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ABSTRACT

The contrast of outdoor images acquired under adverse weather conditions, especially foggy weather, is altered
by the scattering of daylight by atmospheric particles. As a consequence, different methods have been designed
to restore the contrast of these images. However, there is a lack of methodology to assess the performances of
the methods or to rate them. Unlike image quality assessment or image restoration areas, there is no easy way
to have a reference image, which makes the problem not straightforward to solve. In this paper, an approach is
proposed which consists in computing the ratio between the gradient of the visible edges between the image
before and after contrast restoration. In this way, an indicator of visibility enhancement is provided based on
the concept of visibility level, commonly used in lighting engineering. Finally, the methodology is applied to
contrast enhancement assessment and to the comparison of tone-mapping operators.

Keywords: advanced driver assistance system, blind assessment, contrast restoration, contrast enhancement,
edges segmentation, LIP model, tone-mapping, visibility level.

INTRODUCTION

The contrast of outdoor images acquired under
adverse weather conditions, especially foggy weather,
is altered by the scattering of daylight by atmospheric
particles (Narasimhan and Nayar, 2002). As a
consequence, different methods have been designed
to restore their contrast, in order to maintain
the performances of video-surveillance systems
(Narasimhan and Nayar, 2003) or in-vehicle vision
systems (Hautière et al., 2007) as much as possible.
However, there is a lack of methodology to assess the
performances of such methods, or to rate them. Since
fog effects are volumetric, fog cannot be addressed like
a classical image noise or degradation which might
be added and then removed. Consequently, compared
to image quality assessment (Sheikh et al., 2006) or
image restoration (Guichard et al., 2002) areas, there
is no easy way, synthetic images from 3D models put
aside, to have a reference image, which makes the
problem not straightforward to solve.

In this article, a solution is proposed. First of all,
visible edges in the image before and after contrast
restoration are extracted. The rate of new visible edges
is deduced. Then, the ratio of the gradient of the visible
edges between both images is computed. Thanks to
the concept of visibility level, proposed by Adrian
(1989), it is shown that this coefficient corresponds to
the visibility enhancement produced by the restoration

algorithm. Finally, based on this result, an indicator of
visibility enhancement is derived.

The article is organized as follows. First, the
visibility model of Adrian (1989) is presented as
well as how to use it to derive a blind contrast
restoration assessment method based on visible
edges ratioing. Second, the proposed methodology
is applied to assess the performances of a contrast
restoration method of daytime fog images acquired
using in-vehicle cameras. This method is summarized
for completeness. Compared to classical contrast
enhancement techniques, our approach is a restoration
method, since it is based on a model of image
degradation, which is typically done in remote sensing
(Sadot et al., 1995).

Finally, the proposed methodology is discussed
and applied to two other topics: the assessment of
histogram-based contrast enhancement techniques and
the comparison of tone-mapping operators.

MATERIALS AND METHODS

VISIBILITY MODEL
For non-periodic targets, visibility can be related

to the (Weber) luminous contrast C, which is defined
as:

C =
∆L
Lb

=
Lt −Lb

Lb
(1)
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where ∆L is the difference in luminance between target
and background, Lt is the luminance of the target, Lb
is the luminance of the background.

The threshold luminance difference ∆Lthreshold
indicates a value at which a target becomes perceptible
with a high probability. It depends among other things
on target size and ambient light level, decreasing with
increase of light level, but leveling off and hardly
changing in the photopic domain. For suprathreshold
contrasts, the visibility level (VL) of a target can be
quantified by the coefficient:

V L =
Cactual

Cthreshold

(2)

At threshold, the visibility level equals one and
above threshold it is greater than one. Combining (1)
and (2), we have:

V L = (∆L/Lb)actual /(∆L/Lb)threshold (3)

As the background luminance Lb is the same for
both conditions, then this equation reduces to:

V L = ∆Lactual /∆Lthreshold (4)

In any given situation, it might be possible
to measure the luminance of the target and its
background, which gives ∆Lactual . But to estimate V L,
we also need to know the value of ∆Lthreshold . This can
be estimated using Adrian’s empirical target visibility
model (Adrian, 1989).

VISIBLE EDGES RATIOING
The model which has been presented in the

previous section can be used to predict the visibility
of objects according to their size, their contrast, the
lighting conditions, the age of the observer and the
observation time. However, using complex images,
i.e. an image which contains several objects on a
non-uniform background, it is not straightforward to
calculate the value of ∆Lthreshold . Indeed, it is at least
necessary to detect, segment and estimate the size of
the different arbitrary objects present in the image,
which still remains a challenging task in computer
vision.

