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Abstract - The perception of the environment is a fundamental task for autonomous

robots. Unfortunately, the performances of the vision systems are drastically altered in

presence of bad weather, especially fog. Indeed, due to the scattering of light by atmo-

spheric particles, the quality of the light signal is reduced, compared to what it is in clean

air. Detecting and quantifying these degradations, even identifying their causes, should

make it possible to estimate the operating range of the vision systems and thus constitute a

kind of self-diagnosis system. In parallel, it should be possible to adapt the operation of the

sensors, to improve the quality of the signal and to dynamically adjust the operation range

of the associated processings. First, we introduce some knowledge about atmospheric op-

tics and study the behavior of existing exteroceptive sensors in scattering media. Second,

we explain how existing perception systems can be used and cooperate to derive some de-

scriptors of the visibility conditions. In particular, we show how to detect fog presence and

to estimate the visibility range. Once weather conditions have been determined, they can be

exploited to reduce the impact of adverse weather conditions on the operation of vision sys-

tems. We propose thus different solutions to enhance the performances of vision algorithms
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under foggy weather. Finally, we tackle the problem to know if light scattering could be

turned to our advantage, allowing us to develop novel perception algorithms. Experiments

in real situations are presented to illustrate the developments. Limits of the systems, future

challenges and trends are discussed.

1 Introduction

Many factors can alter the quality of the signal resulting from an optical sensor mounted

onboard an automotive vehicle (camera, laser, etc.): the fog, the rain, the sun at grazing

angle, the reflections on the pavement, the presence of stains on the windshield, the glare

due to the headlights of other vehicles, the strong gradients of brightness at the entrance and

exit of tunnels, etc. To be able to detect and quantify these degraded operation conditions

while relying only on the signals resulting from sensors themselves is a challenge for the

future driver assistances based on optical sensors.

First, it is one of the keys to obtain a very important level of reliability of the sensor

unit and associated signal processing. Indeed, whatever its intrinsic qualities, a processing

will produce the awaited answers only if the input signal has a sufficient level of quality.

Detecting and quantifying the degradations of this signal, even identifying the causes of

these degradations, should make it possible to estimate an index of confidence on the oper-

ation of the system and thus constitute a kind of self-diagnosis system. In parallel, it can be

possible to adapt the operation of the sensor, to improve the quality of the signal and/or to

dynamically adjust some parameters in the processing.

Second, it is a means of carrying out new driver assistances, e.g. the automation of the

fog lamps. This is also a means of gathering within the same sensor (in particular a camera)

a set of functions that are already present in the vehicle (rain sensor, light level sensor) or

that are going to come (automatic fog lamps, automatic demisting, automatic cleaning of

the stains for example). Such a reduction of the number of sensors would make it possible

to decrease the volume and the total cost of the system.

Third, some of the causes of the degradation of the signal quality are also causes of road

accidents (e.g. rain, fog, sun at grazing angle, etc.). Thus, by establishing a mapping func-

tion between the vision of the driver and the vision of the sensor, in particular in terms of

dynamic range, resolution and sensitivity, such algorithms can make it possible to generate

relevant alarms for the driver in the event of behaviors unsuited to the traffic conditions.

Until now, this approach has been followed for the computation of the visibility range,

which constitutes a relevant and illustrative case study. Starting from existing works on

fog modeling, two complementary methods have been developed aiming at estimating the

visibility range using respectively one or two onboard cameras. Both methods are based on

the definition of the meteorological visibility distance. The first technique, using a model of

atmospheric scattering, detects and estimates the density of daytime fog by using a single

camera. The second technique, using a generic property of the atmosphere, is able to esti-

mate the visibility range under all meteorological conditions both in daytime and in night

time by using a stereoscopic sensor or a single camera coupled with an inertial navigation
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system. In the future, these methods are likely to be used to provide drivers with an appro-

priate speed with respect to the visibility range, to enhance obstacle detection techniques or

to automate the fog lamps.

This paper is organized as follows. First, it deals with the general problem of artifi-

cial perception under adverse weather conditions. Second, both approaches computing the

visibility range are presented and validated thanks to actual images and video sequences

grabbed under various situations on the test track of Versailles Satory. In particular, we

show how to detect fog presence. We propose then different solutions to enhance the perfor-

mances of vision algorithms under foggy weather. Finally, some ideas for future researches

are indicated.

2 Vision and the Atmosphere

The literature on the interaction of light with the atmosphere has been written over more

than two centuries [1,8]. Different reviews on the topic have been available in the literature

[45, 46] for half a century and still serve as reference for recent works in computer vision.

2.1 Fog Characteristics

2.1.1 Definition

Fog is a thick cloud of microscopic water droplets suspended at ground level. When the

horizontal visibility is smaller than 1 km, one speaks about fog. When the horizontal visi-

bility is greater than 1 km, one speaks rather about haze. The fog is usually characterized

by two parameters: the granulometry and the concentration of water droplets.

2.1.2 Light propagation through fog

In a schematic way, the visible light must go through an aerosol which contains a great

number of particles having a diameter of a few micrometers. The wavelength of visual light

is comprised between 400 nm and 700 nm.

When light propagating in fog, the luminous flow is attenuated by two phenomena: ab-

sorption and scattering, which leads to characterize fog by an extinction coefficient k, which

is the sum of the absorption and scattering coefficients. In fact for visible light, absorption

is negligible in this type of aerosol. The main phenomena in the light attenuation is thus

scattering which deviates light rays from their initial direction. Finally, fog is characterized

by an extinction coefficient k which is equal to the scattering coefficient.

If φ0 is the luminous flow emitted by a given light source, the transmitted flow φ along

the distance d through fog is given by Beer-Lambert’s Law:

φ = φ0e
−kd (1)

where the product kd represents the optical thickness of the scattering media.
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2.2 Fog visual effects

In the preceding paragraph, we have defined the physical characteristics of fog and the

resulting phenomena, i.e. the visible light scattering. Based on [20], we propose in this

paragraph to describe the different visual effects of this phenomena. We focus mainly on

daytime fog situations.

2.2.1 Attenuation

During daytime, the sky is the main source of luminous energy. It generates a uniform

illuminance throughout the environment, which depends on time as well as geographical

and meteorological conditions. Part of this energy is re-emitted toward the camera, gener-

ating an intrinsic luminance L0. In the presence of fog, part of this energy is scattered by

fog along the distance d between a scene element and the camera, causing the transmitted

luminance Lt to be attenuated by a factor equal to e
−kd:

Lt = L0e
−kd (2)

2.2.2 Halo effect

Fog alters the visual signal by scattering the light emitted by every light source. Part of

this energy is scattered back towards the camera off-axis, adding a halo of scattered light

around the transmitted signal. This effect was shown to be equivalent to a convolution.

Therefore, by analogy with an optical filter, a slab of fog can be characterized with its

modulation transfer function (MTF), equal to the module of the Fourier transform (FT) of

its point spread function (PSF). Halo effect is negligible under daytime conditions, contrary

to nighttime situations like in Fig. 1b.

