig. 6. This deformed window gives
us some better correlation scores for objects not
belonging to the road plane. Finally, the idea of

Fig. 6. Correlation with deformed window for the
Non-Road hypothesis

our method is based on the fact that for each pixel,
we are going to compute a pairing distance with a
normal and a deformed searching window. Objects
belonging to the road plane have a shorter pairing
distance with a normal window. On the contrary,
objects not belonging to the road plane have a
shorter pairing distance with a deformed window.
An example of result is given in Fig.4 using actual
images of fog. The majority of pixels belonging to
the road plane is successfully recognized, contrary
to the pixels belonging to the vertical sign.

3. VEHICLE DYNAMICS

In the previous section, we have seen that the
vehicle dynamics is a need for our visibility esti-
mation method. Indeed, knowing the six degrees
of freedom, the three rotations (roll, pitch, yaw)
and the three translations (longitudinal Tx, lateral
Ty and vertical Tz), let us realize the successive
images transformations. Sensors that give vehicle
dynamics estimation are an odometer and an In-
ertial Measurement Unit (IMU):

• The odometer gives informations on the
numbers of turns done by the wheel.

• The IMU gives angular speed of the three
rotations axis of the vehicle (roll, pitch, yaw)
and accelerations of the three axis of the
vehicle (X,Y, Z).

At first sight, the odometer and the IMU should
give us the knowledge of the six degrees of freedom
that we need. Indeed, if we consider that the wheel
radius is constant, we can have an estimation of
the distance covered by this wheel, meaning by
the vehicle. Moreover, the numerical integration of
the angular speed given by the IMU gives an esti-
mation of the relative angular variations between
two instants. The first question we wonder was
not to know what type of estimator or observers
we should implement to estimate the six degrees
of freedom. We wanted to know if the knowledge
of any degrees of freedom was really a need for our
successive images alignment. This was done in the
aim of eliminating some of the degrees of freedom
in our process. To do it, we used the notion of
sensitivity (Arriola and Hyman 2003). If we just
look at the nature of the degrees of freedom, we
have angles expressed in radians and distances ex-
pressed in meters. So we can not directly compare
them. The sensitivity allows us to compare the
different contributions of the degrees of freedom
using of simulated scenarii.

3.1 Sensitivity

Let Mvehicule(Tx, Ty, Tz, θ, ψ, φ) be the motion
function of the vehicle between time t1 and
t2. From (5) we can compute the coordinates
(X2, Y2, Z2) of the point in the world frame at
time t2. This brings us to: u2 =

x2

z2
= fu(Tx, Ty, Tz, θ, ψ, φ, u, v)

v2 =
y2
z2

= fv(Tx, Ty, Tz, θ, ψ, φ, u, v)
(10)

The detail of (10) is explained in section (2.2)
through (5) and (4). (10) allows us to say that
we have an algebraic relation between (u2, v2) et
(u, v). A sensitivity study is done with respect to
a criteria (or a cost function). We have to define a



criteria that helps us in knowing which degree of
freedom influences the most the successive image
transformations.

Sensitivity criteria:
The criteria that seems the most important is
the pixel displacement. So we define the following
criteria:

J(u, v) =
√

(u2 − u)2 + (v2 − v)2 (11)

With the help of this criteria we are able to
quantify the influence of the different degrees of
freedom on the displacement of a pixel (u, v)
through the transformation (10).

Sensitivity computation:
The parametric sensitivity computation is defined
as being the cost function derivative with respect
to the studied parameter (12):

Sp(u, v) =
∂J

∂p
× p

J
(12)

For example, for the x translation:

STx(u, v) =
∂J

∂Tx
× Tx

J
(13)

Now, we have to compare results obtained in
generalizing this kind of computation for all the
degrees of freedom. The vehicle dynamics is time
varying. The value of the degrees of freedom is
not always the same. We have to define some
situations in which we compute sensitivity. This
process allows us to say that in specific situations
(braking, turning, ...), which are the degrees of
freedom that are the most dominating in the
image transformations.

3.2 Results on Different Simulated Scenarii

We have designed a prototyping platform (Bous-
sard et al. 2006) with which we can simulate the
behavior of a vehicle and its onboard sensors, get
exactly their motions and see the results of the
successive images transformations. We have de-
fined different scenarii to stimulate all the degrees
of freedom and to reproduce some of the classic
vehicle behaviors. The initial speed was all the
time 30km/h and the different scenarii are the
followings:

• Acceleration and braking in a straight line:
the acceleration was between 1.5m/s2 and
−1.5m/s2.

• Right and left oscillation at constant speed:
on a two lane road, we move the vehicle from
lane to the other.

