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Abstract— Reliable obstacles detection under adverse
weather conditions, especially foggy conditions, is a challenging
task because the contrast is drastically reduced. Consequently,
the classical approaches relying on pattern recognition tech-
niques or points of interest matching are not so efficient
anymore. In this paper, a novel approach is proposed which
is able to simultaneously restore the contrast of the scene and
to detect the presence of obstacles by stereovision once the
atmosphere opacity is known. The different computation stages
are detailed: fog density estimation, contrast enhancement, local
distortions detection and obstacles detection, as well as their
combination. The method is illustrated and partially assessed
thanks to a video sequence under foggy weather. Finally, future
research directions are indicated.

I. INTRODUCTION

Reliable obstacles detection is a fundamental task for the
prevention of collisions, the inter-distance management [31].
Most reliable methods are based on multi-sensor fusion to
ensure a high rate of detection and a very low rate of false
detections [18]. In this area, RADAR, LIDAR and camera
are among the most used sensors. One efficient multi-fusion
strategy is to detect targets with one sensor, which are then
confirmed by a second sensor [26]. However, this strategy has
some limitations under degraded weather conditions, such
as heavy rain or fog. Indeed, the operation range of optical
sensors (LIDAR, camera) is reduced under these meteorolog-
ical conditions. Consequently, the detections which would be
provided by a RADAR would not be confirmed by another
sensor.

A LIDAR can be used to determine bad weather condi-
tions. Some strategies are proposed to enhance its perfor-
mances under such conditions [29]. Cameras can also be
used to detect low visibility conditions [11], [12], [14], [27].
A strategy has been proposed to enhance its performances for
robust lane markings detection under bad weather conditions
[10].

No strategy to mitigate the impact of weather conditions
on obstacle detection has been proposed. The simpleminded
approach consists in lowering the thresholds of low level
image processings, such as gradients extraction. This is
useless and even dangerous. Indeed, given that the contrast
decay is exponential with respect to the depth of scene
points, noisy features would be extracted close to the vehicle
potentially causing some false detections and no new image

features would be extracted further, which does not improve
the detection rate.

In this paper, an original strategy is proposed based on
stereovision which consists in simultaneously restoring the
contrast and detecting the objects above the road surface.

This paper is organized as follows. In a first part, we
recall why optical sensors are affected by adverse weather
conditions. In a second part, the principle of our contrast
restoration algorithm is introduced. In a third part, the "u-v
disparity" stereovision framework to detect vertical objects
above the road surface is recalled. In a fourth part, we
present the principle of the simultaneous contrast restoration
and detection algorithm. To illustrate the proposal, a video
sequence under foggy weather is used in the paper. Finally,
some research directions to validate and improve the pro-
posed approach are indicated.

II. OPTICAL SENSORS AND ADVERSE WEATHER
CONDITIONS

The operation range of exteroceptive sensors depends on
the weather conditions. A study has been done in [16] to
study the operation range of infrastructure based sensors with
respect to weather conditions. The results can be extrapolated
for in-vehicle sensors. Thus, according to the curves plotted
in Fig. 1 and partially extracted from [2], the output signal
of optical sensors running in the visible or near infrared
light range is degraded by adverse weather conditions. Con-
sequently, signal processings techniques relying on optical
sensors to detect obstacles or the lane markings are less
efficient under adverse weather conditions.

Thus, to be able to detect that the output signal of exte-
roceptive sensors is degraded by environmental conditions
while relying only on the signal itself is a critical step.
Indeed, it enables to automatically adapt the operation range
of the sensors and the associated signal processing according
to the encountered environmental conditions. Then, if this
objective is reached, it will ensure a high reliability of
future advanced driving assistances and allow their massive
deployment.