2.2.3 Veiling effects

Veil from Atmosphere In daytime fog, the droplets in the air between the observer and

the elements of the road environment also contribute to the apparent luminance by scattering

toward the eye some of the energy it receives from the sky (single scattering) and from

other droplets (multiple scattering). The resulting luminance La known as the atmospheric

veiling luminance or airlight increases exponentially with distance (cf. Fig. 1a):

La = (1 − e−kd)Lf (3)

where Lf denotes the luminance of the fog at the horizon.

Veil from Backscattering When the observer is driving in fog, the low-beam headlamps

of his vehicle ought to be turned on. Fog droplets in front of the vehicle interact with

this luminous flux, scattering a part of it back into the eyes of the driver in a nonuniform

luminance distribution, known as the backscattered veiling luminance. It was found to be at
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(a) (b) (c)

Figure 1: Illustration of fog effects on vision: (a) atmospheric veil; (b) halo; (c) backscat-

tered veil.

least two orders of magnitude smaller than the atmospheric veiling luminance in daytime.

Yet, it contributes to the loss of visibility in nighttime conditions and therefore should be

taken into account (cf. Fig. 1c).

2.3 Modeling Fog Visual Effects

In 1924, Koschmieder [45] established a simple relationship between the apparent lumi-

nance L of an object at a distance d, and its intrinsic luminance L0:

L = L0e
−kd + Lf (1 − e−kd) (4)

where Lf denotes the luminance of background sky. Based on these results, Duntley [45]

derived a law for the atmospheric attenuation of contrasts:

C =
|L− Lf |

Lf

= C0e
−kd (5)

where C designates the apparent contrast at distance d and C0 the intrinsic contrast of the

object against the sky.

The CIE [16] adopted a contrast threshold of 5% to define Vmet, the "meteorological"

visibility distance, defined as the greatest distance at which a black object (C0 = −1) of
suitable dimensions can be recognized by day against the horizon sky:

Vmet = −
1

k
log(0.05) ≃

3

k
(6)

An extended model of fog taken into account all the different effects has been pro-

posed in [20]. However, in this chapter, we focus on daytime situations, where despite its

limitations, Koschmieder’s model has been proven to be very useful.
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3 Recovering the Extinction Coefficient of Fog

The operation range of exteroceptive sensors depends on the weather conditions. A study

has been done in [36] to evaluate the operation range of infrastructure based sensors with

respect to weather conditions. The results can be extrapolated for in-vehicle sensors. Thus,

according to the curves plotted in Fig. 2 and partially extracted from [5], the output signal

of optical sensors running in the visible or near infrared light range is degraded by adverse

weather conditions. Consequently, signal processings techniques relying on optical sensors

to detect obstacles or the lane markings are less efficient under adverse weather conditions.
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Figure 2: Curve, partially issued from [5], depicting the atmospheric attenuation due to

dense fog (V=50 m) according to the frequency of the signal.

Thus we may use optical sensors to characterize fog and in particular to recover the

value of the atmospheric extinction coefficient k. In this paragraph, we review the different

approaches which have been published.

3.1 Road Visibilitymeters

This lexicographical term serves to designate two main types of instruments for both de-

tecting fog and measuring the extinction coefficient k; they are transmissometers and scat-

terometers [42].

3.1.1 Transmissometers

The basic principle behind this category of instrument consists of measuring average trans-

missivity of the atmosphere along a given path (see Fig. 3). Transmissometers are com-

posed of both a projector comprising a source emitting a luminous flux φ0 within the visible
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Figure 3: The operating principle of a transmissometer is to measure the average transmis-

sivity of the atmosphere along a given path.

domain and a receiver set located at an invariable distance d that measures the luminous flux

φ received.

By using Beer-Lambert’s Law, the extinction coefficient of the fog k, used for calculat-

ing the meteorological visibility distance (6), is given by:

k =
1

d
log

[

φ

φ0

]

(7)

The transmissometers are reliable. Their sensitivity is related to the length of the mea-

surement base d. This length, which extends over several meters or even several tens of

meters, provides these devices with a high level of accuracy, given the lack of homogene-

ity often encountered in fog. Transmissometers however are costly to implement and the

optical block alignment frequently proves to be a complex procedure.

3.1.2 Scatterometers

Some of these devices were developed for road applications, primarily for conducting mea-

surements under conditions of thick fog. They enable quantifying the light diffused within

a sufficiently wide and well-defined solid angle. In order to carry out such measurements,

a light beam is concentrated on a small volume of air (see Fig. 4). The proportion of light

being diffused toward the receiver would then be:

I = AI0V f(θ)e−kd (8)

with I the intensity diffused in the direction of the receiver, A a constant dependent on

power and source optics, I0 the source intensity, V the diffusing volume, f(θ) the value of
the diffusion function in the θ direction, k the extinction coefficient and d the length of the

optical path between emitter and receiver.

Generally speaking, the optical path d is small and the transmission factor e−kd is as-

similated to 1 and f(θ) is proportional to k, with (8) thereby becoming:

I = A′I0k, then k =
1

A′

I

I0
(9)
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Figure 4: The operating principle of a scatterometer is to measure the light diffused in a

well-defined solid angle.

where A’ designates a constant that depends on device characteristics.

We can state that a scatterometer, to its advantage, is significantly less expensive

than a transmissometer and that no optical block alignment is required. On the other

hand, the small size of the diffusing volume makes measurements highly sensitive to non-

homogeneities in the fog. Furthermore, the sensor accuracy decreases with the meteorolog-

ical visibility and is not acceptable for visibilities below 50m.

Consequently, neither a transmissometer or a scatterometer may be easily placed on-

board a moving vehicle. Indeed, the measurement path is too short and the aligment of

optical blocks is difficult for a transmissometer. A scatterometer would be too sensitive to

the turbulence caused by the motion of the vehicle. However, it would be interesting to

make some trials.

3.2 LIDAR

This laser based sensor can be used for estimating fog density by measuring the signal

backscattered by fog droplets [11]. The power per pulse from range r received by a LIDAR

is given by the simplified LIDAR equation [17]:

PR(r) =
PT cτβAe

8πr2
exp

[

− 2

∫ r

0
k(x)dx

]

(10)

where PT denotes the peak transmitted power per pulse, c the speed of light, τ the pulse

duration, β the backscatter cross section per unit volume, Ae the effective receiver aperture

and k(x) the atmospheric extinction coefficient.

Under strictly homogeneous conditions, β and k are not dependant of range. Hence,

(10) becomes:

PR(r) =
A”

r2
exp[−2kr] (11)
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Figure 5: Plot of the backscattered signal by a LIDAR in the presence of artificial fog based

on [7]. The diagram also shows the detection of two fixed targets.

where A” denotes a constant that depends on device characteristics. The slope of the de-

caying waveform when differentiating (10) with respect to range becomes:

dPR(r)

dr
= PR(r)

[

− 2k −
2

r

]

(12)

This differential equation is the basic principle on which the LIDAR measurement of

the extinction coefficient in a homogeneous scattering medium is done (cf. Fig. 5).

For automotive applications, the LIDAR seems to be the best suited active sensor for

estimating the meteorological visibility, since it does not need any external receiver, con-

trary to infrastructure based visibilitymeters, and can be used for other safety applications,

e.g. obstacles detection [51] or lane recognition [49]. Consequently, it has been used for

adjusting the power of headlights [7, 54] or for adjusting the headway in Automatic Cruise

Control (ACC) [13] according to the prevailing meteorological conditions. However, it has

been shown that the dynamic adaptation of the emitting power of a LIDAR with respect to

visibility conditions is not always perfect [18].

