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Abstract— Based on a road meteorology standard, we present
a roadside camera-based system able to detect daytime fog and
to estimate the visibility range. Two detection algorithms, both
based on a daytime fog model, are presented along with a
process to combine their outputs. Unlike previous methods, the
system takes into account the 3-D scene structure and filters
the moving objects from the region of interest through use
of a background modelling approach and detects the cause of
the visibility reduction. The study of the system accuracy with
respect to the camera characteristics leads to a specification
of the characteristics of the camera required for the system.
Some results obtained using a reduced-scale prototyping of the
system are presented. Finally, an outlook to future works is
given.

I. INTRODUCTION

The major part of all the information used in driving

is visual [19]. Reduced visibility thus leads to accidents.

Reductions in visibility may have a variety of causes, namely

the geometry of the road scene, the presence of obstacles or

adverse weather/lighting conditions. The presence of daytime

fog and low visibility areas can be detected using in-vehicle

cameras [13], [11]. This information is used in order to

switch on/off fog lights, to adapt the operation range of

optical sensors and associated signal processings [12] or to

report low visibility conditions to a traffic center using probe

vehicles [4].

However, to increase the driver’s safety margin [1], giving

him an opportunity to adapt his driving behavior accordingly,

the resolution of classical in-vehicle cameras is too small. If

they are located at places with recurrent foggy weather [17],

roadside sensors may provide more reliable information to

be communicated to vehicles using infrastructure to vehicles

communication or displayed using variable message signs.

Unfortunately, classical visibility sensors are expensive and

may not be appropriate, because the small size of the

diffusing volume of a scatterometer makes the measurements

highly sensitive to non-homogeneities in the fog [10]. We

propose to replace these sensors with a simple infrastructure-

based camera. Some solutions have already been proposed.

Bush computes the highest edge in the image having a

contrast above 5% using a wavelet transform [5]. However,

the presence of vertical objects, like a truck, in their region of
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interest alters the results of the method. Second, the fact that

the precision of their method highly depends on the camera

characteristics is omitted in the article. Kwon has performed

successfull visibility tests utilizing fixed distance targets

and defined a visibility index called Relate Visibility [16].

However, deploying such targets at each camera location

would be expensive. Nevertheless, such an approach is useful

to calibrate other methods which do not need references.

Hagiwara proposed a weighted intensity power spectra al-

gorithm which compared favorably to manually extracted

image’s visibility [8]. Hallowell proposed an algorithm which

examines natural edges within the image (the horizon, tree

lines, roadways, buildings) and performs a comparison of

each image with a historical composite image [9]. However,

[16], [8] do not take into account the 3-D structure of the

scene to compute their visibility indicator. Consequently, the

method is sensitive to the presence of vertical objects in

the scene. Moreover, the different methods do not detect the

cause of the visibility reduction.

Based on a road meteorology standard [2], we propose a

reference-free roadside camera-based sensor which not only

estimates the visibility range in daytime but also detects that

the visibility reduction is caused by fog, unlike previous

methods. Unlike [9], [8], we take the 3-D scene structure into

account by detecting the driving space area. Unlike [5], we

filter objects in the region of interest and study the precision

of the system with respect to the camera characteristics.

First, we present the requirements of an adequate visibility

sensor and specify two detection algorithms to fulfill the

functional requirements based on a daytime fog modelling.

To correctly implement these algorithms, a background mod-

elling approach is proposed, as well as a data fusion process

to determine the visibility range. Then, we specify the camera

in order to fulfill the requirements on the system accuracy.

Finally, we present a reduced scale prototyping of the method

as well as some results.

II. VISIBILITY SENSOR REQUIREMENTS

According to [2], the road visibility is defined as the

horizontal visibility determined 1.2 m above the roadway. It

may be reduced to less than 400 m by fog, precipitations or

TABLE I

VISIBILITY RANGES

Visibility range index Horizontal visibility distance (m)

1 200 to 400
2 100 to 200
3 50 to 100
4 < 50
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projections. Four visibility ranges are defined and are detailed

in Table I. Based on these definitions, a visibility sensor

should assign the visibility range to one of the four categories

and detect the origin of the visibility reduction, i.e. it should

detect fog, rain and projections. In this paper, we focus on

daytime fog detection and visibility range estimation.