To solely assess the performances of a contrast
restoration method, it is not necessary to achieve such
a complex process. Instead, following the approach
described in (Hautière and Dumont, 2007), it is
proposed to compute, for each pixel belonging to
a visible edge in the restored image, the following
coefficient r:

r = f−1(∆Ir)/ f−1(∆Io) (5)

where ∆Ir denotes the gradient in the restored image,
∆Io the gradient in the original image and f the camera
response function (Grossberg and Nayar, 2004). Then,
if the camera response function is assumed to be
linear, which is generally the case for CCD sensors,
(5) becomes simply:

r = ∆Ir/∆Io = ∆Lr/∆Lo (6)

r is mathematically defined because only the gradients
of visible edges in the restored image are considered.
Hence, only pixels having a minimum contrast can be
restored, which ensures that ∆Io is different from zero.
Thereafter, assuming that an object in the image is
composed of edges, (6) can thus be rewritten as:

r = (∆Lr/∆Lthreshold )/(∆Lo/∆Lthreshold ) (7)

where ∆Lthreshold would be given by Adrian’s model.
Finally, (7) becomes:

r = V Lr/V Lo (8)

where V Lr denotes the visibility level of the considered
object in the restored image and V Lo the visibility
level of the considered object in the original image.
Consequently, the computation of r enables to compute
the gain of visibility level produced by a contrast
restoration method. The remaining difficulty is in
detecting the visible edges in the images, and it
depends on the type of images under consideration.
In the following sections, this methodology is applied
to images altered by daytime fog acquired using in-
vehicle cameras.

CONTRAST RESTORATION

In this section, a contrast restoration method
dedicated to in-vehicle applications is presented. First,
a classical model of daytime fog visual effects is
recalled. Then, a contrast restoration methodology is
summarized and illustrated on different road scene
configurations.

Visual Properties of Fog

The attenuation of luminance through the
atmosphere was studied by Koschmieder (Middleton,
1952), who derived an equation relating the apparent
luminance L of an object located at distance d to the
"intrinsic" luminance L0 of this object, measured at
close range:

L = L0e−βd +L∞(1− e−βd) (9)

where L∞ is the atmospheric luminance and β is the
extinction coefficient of fog.
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Fig. 1. (a)(b)(c) Samples from three foggy image sequences acquired using an in-vehicle camera, named
’Minière’, ’Piste’ and ’Vehicule’, respectively. (d)(e)(f) Same images with contrast restored using the proposed
methodology.

On the basis of this equation, Duntley developed
a contrast attenuation law (Middleton, 1952), stating
that a nearby object exhibiting contrast C0 with the
background will be perceived at distance d with the
following contrast:

C =
[
(L−L∞)/L∞

]
e−βd = C0e−βd (10)

This expression serves to base the definition of a
standard magnitude called "meteorological visibility
distance" Vmet , i.e. the greatest distance at which a
black object (C0 = −1) with a suitable size can be
seen in the sky on the horizon. With the threshold
contrast set to 5% (CIE, 1987), this definition yields
the following expression:

Vmet =− 1
β

log(0.05)' 3
β

(11)

Restoration Methodology
Principle In a foggy image, the intensity I of a

pixel is the result of the camera response function f
applied to (9). Assuming that f is linear, (9) becomes:

I = f(L) = Re−βd +A∞(1− e−βd) (12)

where R is the intrinsic intensity of the pixel, i.e. the
intensity corresponding to the intrinsic luminance

value of the corresponding scene point and A∞ is the
background sky intensity.

Hence, to restore the contrast, it is proposed to
reverse (12), which becomes:

R = Ieβd +A∞(1− eβd) (13)

Assuming a flat world scene, it is possible to
estimate (β , A∞) thanks to the existence of an inflection
point on the representative curve of (12) (Lavenant
et al., 2002; Hautière et al., 2006b). Therefore, in order
to be able to correctly restore the scene contrast, the
remaining problem is the estimation of the depth d of
the pixels.

Scene Depth Modeling The depth distribution in
a road scene can be roughly decomposed in three parts:
the road surface, the sky and the surroundings. Such
an heuristic model is proposed and is detailed in the
following equations.