3.3 Camera

If a camera is used, there is no need to align the optical units as it is the case with the

transmissometer, and an image is obtained which is representative of the environment, un-

like with a scatterometer. Finally, in the case of a classical camera, the spectra taken into

account is in the visible domain. Consequently, its image is degraded by the presence of

fog. Most approaches make use of a fixed camera placed on the roadway which simplifies

the task as a reference image is always available [12, 37].

Systems that entail use of an onboard camera are encountered less frequently. Pomer-

leau [53] estimates visibility by means of measuring a contrast attenuation per meter on the
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Figure 6: Principle of the approach proposed in [53] to estimate the visibility distance based

on lane markings contrast attenuation.

road markings at various distances in front of the vehicle. However, this approach based

on the RALPH System [52] only indicates a relative visibility distance and requires the

detection of road markings to run. The principle of the technique is schematized in Fig. 6.

Yahiaoui [61] estimates the quality of images by comparing the MTF of the current

image with a contrast sensitivity function [44]. However, it only returns a potential visibility

distance. So, these methods estimate what could be the maximum visibility distance in the

scene.

In the two next sections, we present our camera based approaches. The first is able to

estimate the extinction coefficient of the atmosphere using a single camera. The second is

able to estimate the actual visibility range using either a camera coupled with an Inertial

Navigation System (INS) or with a binocular camera.

4 Automatic Fog Detection and Estimation of the Meteorologi-

cal Visibility Distance

In this section, a method to compute the extinction coefficient k and thus the meteorological

visibility distance using a single camera behind the vehicle windshield is recalled from [32].

This system was patented [41].

4.1 Flat World Hypothesis

In the image plane, the position of a pixel is given by its (u,v) coordinates. The coordi-

nates of the optical center projection in the image are designated by (u0,v0). In Fig. 7, H

denotes the height of the camera, θ the angle between the optical axis of the camera and

the horizontal, and vh the horizon line. The intrinsic parameters of the camera are its focal

length fl, and the horizontal size tpu and vertical size tpv of a pixel. We have also made

use herein of αu = fl

tpu
and αv = fl

tpv
, and have typically considered: αu ≈ αv = α. The

road is assumed flat, which makes it possible to associate a distance d with each line v of

the image:
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Figure 7: Modeling of the camera within its environment; it is located at a height of H in

the (S,X ,Y ,Z) coordinate system relative to the scene. Its intrinsic parameters are its focal

length f and pixel size t. θ is the angle between the optical axis of the camera and the

horizontal. Within the image coordinate system, (u,v) designates the position of a pixel,

(u0,v0) is the position of the optical center C and vh is the vertical position of the horizon

line.

d =
λ

v − vh

if v > vh, where λ =
Hα

cos θ
(13)

4.2 Camera Response

Let us denote f the camera response function, which models the mapping from scene lu-

minance to image intensity by the imaging system, including optic as well as electronic

parts [22]. With the notations of Section 2, the intensity I of a pixel is the result of f

applied to the sum of the airlight La and the direct transmission Lt, i.e:

I = f(L) = f(Lt + La) (14)

In this work, we assume that the conversion process between incident energy on the CCD

sensor and the intensity in the image is linear. This is generally the case for short exposure

times, because it prevents CCD array to be saturated. Furthermore, short exposure times

(1 to 4 ms) are used on in-vehicle cameras to reduce the motion blur. This assumption can

thus be considered as valid and (14) becomes:

I = f(Lt) + f(La) = f(L0e
−kd) + f

[

Lf (1 − e−kd)
]

= f(L0)e
−kd + f(Lf )(1 − e−kd)

= Re−kd +A∞(1 − e−kd) (15)
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whereR is the intrinsic intensity of the pixel, i.e. the intensity corresponding to the intrinsic

luminance value of the corresponding scene point and A∞ is the background sky intensity.

4.3 Recovery of Koschmieder’s Law Parameters

Following a variable change from d to v based on (13), (15) then becomes:

I(v) = R− (R−A∞)(1 − e
−

kλ
v−vh ) (16)

By twice taking the derivative of I with respect to v, one obtains the following:

d2I

dv2
(v) = kϕ(v)e

−
kλ

v−vh

(

kλ

v − vh

− 2

)

(17)

where ϕ(v) = λ(R−A∞)
(v−vh)3

. The equation d2I
dv2 = 0 has two solutions. The solution k = 0 is of

no interest. The only useful solution is given in (18):

k =
2(vi − vh)

λ
(18)

where vi denotes the position of the inflection point of I(v). In this manner, the parameter
k of Koschmieder’s law is obtained once vi is known. Finally, thanks to vi, vh and k values,

the values of the other parameters of (15) are deduced through use of Ii and
dI
dv

∣

∣

v=vi
, which

are respectively the values of the function I and of its first derivative at v = vi:

R = Ii − (1 − e−kdi)
(vi − vh)

2e−kdi

dI

dv

∣

∣

∣

v=vi

(19)

A∞ = Ii +
(vi − vh)

2

dI

dv

∣

∣

∣

v=vi

(20)

where R is the mean intrinsic intensity of the road surface.

4.4 Implementation

4.4.1 Estimation of the inflection point position

To estimate the parameters of (15), the median intensity on each line of a vertical band is

estimated and an inflection point is detected. So as to be in accordance with Koschmieder’s

law assumptions, this band should only take into account a homogeneous area and the sky.

Thus, a region within the image that displays minimal line-to-line gradient variations when

browsed from bottom to top is identified thanks to a region growing process, illustrated in

Fig. 8a. A vertical band is then selected in the detected area. Finally, taking the median

intensity of each segment, yields the vertical image intensity Ĩ from which the inflection

point is computed.
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(a) (b)

Figure 8: (a) Detection of the road and the sky by a region growing process; (b) the horizon-

tal white line represents the estimation of the visibility distance. The small white triangle on

the image top left indicates that the system is operative. Conversely, a small black triangle

indicates that the system is temporarily inoperative. The black vertical lines represent the

limits of the vertical band analyzed. In this example, Vmet ≈ 60m.

4.4.2 Estimation of the horizon line position

To obtain the values of the parameters of (15), the position of the horizon line must be

estimated. It can be estimated by means of the pitching of the vehicle when an inertial

sensor is available, but is generally estimated by an additional image processing. Generally,

this type of processing seeks to intersect the vanishing lines in the image. However, under

foggy weather, the vanishing lines are only visible close to the vehicle. It is thus necessary

to extrapolate the position of the horizon line through the fog. Consequently, this kind of

process is prone to a significant standard deviation and, for the moment, we use the a priori

sensor calibration.

Having now the vertical positions of both the inflection point and the horizon line, the

parameters of (15) can be recovered and the position of the image line representative of the

meteorological visibility distance is deduced. Fig. 8b illustrates the process.

