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Abstract—Fog is a local meteorological phenomena which
drastically reduces the visibility range. Fog detection and
visibility range estimation are critical tasks for road operators
who need to warn the drivers and advise them on speed
reductions. To achieve this task, fixed sensors are quite accurate
but they have a reduced spatial cover. Mobile sensors are less
accurate, but they have a good spatial cover. Based on the
combination of roadside sensors and in-vehicle devices (sensors
or fog lamps), a data fusion framework is presented aiming at
taking the advantages of both fixed and mobile sensors for
the extensive detection and estimation of the fog density. The
proposed solution is implemented by means of a local dynamic
map fed by vehicle to infrastructure (V2I) communication,
which gives a coherent view of the road environment.

Keywords-fog detection; visibility range; data fusion; uncer-
tainty; local dynamic map; (V2I) communication.

I. INTRODUCTION

The presence of dense fog on a road network affects
the safety and may trigger reductions of the mandatory
speeds. For example, a mandatory speed of 50 km/h should
be triggered if the visibility is below 50 m. Unfortunately,
meteorological centers are not able to monitor fog areas
precisely since fog is a local phenomena. Road operators
need to deploy dedicated sensors. These are expensive
however and, sensitive to the inhomogeneity of fog as well.
To improve fog detection, camera-based approaches are
being developed since the camera has become a wide-spread
low cost technology [5], [9]–[11], [15]. The accuracy of
fixed camera-based sensors depends on the resolution and
mounting height, and can be quite good. However, they
cover a limited area. Another approach consists in using
the sensors or the fog lamps which are equipped in the
vehicles [3], [13], [14]. The quality of information brought
from such devices is lower, but the area covered is obviously
bigger. Fusing roadside and in-vehicle data sources comes as
a natural solution to get a more extensive and more accurate
estimation of the visibility range in foggy weather.

Thanks to the recent development of wireless communica-
tion between vehicles and infrastructure, the implementation
of such data fusion is now possible. For instance, the

SAFESPOT project is developing a comprehensive archi-
tecture based on Vehicle to Vehicle (V2V) and Vehicle to
Infrastructure (V2I) communications [4]. In particular, the
so-called Local Dynamic Map (LDM) containing outputs
from all the sensors in a single spatio-temporal database
allows designing high level data fusion modules [2]. In
this paper, we present our sensor combination framework
dedicated to visibility range monitoring. We first present
the architecture of the SAFESPOT project, in particular the
road-side unit (RSU) and the LDM. Second, we recall the
notion of meteorological visibility, on which our work is
based. Then, we present the different data sources we have
at our disposal for meteorological visibility, in particular the
camera-based approach we developed. Third, we present our
data fusion model and demonstrate its use on experimental
data.

II. THE SAFESPOT INTEGRATED PROJECT

A. General Description

By combining data from vehicle-side and road-side sen-
sors, the SAFESPOT project aims at extending the time in
which an accident is forecasted from the range of millisec-
onds up to seconds thanks to V2V and V2I communication.
The system is based on communicating onboard units and
road-side units which share a similar architecture. Hazard &
Incident Warning (H&IW) and Speed Alert (SpA) applica-
tions triggered by degraded weather conditions are among
the foreseen infrastructure-based SAFESPOT applications.

B. The SAFESPOT Infrastructure Platform

The primary functions of the SAFESPOT RSU are data
acquisition, processing and storage. The data input come
from several different sources. The most important are
the roadside sensors but also the SAFESPOT vehicles. To
improve the quality of information provided by the different
inputs, the RSU performs three levels of processing. Pre-
processing transforms raw sensor data into information
useful for data fusion. Object Refinement (OR) merges data
from different sources in order to improve the confidence
of detection of moving objects, to extend the knowledge



Figure 1. Diagram of a road visibilitymeter.

associated with objects and to locate them by means of map
matching algorithms. Situation Refinement (SR) merges data
describing traffic situations such as congestion, road weather
or other black spots. In contrast to the object refinement,
incoming data concerning a particular situation is merged
with an unambiguous reference to the road map. The final
results of the data fusion are written into a dedicated
Local Dynamic Map (LDM). The function of the so-called
’Environmental Consolidator’ (one SR module), presented
in this paper, is to deal with the weather conditions.