III. CONTRAST AND METEOROLOGICAL VISIBILITY

A. Vision and the Atmosphere

Koschmieder’s law is a basic equation in daytime visual
range theory relating the apparent luminance of a distant



Fig. 1. Attenuation of electromagnetic signals with respect to the meteo-
rological conditions [2]: drizzle, rain, heavy rain, excessive rain, fog. The
three areas of the electromagnetic spectrum which are typically considered
in in-vehicle sensors are indicated on the abscissa axis.

black object of intrinsic luminance L0, the apparent lumi-
nance of the background sky above the horizon L f , the
extinction coefficient k of the atmosphere and the distance
of observation d [22]. It is also called airlight formula [24]:

L = L0e−kd +L f [1− e−kd ] (1)

According to the International Commission on Illumi-
nation [1], for a contrast visibility threshold of 5%, the
meteorological visibility Vmet during the day can be related
approximately to extinction coefficient using Koschmieder’s
relation (1):

Vmet =
3
k

(2)

The meteorological visibility distance is thus a standard
dimension that characterizes the opacity of the atmosphere.

B. Recovering the Atmospheric Extinction Coefficient

For automotive applications, a camera or a LIDAR can
be used to recover the value of the atmospheric extinction
coefficient k.

1) LIDAR:
This laser based sensor can be used for estimating fog

density by measuring the signal backscattered by fog droplets
[4]. The power per pulse from range r received by a LIDAR
is given by the simplified LIDAR equation [6]:

PR(r) =
PT cτβAe

8πr2 exp
[
−2

∫ r

0
k(x)dx

]
(3)

where PT denotes the peak transmitted power per pulse, c the
speed of light, τ the pulse duration, β the backscatter cross
section per unit volume, Ae the effective receiver aperture
and k(x) the atmospheric extinction coefficient.

Under strictly homogeneous conditions, β and k are not
dependant of range. Hence, (3) becomes:

PR(r) =
A”

r2 exp[−2kr] (4)

where A” denotes a constant that depends on device charac-
teristics. The slope of the decaying waveform when differ-
entiating (3) with respect to range becomes:

dPR(r)
dr

= PR(r)
[
−2k− 2

r

]
(5)

This differential equation is the basic principle on which
the LIDAR measurement of the extinction coefficient in a
homogeneous scattering medium is done.

For automotive applications, the LIDAR seems to be the
best suited active sensor for estimating the meteorological
visibility, since it does not need any receiver, contrary to
infrastructure based visibilitymeters, and can be used for
other safety applications, e.g. obstacles detection [26] or lane
recognition [25]. Consequently, it has been used for adjusting
the power of headlights [3], [28] or for adjusting the headway
in Automatic Cruise Control (ACC) [5] according to the
prevailing meteorological conditions. However, it has been
shown that the dynamic adaptation of the emitting power of
a LIDAR with respect to visibility conditions is not always
perfect [7].

2) Camera:
In [14], [19], a method aiming at estimating the extinction

coefficient of fog k is presented. By replacing d in (1) by the
corresponding image line assuming a flat world and by taking
twice the derivative of (1) with respect to the image line,
yields a simple expression giving the parameter k according
to the positions of the inflection point vi and the horizon line
vh:

Vmet =
3λ

2[vi− vh]
(6)

where λ = hα
cos2 θ depends on the camera parameters. h

denotes the sensor mounting height, α the ratio between the
focal length of the camera and the pixel size assuming square
pixels, and θ the pitch angle of the camera (see Fig. 3).

(a)
(c)(b)

Fig. 2. Example of estimation of the meteorological visibility distance
using the method described in [14], [19]: (a) partial detection of road
and sky areas ; furthermore, the location of the vanishing point location
(black cross) can be estimated in this way. (b) left curve: instantiation of
(6) ; black segments: measurement bandwidth ; horizontal line: image line
representative of the meteorological visibility distance.



An example of automatic fog detection and estimation
of the meteorological visibility distance is given in Fig. 2.
Fig. 2(a) depicts the result of a region growing technique
which detects some parts of the road and the sky. Thanks
to the previous step, the instantiation of (1) is possible
and finally the value of Vmet is automatically recovered by
using (6). The image line representative of the meteorological
visibility distance is plotted horizontally on Fig. 2(b).