The depth d of a pixel at coordinates (u,v) which
does not belong to the sky region, i.e.whose intensity
is lower than A∞ is given by:

d = min(d1,d2) (14)

where d1 models the depth of pixels belonging to the
road surface, which is assumed to be a plane:

d1 =
λ

v− vh
if v > vh (15)
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and d2 models the depth of verticals objects:

d2 =
κ√

(u−uh)2 +(v− vh)2
(16)

In these equations, (uh,vh) denotes the vanishing point
position in the image, λ depends on the intrinsic and
extrinsic camera parameters and κ > λ controls the
relative importance of the vertical world with respect
to the flat world. Finally, a clipping plane at d = λ

c−vh
is used to limit the depth modeling errors near the
horizon line. A sample of such a scene model is given
in Fig. 2.

Fig. 2. A sample of scene depth model proposed
for restoring the contrast combined with (13). One
can see its three components: the road plane, the
vertical surroundings and the sky region (in blue).
This particular model was used to obtain Fig. 1d. (uh,
vh) denotes the position of the vanishing point in the
image.

Algorithm To correctly restore the contrast,
according to the scene model given in the previous
paragraph, the remaining task consists in finding the
optimal values of κ and c. One solution is to solve the
following equation using Powell’s method:

(κ∗,c∗) = argmax
κ>1
c>0

[
Q(κ,c)+κ− c

]
(17)

where Q is a norm of the local normalized
correlation between the original image and the
restored image. Indeed, the normalized correlation
score between the original and the restored versions
of a neighborhood should remain high. A decreasing
normalized correlation means that the content of
the original and restored neighborhoods differ. More
details about this method as well as alternate
algorithms are given in (Hautière et al., 2007).

BLIND ASSESSMENT
Originally, the local contrast estimator presented

in this section has been developed to estimate the

visibility distance using in-vehicle cameras (Hautière
et al., 2006a). In this section, we show that it can also
be used to assess the quality of a contrast restoration
method.

Visible Edges Segmentation
Principle In order to be consistent with the

definition of the meteorological visibility distance
proposed by (CIE, 1987), it is enough to consider the
set of edges which have a local contrast above 5%
so as to obtain the visible edges under daytime foggy
weather.

The LIP model (Jourlin and Pinoli, 2001) has
introduced a definition of contrast well suited to digital
images. In this definition, the contrast between two
pixels x and y of an image f is given by:

C(x,y)( f ) = max[ f (x), f (y)]4- min[ f (x), f (y)] (18)

where 4- denotes LIP substraction. Naturally, this
definition of contrast is consistent with the definition
of contrast used in visual perception (1).

Then, the contrast associated to a border F which
separates two adjacent regions follows:

CF( f ) =
1

cardV
4× 4+ (x,y)∈VC(x,y)( f ) (19)

where 4× and 4+ denote LIP multiplication and
addition.

Implementation To implement this definition of
contrast between two adjacent regions, Köhler’s
segmentation method has been used (Köhler, 1981).
Let f be a gray level image. A couple of pixels (x,y) is
said to be separated by the threshold s if two conditions
are met. First, y ∈ V4(x). Secondly, the condition (20)
is respected:

min
[

f (x), f (y)
]
≤ s < max

[
f (x), f (y)

]
(20)

Let F(s) be the set of all couples (x,y) separated by s.
With these definitions, for every value of s belonging
to [0,255], F(s) is built. For every couple belonging to
F(s), the contrast Cx,y(s) is computed:

Cx,y(s) = min
[
|s− f (x)|

max(s, f (x))
,
|s− f (y)|

max(s, f (y))

]
(21)

The mean contrast (22) associated to F(s) is then
computed:

C(s) =
1

cardF(s) ∑
(x,y)∈F(s)

Cx,y(s) (22)

The best threshold s0 verifies the following condition:

s0 = argmax
s∈[0,255[

C(s) (23)
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Fig. 3. Computation of local contrasts above 5%, assumed to be the visible edges by daytime fog, in the images
of Fig. 1.

It is the threshold which delivers the best mean contrast
along the associated border F(s0). Instead of using this
method to binarize images, we use it to measure the
contrast locally. The evaluated contrast equals 2C(s0)
along the associated border F(s0). Finally, if 2C(s0) >
5%, F(s0) is considered to be a visible edge. Details
about the implementation of this method can be found
in (Hautière et al., 2006a).

Descriptors
no and nr denote respectively the cardinal numbers

of the set of visible edges in the original image Io and in
the contrast-restored image Ir. The latter set is denoted
℘r. First of all, we propose to compute e, the rate of
new visible edges in Ir:

e =
nr−no

no
(24)

The value of e evaluates the ability of the method to
restore edges which were not visible in Io but are in Ir.

