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Abstract

To develop driving assistance systems which alert the
driver in case of inadequate speed according to the visi-
bility conditions, it is necessary to have descriptors of the
driver visibility and in particular to detect the visible fea-
tures in the image grabbed by the camera. In this aim, an
hysteresis filter is proposed, which is based on the Visibility
Level (VL) rather than on the gradient magnitude of edges.
First, edges are extracted. Second, to compute the VL of the
edges, a threshold function is computed according to the op-
tical characteristics of the sensor and a Contrast Sensitivity
Function of the Human Visual System. Then, the DCT coef-
ficients of each 8 x 8 block are computed. For each block,
the maximum ratio between a DCT coefficient of the block
and the corresponding coefficient of the previous threshold
function is computed to determine its VL. Then, hysteresis
filter is performed on VL values along edges which leads to
a perceptual hysteresis thresholding. Some guidelines to set
the thresholds are indicated. Results are given on images
grabbed onboard a vehicle. Finally, different techniques to
use this hysteresis thresholding in the domain of driving as-
sistances are proposed.

1 Introduction

The major part of all the information used in driving is
visual [32]. Reduced visibility thus leads to accidents. Re-
ductions in visibility may have a variety of causes, namely
the geometry of the road scene, the presence of obstacles
or adverse weather/lighting conditions. Different proposals
exist in the literature to mitigate the dangerousness of each
of these situations. Thereafter, these different solutions may
be fused to derive intelligent speed adaptation (ISA) sys-
tems which take into account the visibility conditions.

The problem of the road geometry is tackled by estimat-
ing the geometry visibility range using either a rotative li-

dar coupled with a high-precision GPS [9] or high resolu-
tion cameras [6, 33]. A night-visibility index using a ded-
icated vehicle to estimate the retroreflection of the road is
proposed in [8]. In these applications, the computations are
made off-line. By putting these output values on a digital
map, the driver may be warned when approaching an area
with a low geometrical visibility or a low night-visibility
index. One must notice that lane keeping systems may also
improve their reliability by exploiting such beforehand ob-
tained maps [22, 24]. To reduce the masking of the road
infrastructure caused by other vehicles, some specific adap-
tive cruise control systems have been developed to maintain
the followed vehicles in a small solid angle [21].

The presence of daytime fog and low visibility areas can
be detected using in-vehicle cameras [19, 17]. This infor-
mation can be used to adapt the operation range of opti-
cal sensors and to enhance signal processings [18] or to in-
form the driver if he is driving too quickly according to the
measured visibility conditions. Because the driver and the
camera do not have the same visual performances, it is nec-
essary to take into account the mapping function between
the driver and camera performances, which includes among
other parameters the camera response function [14]. There-
after, detecting the visible edges in the image is a critical
step to assess the driver visibility. In daytime fog, accord-
ing to CIE recommendations [2], the visible edges can be
assimilated to the set of edges having a local contrast above
5% [17]. In other cases, the situation is more complicated.
In this paper, we propose such a technique based on the
Contrast Sensitivity Function (CSF) of the Human Visual
System (HVS).

Edges detection is a classical problem in computer vi-
sion. Different reviews of work on edges detection are for a
long time available in the literature [28, 34]. Gradient mag-
nitude [30], zero-crossing [25], optimality criterion [12] are
among the most used techniques. However, a problem faced
by edges detectors is the choice of relevant threshold values
which are often empirically chosen. One of the most ef-
fective technique is hysteresis thresholding. However, the



high and the low threshold values constituting the hystere-
sis are most of the time both arbitrary selected. In order
to automatically find the best threshold, standardizations
of gradient magnitudes according to the surrounding pixels
have been proposed. In this aim, statistical approaches have
been developed [31]. Otherwise, approaches inspired by
the HVS characteristics have been tested, e.g. [27, 15]. In
our application context, it is straightforward to understand
that our proposal belongs to the latter family. Compared to
the numerous methods in the literature devoted to biologi-
cally inspired edges detection, our method does not aim at
fully mimicing the HVS. It aims at introducing some visual
mechanisms in image processing techniques. It enables us
to develop well-founded algorithms which are also quick
enough to be used in driving assistance systems.