C. Enhancing the Contrast

Once atmosphere opacity is known thanks to the compu-
tation of k, it is possible to restore the contrast of the images
grabbed by the camera. The proposed approach consists in
inverting the airlight model (1):

L0 = Lekd +L f [1− ekd ] (7)

The missing parameters are now L f and a distance distri-
bution in the scene. If k is estimated thanks to the method
described in [14], L f can be directly estimated. Otherwise,
one can search the sky region directly [8], [21]. Moreover,
an attempt to extract L f was proposed in [30].

Using onboard cameras, the distances distribution in the
road scene is unknown a priori which is a problem. We
explain in the next section how to infer a suited distances
distribution which will help to understand the scene structure.

D. Inferring a Suited Distance Distribution

In the road context, the distances distribution in the scene
can be roughly divided in two parts. A first part models
the road surface which can be approximated by a plane.
A second part models the objects above the road surface.
According to [23], the depth of a scene point can be modeled
as a function of the euclidian distance in the image plane
between the corresponding pixel and the vanishing point
(uh, vh) . Consequently, the depth d of a pixel with (u, v)
coordinates can be represented as:

d = min
[

λ
v− vh

,
κ√

(u−uh)2 +(v− vh)2

]
(8)

where κ > λ models the relative importance of the flat world
against the vertical world.

Thus, by adjusting the value of κ , it will be possible
in section V to simultaneously restore and detect vertical
objects in a poor contrasted scene. Before presenting this
algorithm, let us recall our stereovision framework aiming at
detecting the objects above the road surface and a recent
contribution to precisely fit bounding boxes around the
objects [13].

IV. STEREOVISION BASED ROAD SCENE ANALYSIS

Thanks to the "u-v disparity" stereovision technique, it is
possible to compute the longitudinal profile of the road, then
to detect vertical planes and finally to set bounding boxes
around the vertical objects above the road surface.

Fig. 3. Domain of validity of the study and coordinate systems used.

A. The Image of a Plane in the "v-disparity" Image

The stereovision algorithm uses the "v-disparity" trans-
form, in which the detection of straight lines is equivalent
to the detection of planes in the scene. In this aim, the v
coordinate of a pixel is represented towards the disparity
∆ (performing accumulation from the disparity map along
scanning lines) and detect straight lines and curves in this
"v-disparity" image (denoted by Iv∆) [17].

This algorithm assumes that the road scene is composed
of set of planes: obstacles are modeled as vertical planes,
whereas the road is supposed to be an horizontal plane (when
it is planar), or a set of oblique planes (when it is not planar),
as shown in Fig. 3.

According to the modeling of the stereo sensor given on
Fig. 3, the plane of equation Z = d, corresponding to a
vertical object, is projected as the straight line (9) in Iv∆ :

∆ =
b
d

[v− v0]sinθ +
b
d

α cosθ (9)

The plane of equation Y = 0, corresponding to the road
surface, is projected as the straight line (10) in Iv∆ :

∆ =
b
h
[v− v0]cos(θ)+

b
h

α sinθ (10)

The different parameters of the sensor are the same as
in section III-B.2 except that b is the distance between the
cameras (i.e. the stereoscopic base) and (u0,v0) denotes the
position of the optical center in the image coordinate system.
Mathematical details can be found in [17].

B. "v-disparity" Image Construction and 3-D Surface Ex-
traction

The algorithm performs a robust extraction of these planes
from which it deduces many useful information about the
road and the obstacles located on its surface. From two stereo
images, a disparity map I∆ is computed (Zero Normalized
Cross Correlation -ZNCC- criteria is used to this purpose
along edges). Then an accumulative projection of this dis-
parity map is performed to build the "v-disparity" image Iv∆.
For the image line i, the abscissa uM of a point M in Iv∆
corresponds to the disparity ∆M and its grey level iM to the



number of points with the same disparity ∆M on the line
i : iM = ∑P∈I∆ δvP,iδ∆P,∆M where δi, j denotes the Kronecker
delta.

From this "v-disparity" image, a robust extraction of
straight lines is performed through a Hough transform. This
extraction of straight lines is equivalent to the extraction of
the planes of interest taken into account in the modeling of
the road scene (cf. Fig. 3).