In complement, we propose to compute r̄, the
geometric mean of the ratios of V L defined by (8).
The value of r̄ expresses the quality of the contrast
restoration by the proposed method. Contrary to (24),
this descriptor takes into account both invisible and
visible edges in Io:

r̄ = exp
[

1
nr

∑
Pi∈℘r

logri

]
(25)

Finally, we propose to compute the number ns
of pixels which are saturated (black or white) after
applying the contrast restoration but were not before.
We normalize this value by the size of the image,
which gives the σ indicator:

σ =
ns

dimx×dimy
(26)

where dimx and dimy denote respectively the width and
the height of the image.

RESULTS

Samples from three foggy image sequences
acquired using an in-vehicle camera, named ’Minière’,
’Piste’ and ’Vehicule’, are given in Figs. 1(a)(b)&(c).
The proposed contrast restoration methodology
was applied to them. The outputs are given in
Figs. 1(d)(e)&(f).

Then, the local contrasts above 5%, assumed to be
the visible edges in daytime fog, were extracted in the
images of Fig. 1. The results are given in Fig. 3.

Finally, the different proposed descriptors were
computed to assess the contrast restoration. The value
of r for each visible edge in Ir was computed and is
shown in Fig. 4 using false colors. The main point
to notice is that the visibility enhancement is higher
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Fig. 4. False color map of r values computed on the pairs of images of Fig. 1. Each pixel shows the enhancement
of visibility level induced by the contrast restoration algorithm here summarized.

for distant objects than for close objects, as expected.
Then, descriptors (24) and (25) have been computed
for the images in Fig. 1 and for the results of a more
classical histogram stretching algorithm. The results
are given in Table 1. As expected, the proposed method
performs better than the histogram stretching, which
is a spatially invariant filter contrary to our method.
However, the saturation σ is not negligible especially
in ’Minière’ image.

(a) (b)
e r̄ σ (%) e r̄ σ (%)

Minière 1.4 2.6 2.2 0.25 1.1 0.1
Piste 1.1 1.8 0 0.33 1.3 0

Vehicule 1.6 1.7 0.1 0.4 1.1 0

Table 1. Quantitative evaluation of two contrast
restoration methods applied to the images in Fig. 1abc
using the descriptors (24) and (25): (a) algorithm here
summarized; (b) classical histogram stretching.

DISCUSSION AND PERSPECTIVES

DISCUSSION

The proposed methodology allows to assess the
performances of contrast restoration methods based on
visual descriptors. However, it does not rate the fidelity
of the contrast restoration method. It only measures
how the visibility of objects in the scene is enhanced.
Rating the fidelity can only be achieved with images
of the scene with and without fog, which can be
done using synthetic images. Notice that the proposed
method is not able to assess the creation of visual
artefacts. Furthermore, the proposed model is valid for
a linear model of camera. The contrast improvement
of quasi-saturated pixels is thus not properly assessed.

High dynamic range imaging sensors could help to
solve this problem.

Thereafter, it would be interesting to apply
the proposed methodology to other types of
contrast-degraded images. For instance, night-fog
images acquired using in-vehicle cameras are very
poorly contrasted. The dynamic range maximization
described in (Jourlin and Pinoli, 2001) makes it
possible to improve the visibility in such images.
Köhler’s method can be used to detect visible edges
in night images using a DCT transform and a Contrast
Sensitivity Function (CSF) of the human visual
system (Hautière and Aubert, 2006). It should thus be
possible to apply the same methodology to assess the
performances of the range maximization algorithm.

OTHER POTENTIAL APPLICATIONS
The proposed blind assessment method is not

restricted to evaluate contrast restoration methods. We
see at least two other applications which are illustrated
now. The first is dealing with classical histogram
based contrast enhancement algorithms. The second is
dealing with the comparison of images obtained by
different tone mapping operators. In both cases, the
reference image is not known.

Contrast Enhancement
The proposed methodology can be used to evaluate

classical contrast enhancement techniques relying
on histogram modifications. As an example, the
effectiveness of the three functions proposed in the
Matlab1 Image Processing Toolbox can be compared
using the default settings:

– imadjust increases the contrast of the image by
mapping the values of the input intensity image to
new values such that, by default, 1% of the data
is saturated at low and high intensities of the input
data.

1http://www.mathworks.com/
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Fig. 5. (a) Original low contrast image; (b) contrast enhancement performed with imadjust Matlab function;
(c) contrast enhancement performed with histeq Matlab function; (d) contrast enhancement performed with
adapthisteq Matlab function; Second row: false color map of r values computed on the pairs of images.