III. DAYTIME FOG EFFECTS ON VISION

A. Visual Properties of Daytime Fog

The attenuation of luminance through the atmosphere

was studied by Koschmieder [18] who derived an equation

relating the apparent luminance or radiance L of an object

located at distance d to the intrinsic luminance L0:

L = L0e
−kd + Lf (1 − e−kd) (1)

where k is the extinction coefficient of the atmosphere and

Lf is the atmospheric luminance. In the presence of fog, it

corresponds to the background luminance on which the target

can be detected. On the basis of this equation, Duntley [18]

developed a contrast attenuation law, stating that a nearby

object exhibiting contrast C0 with the background will be

perceived at distance d with the following contrast:

C = [(L−Lf )/Lf ]e
−kd = C0e

−kd (2)

This expression stands as a basis for the definition of a stan-

dard dimension called "meteorological visibility distance"

Vmet, i.e. the greatest distance at which a black object (C0=-

1) of a suitable dimension can be seen in the sky on the

horizon, with the threshold contrast set at 5%. The meteoro-

logical visibility distance is thus a standard dimension which

characterizes the opacity of a fog layer. This definition yields

the following expression:

Vmet = − log(0.05)/k ≈ 3/k (3)

B. Camera Response

Let us denote fc the camera response function [7]. With

the notations of Fig. 1, the intensity I of a pixel is the result

of fc applied to the sum of the airlight A and the direct

transmission T , i.e I = fc(L) = fc(T + A). If we assume
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Fig. 1. Fog luminance is due to the scattering of daylight. Light coming
from the sun and scattered by atmospheric particles towards the camera is
the airlight A. It increases with the distance. The light emanating from
the object R is attenuated by scattering along the line of sight. Direct
transmission T of R decreases with distance.

that the conversion process between incident energy on the

sensor array and the intensity in the image is linear:

I = fc(T ) + f(A) = fc(L0e
−kd) + fc(Lf (1 − e−kd))

= fc(L0)e
−kd + fc(Lf )(1 − e−kd)

= Re−kd + A∞(1 − e−kd) (4)

where R is the intrinsic intensity of the pixel, i.e. the

intensity corresponding to the intrinsic luminance value of

the corresponding scene point and A∞ is the background

sky intensity.

IV. DETECTION ALGORITHMS

A. Sensor Modelling

Fig. 2 shows the modelling of a camera within the road

environment. In the image reference plane, the position of a

pixel is given by its (u,v) coordinates. The coordinates of the

optical center in the image are denoted by (u0, v0). θ denotes

the pitch angle of the camera, while vh represents the vertical

position of the horizon line. The intrinsic parameters of the

camera are its focal length f , and the size tp of a pixel.

We have also made use herein of α = f
tp

. Based on [13],

assuming that the road is locally planar, the distance d can

be expressed by:

d = λ/(v−vh) (5)

where λ = Hα
cos(θ) and vh = v0 − α tan(θ).

B. Daytime Fog Detection

1) Principle: Following a change of d according to v
based on (5), (4) then becomes:

I(v) = R − (R − A∞)(1 − e
−

kλ
v−vh ) (6)

By taking the second derivative of I with respect to v, one

obtains the following:

d2I

dv2
(v) = kϕ(v)e

−
kλ

v−vh

(

kλ

v − vh

− 2

)

(7)

where ϕ(v) = λ(R−A∞)
(v−vh)3 . The equation d2I

dv2 = 0 has two

solutions. The solution k = 0 is of no interest. The only

useful solution is given in (8):

k = 2(vi−vh)/λ (8)

where vi denotes the position of the inflection point of I(v).
In this manner, if vi > vh, daytime fog is detected and the

parameter k is obtained. We deduce Vmet using (3).
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Fig. 2. Modelling of the camera within the road environment. vh: image
line corresponding to the horizon line in the image.
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2) Implementation: A region within the image that dis-

plays minimal line-to-line gradient variation when browsed

from bottom to top is identified thanks to a region growing

process. A vertical band is then selected in the detected area.

Finally, taking the median intensity of each segment yields

the vertical variation of the intensity of the image and the

position of the inflection point. Details of the method are

given in [13]. It has been applied to a sample image in

Fig. 3(a). Even if there are many vehicles in the original

image, the method is able to circumvent them and to detect

fog presence, as well as its density.

C. Estimation of the Visibility Distance

The previous method detects that the visibility is reduced

by daytime fog and estimates its density. In the same way,

methods dedicated to other meteorological phenomena quan-

tification could be added. Nevertheless, to supervise these

different methods, we need a generic method to estimate the

visibility.

The principle of this approach is to compute the distance

to the furthest visible point on the road surface. It fits

well with the definition of Vmet. We call it the mobilized

visibility distance Vmob. Based on [11], by using a 5%

contrast threshold, Vmob is close to Vmet.