We propose a hysteresis thresholding technique whose
low and high thresholds are based on Visibility Levels (VL)
in reference to [1]. These VLs are based on the CSF of a
human eye [11]. Thus, we compute the angular resolution
of the device used to grab the pictures using its optical char-
acteristics. Then, a Contrast Threshold Function (CTF) is
built by taking into account the angular resolution of the
sensor and a classical model of CSF. Within each 8 x 8
block of pixels, we compute the maximum ratio between a
Discrete Cosine Transform (DCT) coefficient of the block
and the corresponding coefficient of the CTF to determine
the VL of the block. Using this VL information, a hystere-
sis thresholding is applied using predefined low and high
thresholds on VLs and is used to select visible edges in nat-
ural images from the precomputed edge map. Compared
to [15], we do not wish to automatically extract all visible
edges and do not mimic the biological structure of the HVS
like in [27]. Our aim is rather to select the edges in the im-
age according to their perceptual relevance. Thereafter, the
properties of the proposed visibility criterion allows to al-
ways set the low threshold at 1 and to set the high threshold
depending on the aimed application (e.g. 7 for a night-time
driving task [3] and at least 20 for a reading task [1]).

Once the visible edges have been extracted, it is then pos-
sible to combine them with other algorithms to derive more
sophisticated descriptors of the driver visibility.

This paper is organized as follows. First, a geomet-
ric camera model is recalled. Then, a model of contrast
sensitivity function of the human visual system is summa-
rized. Then, the implementation of our visibility criteria
is explained. This leads to propose a perceptual hystere-
sis thresholding. Some perspectives for validating the pro-
posed algorithm from a psychophysical point of view are
given. Finally, different solutions to derive descriptors of
the driver visibility are briefly presented.

2 Angular Resolution of a Camera

In this section, we express the angular resolution of a
CCD camera in cycles per degree (cpd). This unit is used to
measure how well details of an object can be seen separately
without being blurry. This is the number of lines that can be
distinguished in a degree of a visual field.

Figure 1. Geometric camera model to com-
pute its angular resolution. Parameters : f
focal length, C optical center, ¢ visual field, d
corresponding length on the CCD array.

With the notations of Fig. 1, the length d for a visual
field & = 1° is expressed by d = 2f tan g. To have the
maximum angular resolution r7,; of the camera in cpd, it
is enough to divide d by the size 2t,,;, of two pixels (black

and white alternation) of the CCD array:
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This is a first order approximation as the resolution of
the camera is also affected by the diffraction of light against
the lens, which leads to a reduced camera resolution when
the aperture of the lens decreases. However, the proposed
algorithm is less sensitive to this phenomena. This is not the
case of the approach described in [15] where the diffraction
phenomena must be also taken into account.

3 Human Vision System Modeling

In the previous section, we recall a first order approxi-
mation of the angular resolution of a CCD camera. Let’s
now consider some characteristics of the HVS.

It is remarkable that our ability to discern low contrast
patterns varies with the size of the pattern, that is to say its
spatial frequency f, which is often expressed in cpd. The
CTF is a measure at a given spatial frequency of the mini-
mum contrast needed for an object, in fact a sinusoidal grat-
ing, to become visible. This CTF is defined as 1/CSF, where
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Figure 2. Contrast Sensitivity Function (CSF)
of the Human Visual System.

CSF is a Contrast Sensitivity Function (see Fig. 2). Several
CSF models have been proposed in the literature [10, 5]. In
this paper, we use the widely accepted, at least in the signal
processing area, CSF detailed in [23], plotted in Fig. 3 and
expressed by:
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Figure 3. CSF (—) and CTF (- -) of the HVS,
proposed by Mannos [23].

4 Design of a Visibility Criteria

In this section, we design a method which computes the
VL of a block of pixels. In this aim, we compute the spec-
trum of each block and compare each coefficient with the
minimum required to be visible by a human eye.