4.5 Confidence Index on the Measurement

Given that we have a theoretical model of the vertical variation of the intensity in the image,

the confidence index on the measurement is linked with the difference between the theoret-

ical model I and its estimation Ĩ . In other words, the more noisy Ĩ is, the less reliable the

measurement is. Let us quantify this difference. As the theoretical curve is decreasing, we

first smooth Ĩ until it becomes decreasing. We denote this curve Ī . We then compute the

difference E between the derivative of Ĩ and the derivative of Ī , which can be expressed as

following:
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Figure 9: Examples of measurement bandwidth computations (black lines) under foggy

conditions: (a) low fog density, and (d) high density. Curves representative of the mea-

surement of vertical luminance variation in the image under foggy conditions: (b) low fog

density, and (e) high density. (c) and (f) depict the derivatives of these curves (gray - with-

out smoothing L̃; black - with smoothing L̄) and allows to compute C, respectively equal

to 86% and 91%.

E =
n

∑

i=1

∣

∣

∣

∣

∂Ĩ

∂v
(i) −

∂Ī

∂v
(i)

∣

∣

∣

∣

(21)

The maximum error Emax which can be made on the computation of the derivative is

equal to:

Emax = n×Gmax (22)

where Gmax denotes the maximum authorized value of the vertical gradient in the region

growing process and n the lines number of the measurement bandwidth. A normalized

confidence index C can be formulated:

C =
Emax − E

Emax
(23)
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The proposed index has been validated using synthetic data. Two examples of index

confidence computations are given in Fig. 9.

4.6 Analysis of the Method Sensitivity
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Figure 10: Method sensitivity with respect to δ value. Used parameter: λ = 1000.

The estimation of Vmet is correct if the position vi of the inflection point as well as the

position vh of the horizon line are correct. Let us study the influence of an estimation error δ

on the difference of these two positions. The error S between the estimated meteorological

visibility distance Ṽmet and the actual meteorological visibility distance Vmet is expressed

with respect to δ value by:

S = Vmet − Ṽmet

= Vmet −
3λ

2

1

vi − vh + δ

= Vmet

[

1 −
1

1 + 2δVmet

3λ

]

(24)

The curves in Fig. 10 give the committed error for values of δ ranging from -4 to +4.

We can conclude that underestimate the difference of positions is more penalizing that

overestimate it. To have stable measurements, we thus prefer set the horizon line above

its real position.
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Figs. 11 and 12 show some results of meteorological visibility distance computations in

two daytime fog video sequences.

4.7 Extension of the Method

4.7.1 Masking problem

To run properly, the previous method needs a homogeneous area and the sky. In case of a

low dense fog or a strong masking of the road, the method is not operative anymore. Indeed,

the region growing is unable to cross the image from bottom to top. Figs. 13abc show such

situations.

4.7.2 Complementary approach

To limit the problem, when it is possible, we propose to add a measurement of the contrast

attenuation between the road and the lane markings [23], like it was proposed in [53]. How-

ever, in our case, instead of directly detecting the markings, we prefer using the results of

the previous region growing. In this aim, we assume that the markings are on the border of

the area detected by the region growing algorithm and we search the pixels whose intensity

is greater than the median intensity Im of the considered image line. Then, on each line, the

median intensity IM of the lane markings is computed. Some examples are shown in Fig.

14. In fact, this approach could be used under every meteorological conditions. However,

under beautiful weather, the shadows prevent the method to run properly contrary to foggy

weather where there is no shadows.

Thereafter, contrary to [53] who estimates a contrast attenuation factor per meter, we

prefer to estimate the meteorological visibility distance so as to be coherent between both

methods. Thanks to (4), we know the theoretical variations of Im (road intensity) and IM
(markings intensity) with respect to the distance. By considering two distances d1 and d2,

the extinction coefficient k can be expressed by:

k =
1

d2 − d1
log

[

IM1
− Im1

IM2
− IM1

]

(25)

We deduce the value of the meteorological visibility distance as:

Vmet =
3(d2 − d1)

log
[

IM1
−Im1

IM2
−IM1

] (26)

Both methods are complementary. Whereas the first method does not need the presence

of road markings, the second one does not need the presence of the sky in the image. It is

thus possible to draw advantage from both methods to build a better one.
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Figure 11: (d) Plot of the meteorological visibility distance estimation based on the daytime

fog video sequence illustrated in (a)(b)(c).
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Figure 12: (d) Plot of the meteorological visibility distance estimation based on the daytime

fog video sequence illustrated in (a)(b)(c).
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(a) (b) (c)

(d) (e) (f)

Figure 13: (a)(b)(c) Examples where the region growing algorithm is not successful due

to the masking of the road; (d)(e)(f) Lane markings detection based on the region growing

algorithm.
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Figure 14: Estimation of the meteorological visibility distance based on the lane markings

contrast attenuation.
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5 Estimation of the Visibility Distance: a Generic Approach

The previous method leads to good results in daytime foggy weather. In order to extend

the range of covered meteorological situations, we developed a different approach, which

consists in estimating what we call the mobilized visibility distance Vmob [25].

5.1 Generic Method Proposal

5.1.1 Mobilized Visibility Distance

For the CIE, the meteorological visibility distance is the greatest distance at which a black

object of a suitable dimension can be seen in the sky on the horizon. We have decided

to build a method which is close to this definition. In this aim, we propose to study the

distance to the most distant object having enough contrast with respect to its background.

On Fig. 15, we represent a simplified road with dash road marking. On Fig. 15a, we

suppose that the most distant visible object is the extremity of the last road marking (it

could have been the border of the road too). On Fig. 15b, the vehicle has moved and a new

road marking is now visible. We call this distance to the most distant visible object, which

depends on the road scene, the mobilized visibility distance Vmob. This distance has to be

compared to the mobilizable visibility distance Vmax. This is the greatest distance at which

a picture element on the road surface would be visible.

Consequently, we have the following relationship:

Vmax ≥ Vmob (27)

5.1.2 Mobilizable Visibility Distance

In this section, we are going to establish the link between the mobilizable visibility distance

and the meteorological visibility distance. The mobilized visibility distance is the distance

to the most distant object W considered as visible. We denote Lb0 and Lw0
, the intrinsic

luminances and Lb et Lw the luminances at the distance d of the road B and the objectW .

Koschmieder’s law gives us the theoretical variations of this values according to the

distance d. Let’s express the contrast CBW of W with respect to B like Weber does, see

(36):

CBW =
∆L

L
=

(Lwo − Lbo
)e−kd

Lbo
e−kd + Lf (1 − e−kd)

(28)

We deduce the expression of d according to the photometric parameters, the contrast

CBW and the fog density k:

d = −
1

k
log

[

CBWLf

Lwo − Lbo
+ CBW (Lf − Lbo

)

]

(29)
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Figure 15: Examples of mobilized and mobilizable visibility distances. The mobilized

visibility distance Vmob is the distance to the most distant visible object existing on the

road surface. The mobilizable visibility distance Vmax is the greatest distance at which a

potential object on the road surface would be visible.

That is to say the distance where an object W is perceived with a contrast of CBW .