III. METEOROLOGICAL VISIBILITY

A. Definition

Fog is thick cloud of microscopic water droplets sus-
pended at ground level. When light propagating in fog
encounters a droplet, the luminous flux is scattered in all
directions. The amount of energy that is lost along the
way is described by the extinction coefficient k. It depends
on the droplet size distribution and the concentration. The
proportion of energy transmitted between two points in fog
is known as the transmissivity T and decreases exponentially
with distance d (Beer Lambert’s law):

T = e−kd (1)

The main effect of light scattering in the presence of fog is
an overall reduction of contrasts as a function of distance.
This effect is generally described by the meteorological
visibility Vmet, defined as the greatest distance at which
a black object can be recognized in the sky against the
horizon [6]. Using (1) with a contrast threshold of 5% yields
the following approximate relation between Vmet and the
extinction coefficient k:

Vmet = − log(0.05)/k ≈ 3/k (2)

B. Road Meteorology

According to [1], road visibility is defined as the hori-
zontal visibility for a driver whose eyes are 1.2 m above
the roadway. It may be reduced to less than 400 m by
fog, precipitations or projections. The standard classes of
visibility range for road applications are <50, 50-100, 100-
200 and 200-400.

IV. DATA SOURCES FOR METEOROLOGICAL VISIBILITY

A. Roadside Sensors

1) Road Visibilitymeters: These systems were developed
for road applications, primarily for conducting measure-
ments under conditions of thick fog. They enable quantifying
the light scattered within a sufficiently wide and well-defined
solid angle [12]. In order to carry out such measurements, a
light beam is concentrated onto a small volume of air (see
Fig. 1). The proportion of light being scattered toward the
receiver would then be:

I = AI0V f(ϑ)e−kd (3)

with I the intensity scattered in the direction of the receiver,
A a constant dependent on power and source optics, I0

the source intensity, V the scattering volume, f(ϑ) the
phase function, ϑ the scattering direction, k the extinction
coefficient and d the length of the optical path between
emitter and receiver. Generally speaking, the optical path
d is small and the transmission factor e−kd is assimilated to
1 and f(ϑ) is proportional to k. (3) thereby becomes:

k =
1
A′

I

I0
(4)

where A′ designates a constant that depends on device char-
acteristics. According to [7], the accuracy of such sensors is
about +/- 10-20% over the field range. On the other hand,
the small size of the scattering volume makes measurements
highly sensitive to non-homogeneities in the fog. Moreover,
such sensors cannot run other applications, contrary to a
video-surveillance system. This is the topic of the next
section.

2) Road-Side Camera: The apparent luminance of the
road pavement L is given by Koschmieder’s law [16] which
adds to (1) a second term corresponding to the atmospheric
veil:

L = L0e
−kd + Lf (1− e−kd) (5)

where L0 denotes the intrinsic luminance of the pavement
and Lf the atmospheric luminance.

Assuming that the road is locally planar, the distance of a
point located at the range d on the roadway can be expressed
in the image plane, assuming a pinehole camera model, by:

d = λ/(v−vh) (6)

where λ = Hα
cos(θ) and vh = v0−α tan(θ). θ denotes the pitch

angle of the camera, while vh represents the vertical position
of the horizon line (see Fig. 2). The intrinsic parameters of
the camera are its focal length f , and the size tp of a pixel.
We have also made use herein of α = f

tp
. H denotes the

sensor mounting height. In a foggy image, the intensity I
of a pixel is the result of the camera response function crf
applied to (5). Assuming that crf is linear, (5) becomes:

I = crf(L) = Re−kd + A∞(1− e−kd) (7)
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Figure 2. Modeling of the camera within the road environment. vh: image
line corresponding to the horizon line in the image.