4.1 DCT Transform

We use the DCT to transform the image from the spatial
domain to the frequency domain. We denote A = {a;;},

a block of the original image and B = {b;;}, the corre-
sponding block in the DCT transformed image. With these
notations, the b;; coefficients are expressed by:

n—1n—1

bij = %cicj Z Z COS

k=0 1=0

(20 +1)jm

(2k + 1)im
2n 2n

COS

3
where ¢y = 1/\/5, ¢; = 1fori = 1...n-1 and n denotes
the block width. Following the JPEG format [35], we use
n = 8.

Then, to express the DCT coefficients in cycles per de-
grees, we simply consider that the maximum frequency
fmaz of the DCT transform, see (4), expressed in cycles
per pixel (cpp), is obtained for the maximum resolution of
the sensor, that is to say 7, ;.

4n

2n—1 @

f max —
It is interesting to notice that f,,,, goes to 2 cpp as n goes
to infinity.
Finally, to express the DCT coefficients {b;;} of a block
B in cpd and to plot the DCT coefficients of a block with re-
spect to the corresponding values of the CTF (see Fig. 5), it
is enough to use the scale factor (5) obtained by computing
the ratio between (1) and (4):
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Figure 4. Curves of the CSF and of the CTF
for the sensor used to grab the samples im-
ages given in the paper: t,,, = 83um, f =
8.5mm.

In our tests, we use images which have been grabbed by
a CCD camera. The reconstructed CSF and CTF for this
sensor is plotted in Fig. 4. An important property of this
sensor configuration is that the peak of sensitivity of the
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HVS is taken into account (see Fig. 3 between 0.5 and 10
for comparison). We used a CCD sensor with short expo-
sures. We can thus assume that for this sensor the mapping
between luminance and intensity is linear, at least for day-
time lighting conditions, which means AL = A]I. This is
an important point to remember for the next paragraph.

Figure 5. Computation of VL, in the blocks
marked with an arrow under sunny weather
and foggy weather. The CTF is plotted in
white and the spectrum of the block is rep-
resented by the different black peaks: (a)
VL, = 17; (b) VL, < 1; (¢) VL, = 4.6; (d)
VL, < 1. Only the blocks in (a) and (c) con-
tain visible edges according to the definition
of VL,.

4.2 Visibility Criteria
For non-periodic targets, visibility can be related to the
(Weber) luminance contrast C', which is defined as:

AL L - L
C=1,." "o

(6)

where AL is the difference in luminance, between object
and background, L; is the luminance of the target, L, is the
luminance of the background.

The threshold contrast AL;j,eshoiq indicates a value at
which a target of defined size becomes perceptible with a
high probability. Based on Weber’s model or Blackwell’s
reference models, this threshold depends on target size and
light level, decreasing with increase of light level. For
suprathreshold contrasts, i.e. for contrast thresholds above
the visibility threshold, the visibility level (VL) of a target

can be quantified by the ratio [1]:

_Actual contrast
~ Threshold contrast
At threshold, the visibility level equals one and above

threshold it is greater than one. Combining (6) and (7), we
have:

VL )

VL = (AL/Lb)actual/(AL/Lb>th7‘cshald (®)

As the background luminance Lj; is the same for both
conditions, then this equation reduces to:

VL = ALactu,n,l/ALth,reshold (9)

In any given situation, it is possible to measure the
luminance of the target and its background, which gives
AL,_,... but in order to estimate VL, we also need to
know the value of AL,, ., . This can be estimated using
Adrian’s target visibility model [4] based on experimental
data.

By analogy with the definition of VL for non-periodic
targets, we propose a new definition of the visibility level,
denoted VL, valid for periodic targets, i.e. gratings.
Hence, to obtain the VL, of a block, we first consider the
ratio r;; between a DCT coefficient of the block and the cor-
responding coefficient of the CTF model given in section 3:

_ by
" = CTF,
Based on the definition of the CSF, it is enough that one
of the coefficients r;; is greater than 1 to consider that the
block of pixels contains visible edges. Therefore, to define
VL, we propose to choose the greatest r;;. The proposed
expression for VL, is thus:

(10)

VL, = max r;; (11)
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Based on this definition, if VL, < 1, we can con-
sider that the considered block of pixels contains no visible
edges.