Thanks to (6), we can express this value according to the meteorological visibility distance

Vmet:

d = −
Vmet

3
log

[

CBWLf

Lwo − Lbo
+ CBW (Lf − Lbo

)

]

(30)

Like CIE does, we can choose a threshold C̃BW below which the object is considered

as being not visible. Like for the computation of the meteorological visibility distance, we

assume that the road intrinsic luminance is equal to zero. Then, we define the mobilizable

visibility distance Vmax valid for every threshold contrast:

Vmax = max
Lw0

∈]0,M ]
−
Vmet

3
log

[

C̃BWLf

Lwo + C̃BWLf

]

(31)

The energy received by the objectW is not entirely reflected towards the camera. Con-

sequently, we have the following relationship:

Lwo ≤ Lf (32)

We deduce the value of Vmax:

Vmax = −
Vmet

3
log

[

C̃BW

1 + C̃BW

]

(33)
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Then, we easily obtain the value C̃BW so that Vmax = Vmet:

C̃BW =
1

e3 − 1
≈ 5% (34)

So, by choosing a contrast threshold C̃BW of 5 %, the mobilizable visibility distance is

close to the meteorological visibility distance Vmet for a black object.

Actually, the road is never pure black and the sky rarely pure white. The mobilizable

visibility distance represents a maximum of visibility distance which is rarely reachable,

since it is the greatest distance at which the clearest object is visible on a black road. On the

other hand, the mobilized visibility distance, which only takes into account the gray objects

encountered in the image is the distance that we are able to estimate directly as explained

in the following.

5.1.3 Proposed Method

In section 5.1.1, we have introduced the concepts of mobilized and mobilizable visibility

distances. Whereas the first one depends on the road scene, the second one only depends on

the meteorological conditions. Then, in section 5.1.2, we established the link between the

meteorological visibility distance defined by the CIE and the mobilizable visibility distance

previously defined. In particular, we calculated the contrast threshold so that both distances

are the same, that is to say 5 %. Consequently, we propose to estimate the mobilized

visibility distance by estimating the distance to the most distant object on the road surface

having a contrast above 5 %. This method is decomposed in two tasks. The first one consists

in computing the contrasts in the image and selecting the ones above 5 %. The second one is

the depth computation of the detected picture elements and the selection of the most distant

one.

5.2 The Measurement of Contrast

5.2.1 Contrast and digital images

Different definitions of the contrast exist. One of the most famous is Michelson’s contrast

[60]. It has been introduced to quantify the visibility of sinusoidal gratings:

CM =
Lmax − Lmin

Lmax + Lmin
(35)

where Lmin and Lmax are the minimal and maximum luminance values of the image. The

use of sinusoidal gratings and of this contrast definition has met a great success in psy-

chophysics. In particular, it has been used to study the human eye by building contrast

sensivity functions (CSF).

Weber [60] defined the contrast as being a relative luminance variation∆L with respect
to the background L. This has been used to measure the visibility of targets:

CW =
∆L

L
(36)
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This contrast definition is sometimes called psychophysical contrast and it is used in the

definition of the meteorological visibility distance.

These definitions are good estimators of contrast for the stimuli previously mentioned:

sinusoïdal gratings for Michelson, uniform targets for Weber. However, they are not well

adapted when the stimulus becomes more complex. Moreover, none of these definitions are

adapted to estimate the contrast in natural images. This is mainly due to the fact that the

contrast perception is local. This is on these local methods that we focused our attention.

The LIP model [35] has introduced a definition of contrast well suited to digital images.

In this definition, the contrast between two pixels x and y of an image f is given by:

C(x,y)(f) = max[f(x), f(y)]△- min[f(x), f(y)] (37)

where△- denotes LIP substraction. Naturally, this definition of contrast is consistent with
the definition of contrast used in visual perception (36).

Then, the contrast associated to a border F which separates two adjacent regions fol-

lows:

CF (f) =
1

cardV
△× △+ (x,y)∈V

C(x,y)(f) (38)

where△× and△+ denote LIP multiplication and addition.

5.2.2 Implementation

To implement this definition of contrast between two adjacent regions, Köhler’s segmenta-

tion method has been used [38]. Let f be a gray level image. A couple of pixels (x,y) is said

to be separated by the threshold s if two conditions are met. First, y ∈ V4(x). Secondly,
the condition (39) is respected:

min
[

f(x), f(y)
]

≤ s < max
[

f(x), f(y)
]

(39)

Let F (s) be the set of all couples (x, y) separated by s. With these definitions, for
every value of s belonging to [0,255], F (s) is built. For every couple belonging to F (s),
the contrast Cx,y(s) is computed:

Cx,y(s) = min

[

|s− f(x)|

max(s, f(x))
,

|s− f(y)|

max(s, f(y))

]

(40)

The mean contrast (41) associated to F (s) is then performed:

C(s) =
1

cardF (s)

∑

(x,y)∈F (s)

Cx,y(s) (41)

The best threshold s0 verifies the following condition:

s0 = argmax
s∈[0,255[

C(s) (42)
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Figure 16: Noise robustness of Köhler’s method adapted to the LIP contrast. One-

dimensional edge modified by gaussian noise (b) σ = 1, (d) σ = 15. The dotted line
represents the optimal threshold found by the method. The mean contrast C(s) associated
to each threshold value s is plotted for (a) σ = 1, (c) σ = 15.

It is the threshold which has the best mean contrast along the associated border F (s0).
Instead of using this method to binarize images, we use it to measure the contrast lo-

cally. The evaluated contrast equals 2C(s0) along the associated border F (s0). Finally,
if 2C(s0) > 5%, F (s0) is considered to be a visible edge. Details about the implementa-
tion of this method can be found in [26].

5.2.3 Noise robustness

The method derived from Köhler is robust to noise. We assume that the noise of the camera

is gaussian.

Let consider two gaussian distributions of means L1 and L2 and standard deviations

σ1 and σ2. We can show that, as long as both distributions do not intersect, the optimal

threshold s0 found by Köhler’s technique is a gaussian distribution with mean
L1+L2

2 and

standard deviation 1
2

√

σ2
1 + σ2

2 [26].

Consequently, the method is robust to noise, because in average the returned threshold

is the one without noise at the same distance of both distributions. This property is still

verified when using the local formula of LIP contrast. Fig. 16 illustrates this property.

Figs. 16b and 16d are the same distributions with additive gaussian noise of standard
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(a) (b) (c)

(d) (e) (f)

Figure 17: (a)(b)(c) Images grabbed under different meteorological conditions (light fog,

dense fog, rain); (d)(e)(f) results of local contrasts above 5% computation.

deviation σ = 1 and σ = 15 respectively. The optimal threshold found by Köhler’s tech-
nique, which is represented by the horizontal dashed line, is the same for both distributions.

It is the one, which gives the maximum contrast (cf. Figs. 16b and 16d).

On the opposite, if both distributions are intersected, i.e. if max(3σ1, 3σ2) >
L2−L1

2 ,

Köhler’s technique is not so efficient anymore.

5.2.4 Results samples

Some examples of computations of local contrast above 5% are given in Fig. 17 using

images grabbed under different meteorological conditions.