– histeq performs histogram equalization. It
enhances the contrast of images by transforming
the intensity values so that the histogram of the
output image approximately matches a specified
histogram (uniform distribution by default).

– adapthisteq performs contrast-limited
adaptive histogram equalization. Unlike histeq,
it operates on small data regions (tiles) rather
than the entire image. The contrast of each
tile is enhanced so that the histogram of each
output region approximately matches the specified
histogram (uniform distribution by default). The
contrast enhancement can be limited in order to
avoid amplifying the noise which might be present
in the image.

In each case, the aim is to increase the contrast without
saturating and thus losing some visual information.
Hence, good results are described by high values of
e and r̄ and low values of σ . These indicators are
computed for one of the sample images used in Matlab
and are given in Table 2. The third method gives the
best result in terms of low saturation. However, the
second method might be preferred, because it gives the
best r̄ value. The first method gives the worst results
because it allows saturation and does not enhance
contrast as well.

e r̄ σ (%)

imadjust 2.2 3.1 2.6
histeq 2.5 4.1 3.1

adapthisteq 2.8 3.2 0.0

Table 2. Contrast enhancement indicators computed
on the images of Fig. 5.

Tone Mapping

The second potential application is quite different
and deals with the tone-mapping of high dynamic
range images. Tone-mapping consists in converting
real-world luminances into displayable luminances.
The resulting images have different visual aspects and
it is difficult to judge which tone-mapping operator is
the best. The proposed methodology allows to compare
tone-mapped images of the same scene. However, it is
not known in advance which image is best contrasted,
so the images must be compared both ways.

The images in the first row of Fig. 6 result from
three different operators and are provided by the Max
Planck Institut2. Fig. 6a is obtained through Ward’s
operator (Ward Larson et al., 1997) which is known
to maximize the contrast. Fig. 6b is obtained through
Tumblin’s operator (Tumblin et al., 1999), whose aim
is to preserve the luminosity of the scene. Fig. 6c
is obtained by Reinhard’s operator (Reinhard, 2002)

2http://www.mpi-inf.mpg.de/resources/tmo/NewExperiment/TmoOverview.html
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(A) (B) (C)
e r̄ σ (%) e r̄ σ (%) e r̄ σ (%)

(A) - - - -0.3 1.03 0.0 -0.04 1.06 0.1
(B) 0.5 2.3 1.6 - - - 0.4 1.7 0.14
(C) 0.05 1.4 1.5 -0.3 1.02 0.0 - - -

Fig. 6. First row: Images tone-mapped through (A) Ward’s operator (Ward Larson et al., 1997), (B) Tumblin’s
operator (Tumblin et al., 1999) and (C) Reinhard’s operator (Reinhard, 2002). Second row: corresponding false
color map of r values for certain cases. (A) is compared in two ways with (B) and (C). Third row: comparison of
the three operators based on the proposed indicators.

which aims to mimic photographic techniques. We
denote these operators respectively (A)(B)(C).

In the second row of Fig. 6, we compare (A) with
respect to (B) and (C). (A) gives more contrasted
results as expected (see Figs. 6 A/B& A/C). However,
it tends to saturate the light sources, which is shown in
Figs. 6 B/A & C/A. The proposed indicators are given in
the table in the bottom of Fig. 6.

CONCLUSION

In this paper, the problem of the assessment of
contrast restoration algorithms for weather-degraded
images has been addressed. A solution based on visible
edges ratioing has been proposed, which computes,
for each pixel belonging to a visible object in the
restored image, the visibility level (VL) enhancement

produced by the algorithm. This method has been
applied to daytime fog images acquired onboard a
moving vehicle. In this context, the visible edges
are assumed to be the pixels having a local contrast
above 5%. An operator based on a segmentation
algorithm has been proposed to extract such pixels
and has been used to assess the performance of
contrast restoration algorithms. A contrast restoration
algorithm is summarized. It is based on a photometric
model of fog and consists in inverting this model with
an inferred depth distribution of the scene. Finally, we
propose four descriptors of the enhancement: a map of
VL enhancement for each pair of foggy and restored
images, the geometric mean of VL enhancement,
the rate of new visible edges and the percentage of
saturated pixels produced by the restoration method.
The proposed methodology is generic and can find
other applications such as the assessment of contrast
enhancement techniques and the comparison of tone
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mapping algorithms.
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