where R is the intrinsic intensity of the pixel, i.e. the
intensity corresponding to the intrinsic luminance value of
the corresponding scene point and A∞ is the background
sky intensity. After a change of d according to v (6), one
obtains the following by taking the second derivative of I
with respect to v:

∂2I/∂v2 = 0 ⇐⇒ k = 2(vi−vh)/λ (8)

where vi denotes the position of the inflection point of I(v).
Vmet is deduced using (2). To be able to solve (8), we need
to segment the road pavement. In this aim, we apply a three
step process:

1) Computation of a background model of the scene to
filter all moving objects on the road surface

2) Rough manual segmentation of the road area to reduce
the search area

3) Adaptive region growing in the background model
restricted to the manually segmented area

Measuring the median intensity on each line of the pavement
area then allows to obtain I , and to compute its inflection
point vi. A full description of this process is proposed in
[11]. A sample result is given in Fig. 3. Based on (6), the
surface covered by a pixel at the distance d is expressed by:

∆(d) =
λ

bvh + λ
d c − vh

− λ

dvh + λ
d e − vh

(9)

where bxc designates the whole part of x and dxe the
integer greater than or equal to x. To fulfill the requirements
expressed in [1], we have specified a video-surveillance
system having the following characteristics:

D H f tp dimy θ
[inch] [m] [mm] [µm] [pix] [degree]

1/2 6 4.5 4.65 1360 28-29

Based on (9), we plotted the relative error on distance
estimation with respect to the distance in Fig. 4. As one can
see, the relative error at 400 m is smaller than 10%. The
theoretical accuracy of the proposed system is thus at least
as good as the one provided by a road visibilitymeter.

(a) (b)

Figure 3. Daytime fog detection: (a) clear weather image; (b) foggy
weather image. Meteorological visibility distance estimation is represented
by the horizontal red line.

B. In-vehicle Sensors

1) Fog Lamps Status: Front fog lamps are intended to
increase the illumination directed towards the road surface
in conditions of poor visibility due to rain, fog, dust or snow
[8], [17]. As such, they are often most effectively used in
place of dipped-beam headlamps, reducing the glare back
from fog. Based on [18], the usage of fog lamps during
daytime increases with deterioration in weather conditions,
with the usage reaching 50% of all installed fog lamps
during moderate-to-heavy fog. This indicates that, during
daytime, drivers adjust the usage of their lamps in response
to weather conditions, which is not the case in night-time.
Based on these statements, the status of the fog lights can
be considered as a fog sensor in daytime.

2) Camera-based Sensor: The principle of this sensor
is the same as in the roadside system. However, the im-
plementation as well as the accuracy of the system are
different. First, the camera is moving: the computation of
the background model and the manual segmentation of the
road surface are not possible, so we use the implementation
proposed in [14]. Second, the expected accuracy of camera
sensors is not as good as the roadside camera we specified
previously. Indeed, the classical resolution of automotive
cameras is smaller (640×480), as well as the mounting
height of the sensor (≈ 1.4 m). To compare the accuracy of
both solutions, we computed the relative error on visibility
estimation with respect to the distance in Fig. 4.
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Figure 4. Relative error on visibility estimation with respect to the distance
for the specified road-side camera and a classical in-vehicle camera.



V. SENSORS COMBINATION FRAMEWORK

A. Objective

In this section, we describe a general framework based on
data fusion for dealing with uncertainty in the detection and
characterization of critical environmental conditions such as
dense fog. To illustrate our methodology, we use data issued
from sensors (visibilitymeter, roadside camera, fog lamps
status, in-vehicle camera). Each sensor is characterized by:

〈
V j , εj

〉
with j ∈ [1, . . . , m] (10)

where V j is the visibility range measured by the jth sensor,
εj is the associated uncertainty (the sensor measurements are
contaminated with noise) and m is the number of sensors.
At time t, we want to estimate the global visibility range
V g

t of the studied area and εg
t the global uncertainty on the

visibility range of the studied area after fusion.