First, we illustrate in Fig. 5 the concept in different
blocks of images under sunny weather and foggy weather.
For each considered image block, the spectrum is plotted
with respect to the CTF. VL,, values are given.

Second, Fig. 6 displays VL, > 1 maps computed on
sample images with different lighting conditions (daytime,
nighttime with public lighting, daytime fog). The whiter the
pixel is, the bigger VL, is.

5 Perceptual Hysteresis Thresholding

5.1 Edges Detection by Segmentation

Although the proposed approach may be used in con-
jonction with different edge detectors, like Canny-Deriche’s



Figure 6. First row: original images (768x576) with different lighting conditions. Second row: VL, > 1

maps. The whiter the pixel is, the bigger VL, is.

one [12], zero-crossing approach [25] or Sobel’s approach
[30], we propose an alternative method which fits well with
our approach and consists in finding the border which max-
imizes the contrast between two parts of a block, without
adding a threshold on this contrast value. The edges are the
pixels on this border. This approach is based on Kohler’s
binarization method [20] and is described in [16].

5.2 Hysteresis Thresholding on the Visi-
bility Levels

In the usual hysteresis thresholding, a high threshold and
a low threshold are set. In a first pass, all pixels with gra-
dient value greater than the high threshold are seeds for
edges. In the next pass, any pixels with a gradient greater
than the low threshold and adjacent or closely neighboring
other edge pixels are also classified as edge pixels. This
technique for detecting the edges is inspired by biological
mechanisms [13].

We propose to replace these thresholds on the gradient
magnitude by thresholds on the VL, (cf. Fig. 7) as ex-
plained in section 4.2. Thus, the algorithm is as following:
first, all possible edges are extracted (see paragraph 5.1),
second, the edges are selected thanks to its V' L,, value using
low tr, and high ¢ty thresholds. Examples of edges detec-
tion are given in Fig. 8 for two sets of thresholds: t;, = 1,
tg = 10 and (¢t = 1, ty = 20. To help visualize the
differences between the two sets, the image differences are
also shown in Fig. 9. One can notice that even using the
first set of thresholds (first row of Fig. 8), no noisy features
are detected whatever are the lighting conditions whereas
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Figure 7. Principle behind thresholding by
hysteresis: points (i,j) are marked by two
thresholds. The lower threshold ¢, generates
the “candidate” points. The upper thresh-
old ¢y provides a good indication of the ex-
istence of a contour.



Figure 8. Results of edges detection. Firstrow: ¢;, = 1and ¢y = 10 ; second row : {;, = 1 and ¢y = 20.

thresholds are fixed. The method is thus clearly adaptive.

5.3 Contrast Detection Threshold of the
Human Eye

The value of £, is easy to choose, because it can be re-
lated to the HVS. Provided that the proposed analogy is
relevant, setting t;, = 1 should be appropriate for most
applications. The value of ¢tz depends on the application.
For lighting engineering, the Commission Internationale de
I’Eclairage (CIE) published some recommandations to ade-
quately set the Visibility Levels thresholds according to the
complexity of the visual task [1]. For example, [3] explains
that VL = 7 is a adequate value for night-time driving
task. It should be advantageous to set t;, = 7 as a starting
point. However, a psychophysical validation is necessary
(see paragraph 7).

6 Towards Road Visibility Descriptors

Once visible edges have been extracted, they can be used
in the context of an onboard camera to derive driver visibil-
ity descriptors.

First, the range to the most distant visible edge belonging
to the road surface can be computed. Using stereovision,
the pixels belonging to the road surface can be extracted.
Then, by scanning the disparity map from top to bottom
starting from the horizon line, the first visible edge which
is encountered gives the visibility distance. This process
has been already implemented for daytime fog images [17].
If the vehicle has only one camera, edges belonging to the

road plane can also be extracted using successive images
alignment [7].

Second, already existing driving assistance systems can
be used. In particular, lane markings detectors can be used
to derive visibility descriptors, what was pioneered in [29].

7 Future Works

We plan three steps to complete and validate the algo-
rithm from a psychophysical point of view.

1. An extension to color images is planned. The idea is
take into account the different sensitivities of the HVS
to chromatic and achromatic contrasts [36].