A local contrast computation algorithm, based on Köhler’s

binarization technique and detailed in [11], is applied to the

image to compute local contrasts above or equal to 5%. The

obtained contrast map contains objects of the road scene. A

flat road may be assumed. As a matter of fact, along a top-

bottom scanning line of the local contrast map starting from

the horizon line, objects encountered get closer to the camera.

Consequently, the algorithm consists in finding the highest

point in the contrast map having a local contrast above 5%.

We denote vc the corresponding image-line. The distance to

this point can then be recovered using (5).

However, the image may also contain vertical objects,

which do not respect the flat world assumption and alter

the method. This is the case in Fig. 3(b), where the vehicle

lights are detected higher in the image than the road surface

elements. Another step is thus needed to filter the vertical

objects and correctly estimate the visibility distance. We

propose to achieve this task using a background modelling

method in the next section.

(a) (b)(a) (b)

Fig. 3. (a) The vertical yellow curve represents the instantiation of (4); the
horizontal red line represents the estimation of the visibility distance. The
blue vertical segments represent the limits of the vertical band analyzed. (b)
Map of local contrasts above 5%.

V. BACKGROUND MODELLING

Both preceding methods need the road surface to run

properly. Thanks to background modelling methods, it is

possible to detect moving objects, i.e. the foreground, in

video sequences by subtracting a background image from

each new frame. In our application, we use the background

image to compute the visibility distance and the foreground

image to segment the driving space area.

A. State of the art

The simplest form of background modelling is a time-

averaged background image. This method suffers from many

problems and requires a training period absent of foreground

objects. In addition, the approach cannot cope with grad-

ual illumination changes in the scene. Due to illumination

changes and "long term" changes within the scene, it is

necessary to constantly reestimate the background model.

Many adaptive background-modelling methods have been

proposed to deal with these slowly-changing signals. A

comparison of different methods is proposed in [6]. One of

the best methods has been proposed by Grimson [20] and

uses an adaptive Gaussian mixture (MoG) model per pixel.

The method we use is based on [20]. The differences lie in

the update equations and the initialisation method, which are

both described in [14].

B. Adaptive Gaussian Mixture Model

1) Principle: The method models each background pixel

by a mixture of K Gaussian distributions (K is classically a

small number from 3 to 5). Different Gaussians are assumed

to represent different intensities. The weight parameters

of the mixture represent the time proportions that those

intensities are in the scene. The background components

are determined by assuming that the background contains B
highest probable intensities. The more probable background

intensities are the ones which stay longer and are more static.

Static single-intensity objects tend to form tight clusters in

the intensity space while moving ones form wider clusters

due to different reflecting surfaces during the movement. The

measurement of this is called the fitness value. To allow the

model to adapt to changes in illumination and to run in real-

time, an update scheme is applied. It is based upon selective

updating. Every new pixel value is checked against existing

model components by decreasing fitness. The first matched

model component is updated. If it finds no match, a new

Gaussian component is added with the mean at that point, a

large variance and a small weight.

2) Equations: Each pixel in the scene is modelled by a

mixture of K Gaussian distributions. The probability that a

certain pixel has a value Xt at time t can be written as:

P (Xt) =
K

∑

j=1

ωjη(Xt; µ
t
j ,Σ

t
j) (9)

where ωk is the weight parameter of the kth Gaussian

component. η(X;µk, Σk) is the Normal distribution of kth
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component represented by:

η(X;µk,Σk) =
1

√

2π|Σk|
e−

1

2
Σ−1

k
(X−µk)2 (10)

where µk is the mean and Σk = σ2
k is the variance of the

kth component. The K distributions are ordered based on

the fitness value ωk

σk
and the first B distributions are used as

a model of the scene background where B is estimated as:

B = argmin
b

( b
∑

j=1

ωj > T

)

(11)

The threshold T is the minimal fraction of the background

model. In other words, it is the minimum prior probability

of observing a background pixel. Background subtraction

is performed by marking as foreground any pixel that is

more than 2.5 standard deviations away from any of the

B distributions. The first Gaussian component that matches

the tested value is updated thanks to the following update

equations:

ωt
k = (1 − γ1)ω

t−1
k + γ1(M

t
k)

µt
k = (1 − ρ)µt−1

k + ρXt

Σt
k = (1 − ρ)Σt−1

k + ρ
(

Xt − µt
k

)2
(12)

ρ = γ1η(Xt; µ
t
k, Σt

k)

(M t
k) =

{

1; if ωk is the first matched component

0; otherwise

where ωk is the weight for the kth Gaussian component. 1/γ1

defines the time constant which determines change. Only two

parameters, γ1 and T need to be set.