5.3 Identifying a Suitable Telemetry

If just a single camera is used, we are unable to gain access to image depth, like it is depicted

in Fig.18. This problem is generally overcomed by adopting the hypothesis of a flat world,

which makes it possible to associate a distance with each line of the image. However, the

depth on vertical objects is uncorrect and is unknown without another assumption. In a first
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Figure 18: Principle of non-determination of depth using a single camera.

approach, we can detect picture elements belonging to the road surface. Techniques that

search the road surface are numerous. A first family of methods finds the road surface by

a segmentation process. Color segmentation [6, 33], texture segmentation [2] are the main

approaches. A second family of methods finds the road surface by detection of its edges

[3, 14, 58]. Conversely, we can detect the objects above the road surface. Some techniques

are based on optic flow computation [21]. However, it is time consuming and the main

hypothesis is not always verified (spatio-temporal luminous flow preserved). Some methods

rely on template matching [4] or local symmetry [10] but are necessarily not generic. In

addition, techniques like depth from scattering [48], depth from focus/defocus [19], shape

from shading [62] are not adapted to our objectives.

We have developed a generic monocular approach. Knowing precisely the relative mo-

tion of the vehicle between two instants, the road plane in successive images is aligned, like

in [55]. By perspective projection, the objects belonging to the road surface are correctly

aligned, whereas the vertical objects are deformed. This allows estimating the mobilized

visibility distance. The principle of this approach is presented in section 5.4.

If we use stereovision, we are not limited to the flat world hypothesis and we are able

to gain access to the depth of nearly every pixels in the image [15]. However, because of

real-time constraints, most approaches compute a sparse disparity map. We present our

approach in section 5.5 which is based on "v disparity" concept [40]. Another approach

based on "v-disparity" can be found in [57].

5.4 Generic Monocular Approach

5.4.1 Disparity Map Construction by Successive Images Alignment

Camera Model The different camera parameters were described in section 4.1. The

transformation between the vehicle frame (with origin at the center of gravity of the ve-

hicle) and the camera frame, is represented by a vectorial translation
−→
t = d

−→
X + h

−→
Z (see

Fig. 19) and a rotation around the axes Y of angle β. We denote T the translation matrix

and R the rotation matrix. The coordinate change between the image frame and the camera

frame can be expressed using a projective matrixMproj [34]:

Mproj =





u0 0 −α 0
v0 −α 0 0
1 0 0 0



 (43)
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Figure 19: Position of the camera and vehicle dynamics.

At last, we obtain the transformation matrix Tr from the vehicle frame to the image

frame:

Tr = MprojRT (44)

If P is a point with homogeneous coordinates (X,Y, Z, 1) in the vehicle frame, its
homogeneous coordinates in the image frame become:

p = TrP = (x, y, z)T (45)

We can now compute the coordinates (u, v) of the projection of P in the image frame:















u =
x

z
= u0 + α

cosβ(Z + h) − sinβ(X + d)

cosβ(X + d) + sinβ(Z + h)

v =
y

z
= v0 − α

Y

cosβ(X + d) + sinβ(Z + h)

(46)

Flat World Assumption If we consider I1 and I2 images taken at time t1 and t2, the

knowledge of the vehicle dynamics allows us, thanks to (46), to obtain an estimation of the

image I2 from the image I1. Let Ĩ12 be this estimated image and P a point whose projection

in the image frame belongs to it. Let us assume that this point belongs to the road plane,

meaning that if (X2, Y2, Z2) are the coordinates of this point in the vehicle frame, then
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Z2 = 0. So the expression of X2 and Y2 is deduced from (46):















X2 =
cosβ[d(u− u0) + αh] + sinβ[h(u− u0) − αd]

α sinβ − cosβ(u− u0)

Y2 =
−h(v − v0)

α sinβ − cosβ(u− u0)

(47)

Vehicle Motion The motion M of the camera between two instants can be represented

by a rotation and a translation. These transformations are in fact the same as the vehicle

gets between two instants. Let φ be the yaw angle, ψ be the pitch angle and θ the roll angle

(Fig. 19), then the rotation matrix Rot is given by:

Rot =





cosφ cosψ − sinψ cos θ + cosψ sin θ sinφ sinψ sin θ + cosψ cos θ sinφ
cosφ sinψ cosψ cos θ + sinψ sin θ sinφ − cosψ sin θ + sinψ cos θ sinφ
− sinφ sin θ cosφ cos θ cosφ





(48)

The translation can be decomposed following the axesX,Y, Z and is denoted Trans =
(Tx, Ty, Tz)

T . The rotation-translation can be rewritten in terms of homogeneous coordi-

nates with the following system:









X2

Y2

Z2

1









=









RotT
Tx

Ty

Tz

0 1

















X1

Y1

Z1

1









(49)

Creation of an Aligned Image From the knowledge of the coordinates of a point P in

(47) and of the vehicle dynamics given byM , we can express the coordinates of the point

P in the camera frame at time t1:

(x12, y12, z12)
T = TrM(X2, Y2, 0)T (50)

whereM is the vehicle rotation/translation matrix. We obtain the coordinates (u12, v12) of
P in the image frame of I1:

u12 = x12

z12
and v12 = y12

z12
(51)

An example of aligned image computation for a large displacement (≈ 4m) is shown
in Fig. 20.

5.4.2 Pseudo-Disparity Map Computation

Image Matching We have to match both images I1 and Ĩ12. It means that we have to find

local correspondences between two neighborhoods from each image. These correspon-

dences are computed via the ZNCC correlation metrics (a comparison of different existing

metrics is carried out in [50]):
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(a) (b) (c)

Figure 20: (a) Image I1; (b) image I2 ; (c) aligned image Ĩ12 for a big displacement (≈ 4m).

∑

i

(

I1(x+ i) − Ī1(x)
)(

Ĩ12(x+ ∆ + i) −
¯̃
I12(x+ ∆)

)

√

∑

i

(

I1(x+ i) − Ī1(x)
)2

∑

i

(

I ′(x+ ∆ + i) −
¯̃
I12(x+ ∆)

)2
(52)

where Ī1(x) and
¯̃
I12(x + ∆) are the means of pixel intensities for the window centered at

x and∆ is the considered shift.

The more the correlation score is close to 1, the more we can consider these two neigh-
borhoods as identical. Since the road plane is aligned in both images I1 and Ĩ12, no scanning

is normally necessary to match image features using ZNCC correlation. However, work-

ing on a single pair of neighborhoods limits our study. Indeed, some matching errors can

occur and a pixel belonging to the road can be incorrectly aligned in the image Ĩ12. That’s

why we defined a search window (cf. Fig. 21a). The correlation neighborhood in image

I1 is centered on an edge pixel. The correlation neighborhood in the image Ĩ12 is centered

successively around a pixel varying in a search neighborhood centered on the pixel (u1, v1)
in image I1.

We defined two kinds of search neighborhoods: squared neighborhoods for objects

belonging to the road plane and deformed neighborhoods for vertical objects (cf. Fig. 21,

like it is done in spatial stereovision [59]. Indeed, one can notice that objects not belonging

to the road plane are deformed towards the top and the borders of the image after image

alignment. Finally, the idea is to compute for each pixel of gradient a disparity with a

normal and a deformed searching neighborhood and to keep the disparity giving the best

ZNCC correlation score. An example of result is given in Fig.22 using actual images of

fog. The majority of pixels belonging to the road plane is successfully recognized, contrary

to the pixels belonging to the vertical sign. Having now the pixels belonging to the road

plane, we can associate a depth with each line of the image assuming a flat world using

(13). In this process, we do not necessary need to find the pixels belonging to the vertical

objects. However, they are used to filter erroneous pixels associated to the road plane or to
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Figure 21: (a) Correlation neighborhood and search window; (b) Correlation with deformed

window for the non-road hypothesis.

a vertical object according the majority of pixels found in a neighborhood.