2. The CSF is valid for a given adaptation level of the
HVS, which is be approximately related to the mean
luminance of the scene. In other words, the CSF
should not be the same for daily and night scenes.
Then, it would be necessary to compare the edges de-
tection results according to the chosen CSF. Finally, an
interesting additional step would be to automatically
select the properly CSF according to the image con-
text.

3. To validate the approach, we propose to compare our
results with the set of edges which are manually ex-
tracted by different people. This work has been done
previously for classical edges detectors [26] and the
image databases are available. The results show that
none of the approaches give results which resemble the
manually extracted edges. The fact that our threshold-
ing technique is based on some characteristics of the
HVS may lead to better results.



Figure 9. Images of difference between the images of the first and the second row of Fig. 8. Grey:
common edges ; black: edges only detected in the first row.

8 Conclusion

In this paper, we present a visible edges selector and use
it in the context of in-vehicle applications. It proposes an
alternative to the traditional hysteresis filtering which re-
lies on low and high thresholds on the gradient magnitude.
Thus, we propose to replace them by visibility levels which
take into account the spectrum of an image block and com-
pare it to the inverse of a contrast sensitivity function of the
human visual system. By applying this so called percep-
tual hysteresis filtering to edges extracted by any kind of
technique, only visible edges are selected. The low thresh-
old can be fixed at 1 in general. Some guidelines to set the
high threshold are proposed. Approaches to complete and
validate the algorithm from a psychophysical point of view
are proposed. This algorithm may be used to develop so-
phisticated driver visibility descriptors. Thereafter, it can
be fused with other visibility descriptors of the road geome-
try, the night-visibility or the weather conditions to develop
driving assistance systems which takes into account all the
visibility conditions.

Acknowledgments

This work is partly founded by the French ANR project
DIVAS (2007-2010) dealing with vehicle-infrastructure co-
operative systems.

References

[1] An Analytic Model for Describing the Influence of Lighting
Parameters Upon Visual Performance, volume 2: Summary
and application guidelines. Publication CIE 19, 1981.

[2] International lighting vocabulary. Number 17.4. Commis-
sion Internationale de I’Eclairage, 1987.

[3] W. Adrian. Visibility level under nighttime driving con-
ditions. Journal of the Illumination Engineering Society,
16(2):3-12, 1987.

(4]

(3]

(6]

(7]

8]

(9]

(10]

(11]

(12]

[13]

[14]

(15]

[16]

W. Adrian. Visibility of targets: model for calculation.
Lighting Research and Technologies, 21:181-188, 1989.

P. G.J. Barten. Contrast sensitivity of the human eye and its
effects on image quality. SPIE, 1999.

E. Bigorgne and J.-P. Tarel. Backward segmentation and
region fitting for geometrical visibility range estimation. In
submitted to Asian Conference on Computer Vision, Tokyo,
Japan, November 2007.

C. Boussard, N. Hautiere, and B. d’Andréa Novel. Vi-
sion guided by vehicle dynamics for onboard estimation of
the visibility range. In IFAC Symposium on Intelligent Au-
tonomous Vehicles, Toulouse, France, September 2007.

R. Brémond, H. Choukour, Y. Guillard, and E. Dumont. A
night-time road visibility index for the diagnosis of rural
road networks. In 26th session of the CIE, Beijing, China,
July 2007.

X. Brun, F. Goulette, P. Charbonnier, C. Bertoncini, and
S. Blaes. Modélisation 3d de routes par télémétrie laser em-
barquée pour la mesure de distance de visibilité, 5-6 décem-
bre 2006. In Journées des Sciences de I’Ingénieur, Marne la
Vallée, France, December 2006.

F. W. Campbell and J. G. Robson. Application of fourier
analysis to the visibiliy of gratings. The Journal of Physiol-
ogy, pages 551-566, 1968.

Committee On Vision. Emergent Techniques for Assessment
of Visual Performances. National Academic Press, 1985.

R. Deriche. Using canny’s criteria to derive an optimal edge
detector recursively implemented. International Journal on
Computer Vision, 2(1), 1987.