C. Driving Space Area Determination

Thanks to the previous algorithm, we are able to split

the foreground and the background in the current image. To

implement detection methods, we now need to segment the

driving space area in the background image. The driving

space is the area where moving objects (car, pedestrians...)

are able to travel. Consequently, this is the area where the

flat world may be assumed. A naïve solution is to use an a

priori mask of the road surface. However, due to perspective,

some vertical objects (trees, urban lights, road signs) lie on

this area, like in Fig. 4(a). To solve this problem, we propose

to build a map D which is the temporal accumulation of the

foreground image, using:

Dt = (1 − γ2)Dt−1 + γ2Ft (13)

where 1
γ2

≫ 1
γ1

denotes again a time constant and F the

foreground image. A simple binarization is then applied to

the map. In this way, we obtain the driving space area.

Fig. 4(c) is the driving space before its binarization.

In some cases, we are only interested in a small part of the

driving space area. For example, in Fig. 4(a), the tramway

line is of no interest to us. A manual segmentation, e.g.

Fig. 4(b), of the region of interest may be performed to obtain

the final driving space area represented in Fig. 4(d).

Fig. 4. (a) Background image of an urban intersection. (b) Manual
segmentation of the driving space area. (c) Temporal accumulation of the
moving objects in the foreground image. (d) Final driving space area which
is the combination of images (b) and (c). Vertical objects like signs, trees,
advertising are circumvented.

D. Settings of the MoG for Visibility Range Monitoring

Setting the parameters of the mixture of Gaussian is a

crucial part of the algorithm. The temporal window must be

big enough in order to compute a background image which

does not contain moving objects on the driving space area.

The temporal window must also be small enough to take into

account the changes of visibility conditions.

Based on these considerations, we have chosen to set

the temporal window approximatively equal to the average

maximum time a moving object needs to cross the image,

i.e. its smallest possible value. Such choice enables to take

into account gradual changes of the visibility conditions. In

Fig. 5, we have computed the background image using a

short video sequence (14 s) of an intersection grabbed under

foggy weather. The background model, shown in Fig. 5(b),

does not contain moving objects, while fog density remains

the same as in the original images, e.g. Fig. 5(a).

However, due to the luminance veil phenomenon, fog

amplifies illumination changes which can be problematic

in the background model computation. Indeed, we have

seen in section V-A that major drawbacks of background

computation approaches are the sensitivity to illumination

changes. Some authors have developed approaches based

on level sets computation [3] which are less sensitive to

(a) (b)(a) (b)

Fig. 5. (a) Sample of a 14 seconds video sequence grabbed under foggy
weather [15]. (b) Resulting background model of the scene which includes
the luminous veil caused by fog.
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illumination changes. In our case, it is not possible to use

such a method because we need the entire road surface

(textureless) to feed the detection algorithms adequately. We

have thus developed another mitigation solution. Illumination

changes create some artefacts in the background image, so

that the number of its edges suddenly increases. We thus

compute the number of edges, then its variations and we set

a threshold above which the mixture of gaussian must be

initialized again.

VI. VISIBILITY RANGE DETERMINATION

Based on the generic method which estimates Vmob and

Table I, the visibility range index r can be determined. Thus,

if r > 0, a roadside alert may be launched. However, in the

case of daytime fog, Vmet can also be estimated. Since Vmet

and Vmob are close to each other, based on IV-C, a solution

is to combine both indicators to reduce the measurements

variance and obtain a single visibility descriptor at instant k:

Vk =

Vmetk

ΣVmetk

+
Vmobk

ΣVmobk

1
ΣVmetk

+ 1
ΣVmobk

=
6λ(vi − vh) + 9λ(vc − vh)

4(vi − vh)2 + 9(vc − vh)2

(14)

ΣVmet
and ΣVmob

denote the variance of respectively Vmet

and Vmob and are approximated as following, assuming that

the variables are not correlated:

ΣVmet
≈ VI

∑

[ ∂Vmet

∂λ, vi, vh

]2

=
9VI

4(vi − vh)2
(15)

ΣVmob
≈ VI

∑

[ ∂Vmob

∂λ, vc, vh

]2

=
VI

(vc − vh)2
(16)

where VI is the variance on the pixel value due to the

digitalization of the pictures, assuming a gaussian centered

distribution with a standard deviation of 1/2. The variance

Σk of Vk is then:

Σk =
9VI

4(vi − vh)2 + 9(vc − vh)2
(17)

One could also determine r using Vk = min(Vmob, Vmet).
The algorithm to determine r is thus an open issue.