C. "u-disparity" Image Computation and Objects Segmenta-
tion

Once vertical planes are extracted, a bounding box has
to be positioned around the different vertical objects on
the road surface. To compute their lateral position, it is
proposed in [17]to perform an accumulative projection of
this disparity map along the horizontal axis, in order to
build a "u-disparity" image Iu∆. Unfortunately, left and right
sides of obstacles are often disconnected. This is due to
the fact the technique relies only on horizontal gradients
to match the stereo pairs. So the disparity can not be
computed on horizontal edges. In this way, objets composed
of both vertical and horizontal gradients can not be correctly
detected, like the backside of a vehicle for example.

To solve the problem, we propose to propagate disparity
information on horizontal edges using the quasi-dense match-
ing algorithm developed in [20]. Its principle is to perform
a region growing in the disparity space, guided not by a
criterion of homogeneity but by a score of correlation, in
order to progressively densify the disparity map into textured
areas.

Thus, the seed matches of the quasi-dense matching al-
gorithm are the matches used to compute the "v-disparity"
image. Then, the initial seeds are propagated like in [20],
except that for each match candidate we check if it belongs
to one of the planes of the "v-disparity" image. If it is the
case, the match candidate is added to the current set of seeds
and to the current set of accepted matches, which is under
construction. Otherwise, the match candidate is removed
from the current set of seeds.

Resulting of the proposed method, the disparity map is
quasi-dense, especially on the vertical objects (Fig. 5(c)). We
can thus compute a quasi-dense and reliable "u-disparity"
image and set an accurate bounding box around objects
(Fig. 5(d)). Thus, using this approach, the risk that the
same object is split into different bounding boxes is reduced.
Details of the method can be found in [13].

V. SIMULTANEOUS CONTRAST RESTORATION AND
OBSTACLE DETECTION

A. Principle

Initialized with a small initial value of κ in (8), e.g. κ =
1.1λ , the principle of the simultaneous contrast restoration
and obstacle detection algorithm is to progressively increase
the value of κ and to detect the distorted areas. As soon as
vertical objects are encountered, a local contrast distortion
can be noticed. In this case, the vertical object causing
the distortion is detected by stereovision. The increase of

(a) (b)

(c) (d)

Fig. 4. Illustration of the contrast enhancement process. (a)(b) Original
stereo pair. (c)(d) "Half-restored" images. The contrast restoration process
created some visual distorsions in right image on the vehicle (Fig. 5a). The
contrast restoration parameters are then used to restore the contrast of the
left image.

κ can then be restarted until the desired final value, e.g.
κ = 10λ , is reached. Let us describe more precisely the
different computation stages of the proposed algorithm.

B. Contrast Restoration

The contrast restoration stage consists in inverting
Koschmieder’s law (7). The distance distribution in the
scene is the one of (8) with the given value of κ . For
the pixels belonging to the road surface, the contrast is
correctly restored. For the pixels corresponding to vertical
objects, as the value of κ increases, the contrast is not
correctly restored. On the contrary, because their distances
is overestimated (they are assumed to belong to the road
surface), their contrast is also overestimated. Consequently,
their intensities become null even negative and creates visual
distortions.

Such visual distortions can be noticed on Figs. 4(c)(d)
on the pixels corresponding to the rear part of the followed
vehicle. The white pixels remain white and the grey pixels
become black after contrast enhancement. They are precisely
detected thanks to the method described in the next para-
graph.