B. Fog Detection Scenarios

This section describes two scenarios for fog detection and
density estimation. The first scenario examines fog detection
using the fog lamps status of vehicles. In this scenario we
suppose that the fog lamps are turned on manually by the
driver in the presence of fog. The second scenario describes
fog detection and density estimation by merging data from
roadside and in-vehicle sensors.

1) First Scenario: In this scenario, we only consider fog
lamps status as the source of information with an uncertainty
ε. Fog lamps status is tracked in a specific detection area.
After n records, the probability of fog presence is estimated
as following. We divide the possible outcomes from the
vehicles into two complementary events, say A (fog lamp
status on) and Ā (fog lamp status off). We call an occurrence
of the event A, a success (S), and of Ā, a failure (F ). We
represent the probability of success for a single trial by p,
and that of failure by q = 1− p.

The number of sequences containing just kS′s is the
number of combinations of k items from n, Cn

k . Thus, to
obtain P (K = k), we have to sum the probabilities of the
Cn

k simple events which go to make up the event K = k.
Therefore:

P (K = k) = Pk = Cn
k pkqn−k =

Cn
k pk(1− p)n−k, k = 0, 1, . . . , n.

(11)

Based on the paragraph IV-B1, setting p = 0.5 allows to
have an estimation of the probability of fog presence on the
studied area. Unfortunately, we are not able to have a correct
estimation of the visibility range.

2) Second Scenario: In this case, we consider that we
have p = m − n sensors. The sensors can be fixed
(RSU sensor) or mobile (patrol vehicle or high-end vehicles
equipped with fog sensors). The main advantage brought
by this solution, compared to using only the fog lamps
status, is the possibility of estimating the visibility range in
different areas, as well as the uncertainty. We thus have at

our disposal p spatially distributed sensors. Each sensor has
its own uncertainty due to its measurement principle. This
was the topic of section IV. Then, at a specific location,
where no sensor is present, the estimation of the visibility
range depends on the different surrounding data sources.
Since fog is a local phenomenon, the uncertainty strongly
increases with the distance. The visibility distance should
thus be expressed by the barycenter of the different sensor
outputs, where the weights depend on the intrinsic sensor
uncertainty and on the distance d between the considered
location and the sensor:

V g ∝
∑p

j=1
Vj

εj(d)∑p
j=1

1
εj(d)

. (12)

The associated uncertainty is expressed by:

εg ∝
( p∑

j=1

1
εj(d)

)−1

. (13)

The dependency on the distance is very important. The
influence of close-by sources must be important, whereas
the influence of distant sources must be small. In this
aim, we propose to use the probability distribution function
introduced in [19] under the name of Smooth Exponential
Family (SEF) Sα,s:

εj(d) = εj
α,s(d) = εj︸︷︷︸

jthsensor uncertainty

+
1

Sα,s
(14)

where Sα,s = 1
se−

1
2 φα(( d

s )2). φα denotes the robust function
where with u =

(
d
s

)2, φα(u) = 1
α (

(
1 + u

)α − 1). Thanks
to this approach, the influence of distant sources can be
controlled by tuning the values of s and α.

C. Data Fusion Model
In the real world, the road network is equipped with fixed

sensors, vehicles may have onboard sensors and the other
vehicles are simply equipped with fog lamps. Based on (11-
14), we propose the following expression for the visibility
range at a location of the road network, at time t:




V g
t = λ ·

∑p
j=1

Vj

ε
j
α,s(d)∑p

j=1
1

ε
j
α,s(d)

+ µ · V g
t−1

with λ + µ = 1
(15)

where the uncertainty is given by:
{

εg
t = β ·

( ∑p
j=1

1

εj
α,s(d)

)−1

+ γ · 1
Pk

+ η · εg
t−1

with β + γ + η = 1.
(16)

Then, a threshold ε∗ may be used on the uncertainty to
discard least probable visibility range estimations. The value
of this threshold can be chosen according to the criticality of
the application. If the visibility estimation is used to warn the
drivers about a potential fog bank ahead, a moderate thresh-
old may be chosen. If it is used to compute a recommended
speed, a low threshold should be chosen.



Figure 5. Experimental scenario on the test track.