Nevertheless, to reduce the risk of false alarms, a temporal

averaging of the measurements has to be carried out. We pro-

pose to use a simple linear Kalman filter [21] which allows to

compute an weighted iterative least-squares regression. Since

we cannot predict the variations of the visibility range, we

adopt the simplest evolution model and introduce a process

noise Q to progressively forget the past measurements:

V̂ −

k = V̂k−1 (18)

P−

k = Pk−1 + Q (19)

Using (17), the correction step of the filter is as following:

Kk = P−

k /(P−

k
+Σk) (20)

V̂k = V̂k−1 + Kk(Vk − V̂k−1) (21)

Pk = (1 − Kk)P−

k (22)

where Σk denotes the variance of Vk. The single parameter

to tune is Q.

VII. CAMERA SPECIFICATIONS

First, according to the sensor requirements given in section

II, the visibility system shall detect visibility up to dmax

(400 m in our case). Thanks to (5), we can compute

the surface covered by a pixel for different typical sensor

configurations at the distance d:

∆(d) =
λ

⌊vh + λ
d
⌋ − vh

−
λ

⌈vh + λ
d
⌉ − vh

(23)

where ⌊x⌋ designates the whole part of x and ⌈x⌉ the integer

greater than or equal to x. We propose this surface to be

lower than 10% of dmax, (40 m in our case):

∆(dmax) < 0.1dmax (24)

Second, the system must detect fog. Based on section IV-

B, the horizon line must be in the image. Third, the visibility

system shall detect low visibilities lower than dmin (50 m in

our case). To run correctly, the corresponding location of the

inflection point must lie in the upper part of the image, i.e. vi

must be lower than v0. Consequently, additional constraints

on the sensor are as following:

vh > 0 (25)

vh + 3λ/dmin > v0 (26)

From constraints (25) and (26), we obtain the following

inequation with respect to θ:

sin−1
(

H/3dmin

)

< θ < tan−1
(

v0/α
)

(27)

The admissible solutions of (27) can then be used to solve

(24). Some technical solutions are given in Table II. To

choose between the different solutions, we have computed

the parameter denoted χ which gives the magnification of

the camera with respect to its pitch angle. We have thus

purchased cameras corresponding to the third solution of the

Table II.

TABLE II

TECHNICAL SOLUTIONS

D (inch) 1/3 2/3 1/2

H (m) 5-6 5-6 6

f (mm) 4.2 4.8 4.5

tp (µm) 4.65 6.45 4.65

dimy(pix) 1040 1024 1360

θ (degree) 31-38 29-64 28-29

χ = f/tp cos(θ) 1023 851 1096

VIII. REDUCED SCALE PROTOTYPING

Currently, we do not have at our disposal video sequences

of fog which fulfill our system requirements. Consequently,

the system, summarized in Fig. 6, has only been tested on

a reduced scale model using a glass tank in which some

scattering medium is injected using a fog machine. The sun

is replaced by two strong light projectors. The sky is replaced

by some scattering material put on the roof of the aquarium.

Some remote control cars are used to create road traffic.

The results obtained using a video sequence with a moving

car inside the tank are given in Fig. 7 and illustrated in

Fig. 8. After the initialization period, the system provides

stable results despite the presence of the car motion.
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Fig. 6. Overview of the proposed daytime visibility range algorithm.
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Fig. 7. (a) Estimation of the different visibility distances. V is the final
result using Kalman filtering (Q = 10−4); (b) Variances of the different
measurements. Settings of the MoG: T = 7; 1/γ1 = 200.

IX. FUTURE WORKS

First, we would like to test the system using a full scale

installation, which should be soon the case in the European

SAFESPOT project. Since the specified camera is a high-

resolution one, we would also like to test the system using

a classical CCTV camera and see if the degradation of the

performances is significant or not. Finally, we are extending

the system to handle night fog situations.

X. CONCLUSION

In this paper, we presented first the requirements of

an adequate visibility sensor and specified two detection

algorithms to fulfill the functional requirements based on a

daytime fog modelling. To enable these detection methods

(a) (b)

Fig. 8. (a) Sample image of the reduced scale model with a remote control
car which creates some motion in the video sequence. (b) Sample result of
the fog detection algorithm using the computed background image. The car
no longer appears in the image.

to run properly and to segment the driving space area, a

background modelling approach was proposed using a MoG

approach, as well as a data fusion process to determine the

visibility range. Then, we specified a camera in order to

fulfill the requirements on the system accuracy. Finally, we

presented a reduced scale prototype of the method as well

as some results. Perspectives and future research directions

are indicated.
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