Details about the method implementation as well as the role that plays the vehicle dy-

namics in the method are given in [9].

5.5 Generic Binocular Approach

The previous method is able to compute a depth map of the road surface using a single

camera coupled an inertial navigation system. However, we have to assume that the road is

flat. The mobilized visibility distance is thus the range to the most distant visible object on

the road plane. In this section, we use spatial stereovision and we are thus able to compute

the road profile. The mobilized visibility distance will thus be the range to the most distant

visible object on the road surface. From a theoretical point of view, the method should be
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(a) (b)

Figure 22: (a) Fog image taken by the onboard camera. (b) In white: points belonging to

the road plane. In black: points not belonging to the road plane.

more precise since the road is never a perfect plane. However, it requires a stereovision

sensor with a rectified epipolar geometry which is also a rather strong constraint.

5.5.1 The Image of a Plane in the "v-disparity" Image

The stereovision algorithm uses the "v-disparity" transform, in which the detection of

straight lines is equivalent to the detection of planes in the scene. In this aim, we repre-

sent the v coordinate of a pixel towards the disparity∆ (performing accumulation from the
disparity map along scanning lines) and detect straight lines and curves in this "v-disparity"

image (denoted by Iv∆
) [40].

This algorithm assumes the road scene is composed of set of planes: obstacles are

modelized as vertical planes, whereas the road is supposed to be an horizontal plane (when

it is planar), or a set of oblique planes (when it is not planar), as shown in Fig. 23.

According to the modeling of the stereo sensor given on Fig. 23, the plane of equation

Z = d, corresponding to a vertical object, is projected along the straight line of (53) in Iv∆
:

∆ =
b

d
(v − v0) sin θ +

b

d
α cos θ (53)

The plane of equation Y = 0, corresponding to the road surface, is projected along the
straight line of (54) in Iv∆

:

∆ =
b

h
(v − v0) cos θ +

b

h
α sin θ (54)

The different camera parameters were described in section 4.1. The other parameters
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Figure 23: Domain of validity of the study and coordinate systems used.

are h which denotes the height of the cameras above the ground and b which is the distance

between the cameras (i.e. the stereoscopic base). Details can be found in [40].

5.5.2 "V-disparity" Image Construction and 3D Surface Extraction

The algorithm performs a robust extraction of these planes from which it deduces many

useful information about the road and the obstacles located on its surface. Fig. 28 illus-

trates the outline of the process. From two stereo images, a disparity map I∆ is computed

(ZNCC criteria is used to this purpose along edges). Then an accumulative projection of this

disparity map is performed to build the "v-disparity" image Iv∆. For the image line i, the

abscissa uM of a pointM in Iv∆ corresponds to the disparity ∆M and its grey level iM to

the number of points with the same disparity∆M on the line i : iM =
∑

P∈I∆
δvP ,iδ∆P,∆M

where δi,j denotes the Kronecker delta. From this "v-disparity" image, a robust extraction

of straight lines is performed through a Hough transform. This extraction of straight lines

is equivalent to the extraction of the planes of interest taken into account in the modeling of

the road scene (see Fig. 24c).

5.5.3 Disparity Map Improvement

Sparse approach In order to quickly compute the "v-disparity" image, a sparse and rough

disparity map has been built. This disparity map may contain numerous false matches,

which prevents us to use it as a depth map of the environment. Thanks to the global surfaces

extracted from the "v-disparity" image, false matches can be removed. In this aim, we check

wether a pixel of the disparity map belongs to any global surface extracted using the same

matching process. If it the case, the same disparity value is mapped to the pixel and leads

to Fig. 24d. Details of this process can be found in [39]. Finally, this enhanced disparity

map can be used as a depth map of the vehicle environment, since the depthD of a pixel of

disparity∆ is expressed by:



Perception through Scattering Media for Autonomous Vehicles 33

(a)

(b)

(c) (d)

(e) (f)

Figure 24: Overview of two steps "v-disparity" approach using on a foggy stereo pair of

images: (a) left image; (b) right image; (c) "v-disparity" image computed using (a) and

(b) images; (d) improved sparse disparity map; (e) (f) samples of improved quasi-dense

disparity maps.

D =
b(α cos θ − (j − v0) sin θ)

∆
(55)

Quasi-dense approach However, such a disparity map is sparse, i.e. the disparity is

known only on vertical edges pixels. But under degraded weather conditions, it poses a

problem, particularly on the top of vertical objects, such as vehicles where numerous false

matches still exist.

To cope with this situation, a complementary approach has been proposed. It is based

on a disparity propagation method.

We thus propagate the seeds, which are the set of the matched pixels in the first pass

of the v-disparity algorithm, like in [43], except that for each matching pair candidate, we

check if it belongs to one the profils of the v-disparity image. Thanks to this approach, the

disparity map is quasi-dense especially on the horizontal edges (see Figs. 24ef). Compared

to dense disparity matching approaches, the computation of these disparity maps is rather

low cost in terms of computation time and allows to precisely locate some bounding boxes
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Figure 25: Example of a bounding box around a vehicle in foggy weather. Although the

vehicle is not well contrasted and can be confused with the sky, an accurate bounding box

is provided.

around vertical objects using "u-disparity" approach [29], like in Fig. 25.

5.6 Real-time Disparity Contrast Combination

To estimate the visibility distance, we have now to combine a disparity map of the road

surface obtained using one of the previously described approaches with a contrast map.

Because most distant objects on the road plane are on the horizon line, the scanning starts

from this location. Within each neighborhood where a point of disparity is known the

contrast is computed. The process stops when a contrast above 5% is met. The visibility

distance is then the depth of the picture element with a contrast above 5%. This generic

process has been patented [27].
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No
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Camera 

+ INS

Binocular
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Figure 26: Overview of the real-time disparity contrast combination algorithm.
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5.7 Results

An example of final result is given in Fig. 27. In Fig. 27a, the result of local contrasts

above 5% is presented for a daytime foggy weather image. In Fig. 27b, the final result of

the algorithm is shown. In particular, the disparity point, on which the visibility distance is

computed, is represented with a black cross inside the white window.

Finally, Figs. 28 and 29 show some results of mobilized visibility distance computations

using stereovision in two fog video sequences (daytime and twilight fog) [28].

(a) (b)

Figure 27: Final result: the most distant windowwith a contrast above 5 %, on which a point

of disparity is known, is the circle. The disparity point is represented with a black cross

inside the white window. (a) local contrasts above 5%; (b) foggy weather (Vmob ≈ 75m).



36 Nicolas Hautière et al.

(a) (b) (c)

0

50

100

150

200

0 200 400 600 800 1000

M
o
b
il
iz
ed
v
is
ib
il
it
y
d
is
ta
n
ce
[m
]

Time [image index]

(d)

Figure 28: (d) Plot of the mobilized visibility distance estimation using stereovision based

on the daytime fog video sequence illustrated in (a)(b)(c).
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Figure 29: (d) Plot of the mobilized visibility distance estimation using stereovision based

on the twilight fog video sequence illustrated in (a)(b)(c).
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6 Contrast Restoration of Fog Degraded Images

Once visibility distance has been determined, it can be used to adjust some parameters in

other image processing algorithms. This section is devoted to such an application focusing

on contrast restoration.