VI. EXPERIMENTAL EVALUATION

A. Experimental Protocol

To evaluate the proposed model, we have used real data
recorded during a ride around a closed test track (3.6 km)
in daytime fog. The test track is represented in Fig. 5. The
starting point is represented by a small hand symbol and the
driving direction by an arrow. The RSU is located at the blue
point and is equipped with the camera described in section
IV-A2. A car equipped with a high-precision differential
GPS and a camera was used to record data (OBU data). Fog
was detected at the black locations and was not detected at
the red locations. We have selected five images taken at the
green locations to estimate the visibility distance. It took
approximately 5 minutes to record the data. Experimental
data, including the estimations of visibility distance and the
intrinsic sensor uncertainties ε, are given in Tab. I. Assuming
that fog density remained constant during this period, the
rate of images where fog is detected can be assimilated with
the status of fog lamps on a road section discussed in section
IV-B1.

B. Results

We have set the parameters of the proposed data fusion
framework as following. The scenario is static, so η = 0
and µ = 0. Then, we have given the same weight to the
fog lamp status and the sensors measurements to compute
the uncertainty: β = 0.5 and γ = 0.5. Finally, we have
set the parameters of the robust function Sα,s as following:
α = 0.5 and s = 200. We have computed the visibility

Data type Time issue X (m) Y (m) Vmet ε
RSU 0.00.000 581 900 120 660 120 2.4
OBU 0.21.627 582 515 120 568 125 15.6
OBU 0.45.829 582 222 120 708 83 6.9
OBU 1.13.405 581 779 120 869 71 5
OBU 2.14.454 581 839 120 697 71 5
OBU 2.32.673 581 974 120 657 125 15.6

Table I
DATA USED FOR THE EXPERIMENTAL EVALUATION.

Figure 6. Sample images grabbed to estimate the visibility on the test
track: (a) RSU camera Vmet ≈ 120 m; (b)(c) OBU camera: Vmet ≈ 71
m and Vmet ≈ 125 m.

map as well as the uncertainty map on the area around
the test track by using the proposed data fusion framework.
The results are given in Fig. 7. We have also extracted the
profiles of visibility and uncertainty on the test track, given
in Fig. 8. The probability of fog presence obtained with
(11) is computed on a 4s sliding window and explains the
peaks in Fig. 8. It can be noticed that the interpolation of
the visibility distance is quite smooth. It indicates that the
fog density is higher in the North West part of the test track
area and lower in the South East part of the test track area.
This was checked visually thanks the video grabbed in the
vehicle. In addition, no spots around the measurement points
can be distinguished thanks to the use of the robust function
Sα,s. On the contrary, the uncertainty is very small around
the measurement points, in particular near the RSU camera.
We have computed that the total uncertainty on the test track
is reduced by 10% thanks to the RSU camera. Finally, the
mean visibility estimated thanks to all the images grabbed
in the vehicle is around 100 m, which is in agreement with
the visibility map shown in Fig. 7.

VII. CONCLUSION AND PERSPECTIVES

In this paper, a data fusion framework based on the
combination of roadside sensors and in-vehicle devices is
presented aiming at taking the advantages of both fixed
sensors and mobile sensors and at proposing an extensive
detection and estimation of the fog density. It enables to
obtain a homogeneous view on the visibility range on
the entire network and allows the road operator to decide
if mandatory speed reductions should be triggered. This
framework takes place in the architecture of the SAFESPOT
project, which was recalled. We presented the different data
sources for meteorological visibility that we have at our
disposal, in particular our camera-based approach. Simulated
results illustrate the efficiency of the proposed solution.
However, the parameters of our data fusion framework have
to be set with respect to the dynamics of a fog event. In this
aim, more tests on test tracks as well as on open roads are
foreseen in the fourth year of the SAFESPOT project.



(a)

(b)
Figure 7. Results: (a) Map of meteorological visibility distance ex-
trapolated on the area of the test track; (b) Map of uncertainty on the
meteorological visibility distance extrapolated on the area of the test track.
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