C. Local Distortions Detection

The overestimation of scene points distance creates some
black and white visual distortions in the image. To momen-
tarily stop the contrast restoration process and to detect the
corresponding objects, these distortions must be detected.
In this aim, we propose to detect a decrease of local
normalized correlation between the original image and the
restored image. Indeed, if the contrast is correctly restored,
the normalized correlation should remain constant. Indeed,
thanks to the normalization, the proposed image quality
attribute is not sensitive to contrast change. However, when
the contrast is distorted, the normalized correlation will



(a) (b)

(c) (d)

(e) (f)

Fig. 5. (a) Distorted pixels after the initial contrast restoration process ;
(b) "v-disparity" image computed using the stereo pair given on the
Figs. 4(c)(d) ; (c) quasi-dense disparity map obtained using the method
given in [13] ; (d) bounding box around the detected vehicle computed
thanks to "u-disparity" ; (e) distorted pixels after final contrast restoration ;
(f) final image.

decrease. Once local distortion is detected, the corresponding
object bounding box can be extracted by stereovision as
explained in next section.

Two examples of detection of local distorted pixels are
given and Figs. 5(a)(e). Fig. 5(a) corresponds to the distorted
pixels of the initial restoration process. Fig. 5(e) corresponds
to the distorted pixels of the final restoration process.

D. Obstacle Detection

To detect the object which corresponds to a local distor-
tion, the "u-v disparity" stereovision approach is used which
was presented in section IV. Thus, assuming that the right
image of the stereo pair is used to restore the contrast, the
restoration parameters, especially the κ value, are used to
restore the contrast of the left image of the stereo pair. The
detection of the object is then possible and is facilitated
thanks to the contrast distortion for two reasons. Firstly, the
contrast is enhanced so that the object is easier to segment.
Secondly, the stereovision algorithm must only confirm that
the local distorted pixels correspond to an object of interest.

Thus, a "v-disparity" image is computed and the differ-
ent vertical planes corresponding to obstacles are detected
(Fig. 5b). A quasi-dense disparity map is computed (Fig. 5c).
Finally, a bounding box around the vertical objects is fitted
(Fig. 5d). Their true distances can be estimated. Conse-
quently, the contrast can be correctly restored on them.

Thereafter, the contrast restoration loop can then restart
outside the area where the obstacle has been detected. When
the final value of κ is reached, the contrast of the image
is restored and the vertical objects have been detected, see
Fig. 5(d)(f).

E. Contrast Restoration Assessment

To assess the proposed contrast restoration algorithm, we
propose to compute the local contrasts above 5% in the
image before and after the contrast restoration. The proposed
method is based on Köhler’s binarization technique [15]
and is detailed in [12]. Results are given on Fig. 6 for the
right image of our test stereo pair. The increasing of the
mobilized visibility distance [12], i.e. the distance to the most
distant picture element belonging to the road surface having
a contrast above 5%, is clearly noticeable.

(a) (b)

(c) (d)

Fig. 6. (a) Original right image of the test stereo pair ; (b) image with
restored contrast ; (c) local contrasts above 5% computed on the original
image ; (d) local contrasts above 5% on the image with restored contrast.
The grey level of the pixels is proportional to the contrast value.

The proposed simultaneous contrast restoration and obsta-
cle detection algorithm is summarized on Fig. 7.

VI. DISCUSSION AND PERSPECTIVES

In this paper, the first results of a novel approach to
restore the contrast of weather degraded images and to detect
obstacles by means of stereovision have been presented.
This approach is novel because the contrast restoration step
and the obstacles detection are done simultaneously. The
proposed algorithm combines three technical components:
a fog detection component, a contrast restoration component
with its associated image quality attribute and an obstacles
detection component. For the moment, the computational
cost of the method is quite important (approximately 3-5
seconds for the test image) but no code optimization has
been done. Then, an experimental validation of the different
components must be carried out. Different scenarios with
various meteorological conditions must be grabbed. In this
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Fig. 7. Overview of the proposed simultaneous contrast restoration and
obstacle detection algorithm (LI Left Image, RI Right Image).

context, the use of a virtual sensors simulation plateform may
be useful [9].

Driving assistances which are able to deal with adverse
conditions are not yet ready for deployment. Thus, the
robustness of driving assistances is one of the priorities of
the 7th Framework Programme of the European Commission
which is just starting. In this context, to detect the unfa-
vorable weather and lighting conditions by only using the
output signal of the sensors themselves is one of the keys
of the success. The approach in this paper presents such a
contribution.
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