According to (5), the contrast of images is drastically degraded and varies across the

scene under daytime foggy weather. Consequently, advanced driver assistances relying on

artificial vision and pattern analysis are no longer able to run properly. To mitigate this

problem, we proposed to restore the contrast by inverting Koschmieder’s Law to recover

the value of the intrinsic intensity R at each point of the scene, such as:

R = Iekd +A∞

[

1 − ekd
]

(56)

Then, according to the strategy used to approximate the depth distribution d of the road

scene, different applications can be constructed.

6.1 Contrast Restoration of the Road Surface

Road departure prevention is usually based on a lane marking detector relying on a single

camera mounted behind the windshield of the vehicle. In these conditions, most systems

assume a flat road. This assumption can also be used to restore the contrast of the road

surface. Thus, using (18) and (56), one obtains:










R = Ie
2

vi−vh
v−vh +A∞

[

1 − e
2

vi−vh
v−vh

]

A∞ = Ii +
(vi − vh)

2

∂I

∂v

∣

∣

∣

v=vi

(57)

Details of the method are given in [24]. To illustrate the algorithm, the lane markings have

been extracted in a foggy image with and without contrast restoration using the method

described in [56] with the same setting (see Fig. 30). One can see that the operation range

of the lane marking detector is enhanced thanks to the contrast restoration process.

6.2 Contrast Restoration of the Road Scene

To restore the contrast of the road scene and not only the contrast of the road surface, another

approach is proposed. In this context, the depth distribution in the scene can be roughly

modeled in two parts. A first part models the road surface which can be approximated

by a plane like in the previous paragraph. A second part models the objects above the road

surface. According to classical perspective geometrical representations, the depth of a scene

point can be expressed as a function of the euclidian distance in the image plane between

the corresponding pixel and the vanishing point (uh, vh) [47]. Consequently, the depth d of
a pixel with (u, v) coordinates can be inferred as:

d = min

[

λ

v − vh

,
κ

√

(u− uh)2 + (v − vh)2

]

(58)
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d1=28md1=28m

(a)

d2=62m

(b)

Figure 30: (a) Original foggy image used for lane markings detection using the method

described in [56]; (b) image with restored contrast used for lane markings detection using

the same parameters as the first image, i.e. a gradient threshold of 10 (blue: pixels likely to

be lane markings, green: fitted lane marking, red: level of confidence on the fitting).

where κ > l models the relative importance of the flat world against the vertical world. To

correctly restore the contrast, according to the scene model given in the previous paragraph,

the remaining task consists in finding the optimal values of κ and c. To do it, one solution

is to solve the following equation using Powell’s method:

(κ∗, c∗) = argmax
κ>1

c>0

[

Q(κ, c) + κ− c
]

(59)

where c is a parameter which defined a clipping plane at d = λ
c−vh

which is used to limit

the depth modeling errors near the horizon line and Q is a norm of the local normalized

correlation between the original image and the restored image. Indeed, the normalized

correlation score between the original and the restored versions of a neighborhood should

remain high. A decreasing normalized correlation means that the content of the original and

restored neighborhoods differ. More details about this method are given in [31]. Sample

results are given in Fig. 31.

6.3 Simultaneous Contrast Restoration and Obstacle Detection

Initialized with a small initial value of κ in (58), e.g. κ = 1.1λ, the principle of the simulta-
neous contrast restoration and obstacle detection algorithm is to progressively increase the

value of κ and to detect the distorted areas. As soon as vertical objects are encountered,

a local contrast distortion can be noticed. In this case, the vertical object causing the dis-

tortion is detected by "u-v disparity" stereovision approach, detailed in paragraph 5.5. The

increase of κ can then be restarted until the desired final value, e.g. κ = 10λ, is reached.
The algorithm is detailed in [30] and illustrated in Fig. 32.
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(a) (b)

Figure 31: Example of contrast restoration of a road scene. (a) Original image. (b) Image

with restored contrast. In the white circle, the second car that appears in the restored image.

In this way, scattering is turned to our advantage allowing us to detect vertical objects,

which can then be confirmed by another approach (stereovision in this case). Based on this

principle, we plan to develop such novel algorithms aiming at recovering the third dimen-

sion of scenes using a single image by exploiting the scattering of the light by atmospheric

particles.

(a) (b) (c)

Figure 32: (a) original foggy image; (b) image with half restored contrast and a bounding

around the detected obstacle; (c) image with full restored contrast.

7 Discussion and Perspectives

In the previous sections, an approach to deal with adverse visibility conditions in daytime

fog was presented: modeling, methods, experimental validation and applications. Admit-
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tedly there is still some work ahead to finalize and validate the applications, in a near future

we would like to tackle other adverse meteorological or lighting conditions: night-time fog

(Fig. 33c), rain (Fig. 33a), sun at grazing angle (Fig. 33b), snow fall, entrance or exit of

tunnels, even though existing works on these subjects are quite rare. Consequently, to be

able to develop new methods and applications, a lot of work is needed to model, simulate

or reproduce these adverse conditions.

However, as mentioned in the introduction, it is one of the keys to obtain a very impor-

tant level of reliability of the sensor unit inside the vehicles and associated signal process-

ing. Then, new systems for the vehicle using a camera could be developed. It would lead

to increase the number of supported functions by the camera (rain sensor, fog sensor, etc.)

and thus to reduce the cost of its installation in future vehicles. In this way, the deployment

of such onerous systems could be facilitated.

(a) (b) (c)

Figure 33: (a) rainy weather; (b) sun at grazing angle; (c) night-time fog situation.

8 Conclusion

In this chapter, methods have been presented to deal with daytime fog conditions in the

future driver assistances using optical sensors. First of all, a daytime fog modeling has

been recalled and new visibility distances have been proposed fitting well with these driv-

ing conditions. Two complementary methods have been presented aiming at estimating the

visibility range using respectively one or two onboard cameras. Both methods are based on

the definition of the meteorological visibility distance. The first technique, using a model of

atmospheric scattering, detects and estimates the density of daytime fog by using a single

camera. The second technique, using a generic property of the atmosphere, is able to esti-

mate the visibility range under all meteorological conditions both in daytime and in night

time by using a stereoscopic sensor or a single camera coupled with an inertial navigation

system. In the future, these methods are likely to be used to provide drivers with an ap-

propriate speed with respect to the visibility range, or to automate the fog lamps. Once the
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weather conditions have been determined, they can have been exploited to reduce the impact

of adverse weather conditions on the operation of vision systems. We have thus proposed

different solutions to enhance the performances of vision algorithms under foggy weather.

Finally, we have tackled the problem to know if light scattering could be turned to our ad-

vantage, allowing us to develop novel perception algorithms. Methods are validated using

actual fog images grabbed under various situations on the test track of Versailles Satory in

France. In the future, we would like to apply this approach to other adverse conditions like

night-time fog, rain, low angled sun, etc.
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