• Straight line at a constant speed.

• Long right turn: at a constant speed, we turn
the wheel to turn along a circle.

Table 1 shows the maximum value of the sensi-
tivity we obtain for all the degrees of freedom we
consider.

Acceleration Right-Left Constant Right
Braking oscillation speed turn

Tx 20 15 20 20

Ty 0 8 0 20

Tz 3 2 0 1

pitch 10 4 0 4

roll 0 3 0 1

yaw 0 50 0 100

Table 1. Pixels displacements obtained
with the different scenarii

We can see that the pixel displacement J(u, v)
(11) is less sensitive to the translation Tz and the
pitch and roll angle, except in the first scenario
(acceleration and braking). We can say that, as
soon as we are driving at a constant speed, doing
a turn or changing lane, the three most important
degrees of freedom are the two translations Tx

and Ty and the yaw angle. The others can be
neglected.

Vehicle dynamic estimation is done with two sen-
sors: an odometer and an inertial measurement
unit (IMU). The yaw angle is given directly by
the IMU and we have to estimate Tx and Ty.
The odometer gives the distance l covered between
time t1 and t2. When the yaw angle φ is not zero,
we can consider that the vehicle is moving along
an arc of circle with radius R and then use the
well known trigonometric equation:{

Tx = R sin(φ)
Ty = R cos(φ) +R

with R =
l

φ

4. VISIBILITY

4.1 Contrast estimation

We adapted Köhler’s binarization technique (Köhler
1981) in order to measure the local contrasts of
images. A pair of pixels (x,x1) is said to be sepa-
rated by s if two conditions are met. First, x1 ∈
N4(x). Second, the condition min(I(x), I(x1)) ≤
s < max(I(x), I(x1)) is respected. Let F (s) be
the set of all couples (x, x1) separated by s. With
these definitions, for every value of s belonging to
[0,255], F (s) is built. For every couple belonging
to F (s), the mean logarithmic contrast associated
to F (s) is then:

C(s) =
1

#F (s)

∑
(x,x1)∈F (s)

min

(
|s − I(x)|

max(s, I(x))
,

|s − I(x1)|
max(s, I(x1))

)

The best threshold s0 verifies the following condi-
tion:



s0 = argmax
s∈[0,255]

C(s) (14)

It is the threshold which has the best mean con-
trast along the associated border F (s0). Instead
of using this method to binarize images, we use
it to measure the contrast locally. The evaluated
contrast equals 2C(s0) along the associated bor-
der F (s0).

4.2 Visibility estimation

To estimate the visibility distance, we combine the
measurement of contrasts higher than 5% with the
map of the pixels belonging to the road plane. In
this aim, we locally process the contrast of image
points belonging to the road plane by scanning
it from top to bottom starting from the horizon
line. As soon as we find a point with a contrast
greater or equal to 5%, the process stops and
the visibility distance is the distance of this point
given by (8). We can see in Fig. 7 on an actual fog
image an example of a 5% contrast map and the
result of previous images alignment. The visibility
distance is represented by the horizontal line on
the pictures.

Fig. 7. 5% contrast map (left) and Road/Non-road
image (right)

5. CONCLUSION

In this paper, a generic method estimating the
atmospheric visibility distance is presented. It de-
tects the farthest picture element belonging to
the road plane having a contrast greater then 5%
using a single camera. To discern points belong-
ing to the road plane from the others, the road
plane is aligned in successive images by exploiting
the relative motion of the vehicle between two
instants. Contrarily to classical image process-
ing approaches, this relative motion is obtained
thanks to the proprioceptive sensors of the vehicle.

To distinguish the dominating degrees of freedom
in the image transformations, a sensitivity study
is carried out using typical driving scenarii. We
found that three degrees of freedom (lateral and
longitudinal displacements and yaw angle) are
enough in our context. Using this assumption,
sample results of visibility estimation are given
using actual images of fog.
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de visibilité.. In: Journées des Sciences de
l’Ingénieur.

Hautière, N., J.-P. Tarel, J. Lavenant and
D. Aubert (2006a). Automatic fog detection
and estimation of visibility distance through
use of an onboard camera. Machine Vision
and Applications Journal 17(1), 8–20.

Hautière, N., R. Labayrade and D. Aubert
(2006b). Real-time disparity contrast combi-
nation for onboard estimation of the visibil-
ity distance. In: IEEE Transactions on Intel-
ligent Transportation Systems. Vol. 7 of 2.

Horaud, R. and O. Monga (1995). Vision par
ordinateur, outils fondamentaux. Editions
Hermès.
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