J. A. Ferwerda. Elements of early vision for computer graph-
ics. IEEE Computer Graphics and Applications, 21(5):22—
33,2001.

M. Grossberg and S. K. Nayar. Modelling the space of cam-
era response functions. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 26(10):1272-1282, 2004.

N. Hautiere and D. Aubert. Visibles Edges Thresholding: a
HVS based Approach. In International Conference on Pat-
tern Recognition, volume 2, pages 155-158, August 2006.
N. Hautiére, D. Aubert, and M. Jourlin. Measurement of
local contrast in images, application to the measurement of
visibility distance through use of an onboard camera. Traite-
ment du Signal, 23(2):145-158, Septembre 2006.



[17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

N. Hautiere, R. Labayrade, and D. Aubert. Real-Time Dis-
parity Contrast Combination for Onboard Estimation of the
Visibility Distance. IEEE Transactions on Intelligent Trans-
portation Systems, 7(2):201-212, June 2006.

N. Hautiere, J.-P. Tarel, and D. Aubert. Towards fog-free in-
vehicle vision systems through contrast restoration. In /EEE
Conference on Computer Vision and Pattern Recognition,
Minneapolis, USA, June 2007.

N. Hautiere, J.-P. Tarel, J. Lavenant, and D. Aubert. Auto-
matic Fog Detection and Estimation of Visibility Distance
through use of an Onboard Camera. Machine Vision and
Applications Journal, 17(1):8-20, April 2006.

R. Kohler. A segmentation system based on threshold-
ing. Graphical Models and Image Processing, 15:319-338,
1981.

H. Kumon, Y. Tamatsu, T. Ogawa, and I. Masaki. ACC in
consideration of visibility with sensor fusion technology un-
der the concept of TACS. In IEEE Intelligent Vehicles Sym-
posium, Tokyo, Japan, June 2005.

R. Labayrade. How autonomous mapping can help a road
lane detection system? In /EEE International Conference on
Control, Automation, Robotics and Vision, Singapore, De-
cember 2006.

J. Mannos and D. Sakrison. The effects of visual fidelity
criterion on the encoding of images. /IEEE Transactions on
Information Theory, IT-20(4):525-536, 1974.

T. Manolis, A. Polychronopoulos, and A. Amditis. Using
digital maps to enhance lane keeping support systems. In
IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, June
2007.

D. Marr and E. Hildreth. Theory of edge detection. Pro-
ceedings Royal Society London, B-207:187-217, 1980.

D. R. Martin, C. Fowlkes, and J. Malik. Learning to detect
natural image boundaries using local brightness, color and

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

texture cues. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(5):530-549, 2004.

E. Peli. Feature detection algorithm based on a visual system
model. Proceedings of the IEEE, 90(1):78-93, 2002.

E. Peli and D. Malah. A study of edge detection algo-
rithms. Computer Graphics and Image Processing, 20(1):1-
21, 1982.

D. Pomerleau. Visibility estimation from a moving vehicle
using the ralph vision system. In IEEE Conference on Intel-
ligent Transportation Systems, pages 906911, November
1997.

W. K. Pratt. Digital Image Processing. John Wiley&Sons,
1991.

R. R. Rakesh, P. Chaudhuri, and C. A. Murthy. Thesholding
in edge detection: A statistical approach. IEEE Transactions
on Image Processing, 13(7):927-936, 2004.

M. Sivak. The information that drivers use: is it indeed 90%
visual? Perception, 26:1081-1089, 1996.

J.-P. Tarel, S.-S. Ieng, and P. Charbonnier. Accurate and
robust image alignment for road profile reconstruction. In
IEEE International Conference on Image Processing, San-
Antonio, Texas, USA, September 2007.

V. Torre and T. Poggio. On edge detection. /IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 8:147—
163, 1986.

G. K. Wallace. The JPEG still picture compression standard.
Communications of the ACM, 34(4):30—44, 1991.

S. Westland, H. Owens, V. Cheung, and I. Paterson-
Stephens. Model of luminance contrast-sensitivity function
for application to image assessment. Color Research and
Application, 31(4):315-319, 2006.



