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Abstract

In this paper, we propose a new way to estimate fog
extinction at night using a classification of fog depend-
ing on the forward scattering. We show that a char-
acterization of fog based on the atmospheric extinction
parameter only is not sufficient. This method works in
dense fogs (meteorological visibility distances < 400m)
with a single image and three known light sources. The
method is validated on synthetic images generated with
a semi Monte-Carlo ray tracing software dedicated to
fog simulation. We drove this study in simulated envi-
ronment in order to help us designing a test site located
outdoor.

1 Introduction

Car manufacturers and OEMs are interested in de-
veloping an in-vehicle camera based system that can
detect and characterize poor visibility conditions due
to fog at night. Dense fog is a major road safety issue,
knowing the major importance of visual informations
in the driving task. It is also an important informa-
tion that can characterize the operational range of any
camera-based system. In order to validate such a sys-
tem, one needs to know the characteristics of the fogs
we drive in. We have developed a simple static way
of characterizing fog using a single image and three
known light sources.

Previous works on nighttime fog detection and char-
acterization with imagery are few. Using static imaging
techniques, after extracting the halo of distant sources,
[8] and [5] look for the parameters of an atmospheric
point spread function that fits the evolution of intensity
of the halo. These methods exploit the single/multiple
scattering properties of fog, and are relevant for light
fog, whereas we also need a method that characterizes
heavy to dense fogs (meteorological visibility < 400m)
that may impact visual performances while driving.

In section 2, we present a model of night photom-
etry in fog, and the simulation softwares we used to
generate virtual scenes in dense fog. In section 3, we
first propose a simplified model allowing to compute
k, the extinction factor of Beer-Lambert’s law, from a
foggy image. We then discuss the limits of this model
for light propagation in fog and show the need for a
measure linked to the forward scattering of the parti-
cles in fog. Finally, we propose our model and show
results on simulated scenes.

Our method presents different advantages such as
the low cost, small size and multiple uses of cameras
compared to transmissiometers or such measuring ma-
terials. It is easily extendable or adaptable to different
ranges of meteorological visibilities. Our method also
provides a measure denoted FS related to fog granu-
lometry and thus to the visual effects of fog.

2 Modelling

2.1 Light Propagation in Fog

Eq. (1) relates the effects of fog on photometry from
the linear filtering theory point of view [6]. It splits in
two parts the different natures of fog effects on vision
(extinction and halo effect) whereas Chandrasekhar’s
model for Radiative Transfert Equation does not [1].
The first part corresponds to Beer-Lambert’s attenua-
tion law for collimated beams, the second part is linked
to single/multiple scattering of light by the particles in
the medium.

Ls(d) = Ls(0)e−kd + Ls(0) ∗ F−1{Mkd − e−kd} (1)

where Ls(0) is the luminance of the object, k the ex-
tinction coefficient, d the observation distance and M
the frequential effect of fog on light propagation. Using
the analogy between a slab of fog and an optical filter,
the Modulation Transfer Function (MTF) M(k,d) of a
homogeneous slab of fog of width d and extinction co-
efficient k can be derived from the MTF M of a slab
of unit optical depth, called the frequency contrast op-
erator (FCO)[3].

M(k, d) = Mkd (2)

Beer-Lambert’s extinction law is used in [7] in order to
retrieve k, the extinction coefficient of fog. We show in
section 3 that this model is somehow limited and can
lead to bad estimations of k in case of fogs composed of
big droplets because the forward scattering of the par-
ticles becomes non-negligible. This phenomenon also
increases with the density of fog. The meteorological
visibility distance Vmet is a convenient unit and is re-
lated to the extinction coefficient k :

Vmet = 3/k (3)



2.2 Fog Simulation

2.2.1 Semi Monte-Carlo Ray Tracing

PROF (Photometrical Rendering Of Fog), is a semi-
Monte Carlo ray-tracing software designed for fog sim-
ulation [2]. It allows to simulate luminance images of
an environment with multiple light sources in an ho-
mogeneous fog. Using PROF, we tried different con-
figurations considering the number of light sources and
their locations for Vmet ≤ 500m.

For the interactions of light with fog droplets, we
can give the parameter denoted as g in Henyey-
Greenstein’s model (4) or tabulated phase functions,
and we need to set the extinction factor k of Beer-
Lambert’s model. We used

PHG(µ, g) =
1 − g2

(1 + g2 − 2gµ)
3/2

(4)

where µ is the cosine of the angle between incidence
light and scattered radiations and g is the asymmetry
factor or also called forward scattering parameter.

We have used three different sets of phase functions.
One set corresponds to the equivalent phase functions
of fogs with Shettle-Fenn [9] drop size distributions
computed with Mie theory. Those are denoted G1 to
G4 (G1 being the advection fog type and G4 the ra-
diation fog type). A second set corresponds to the
equivalent phase function of fogs with real drop size
distributions measured in a fog room. Those phase
functions are denoted clfADV and clfRAD. We also
used Henyey-Greenstein phase function in the valida-
tion process though it is a limited model for light prop-
agation in fog [3]. We do not transform the luminance
map of this virtual environment. It could be converted
with a specific response function in order to simulate
a camera or for display. Practically, we plan to adjust
our camera settings so that the nearest source isn’t
saturated, and inverse the camera response function in
order to get relative intensity perceived.

Figure 1: Simulation of three point sources in fog (35m,
200m and 80m from left to right)

We simulated a very simple scene compatible and
close to our site consisting of a road of asphalt, ex-
tended sources and the fog. We have put a dark ground
(10% reflexion and lambertian model) which is consis-
tent with usual road surfaces. We verified that the dark
ground and that multiple scattering of sources has no
influence on the intensity received from the directions
of the sources.

2.2.2 Atmospheric MTF

Luminance maps of a scene in fog may also be com-
puted by convoluting an extended image with the point
spread function (PSF) of the atmosphere [3]. The PSF
is the inverse Fourier transform of the MTF. It depends
on the particle size distribution as well as on the trans-
mittance T = kd of the medium. The extended image
is an image where the pixels not only have an intensity
level but also a distance information (from the virtual
cameras).

Knowing the intensity and distance of each pixel and
the PSF of the medium, we can compute the appear-
ance of the scene in the presence of fog.

3 Characterizing Fog

3.1 Classical Approach

Neglecting the second part of Eq. (1), leads to the
Beer-Lambert extinction model

Ls(d) = Ls(0)e−kd (5)

This is a limited model for two reasons, first of
which, droplets are not absorbent. Since the albedo
of water is nearly one and the size of some droplets can
exceed ten times the wavelength of visible light, most
energy is scattered forward when light hits droplets.
Another bias between the two models corresponds to
the multiple scattering.

During nighttime, we may use any of those two phe-
nomenons (extinction or single/multiple scattering) to
extract informations about the nature of the fog. We
use Eq. (5) in order to retrieve the extinction coeffi-
cient k. The luminances measured on our luminance
maps for a source at 35m are shown on figure 2 for
Vmet between 66m and 200m.
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Figure 2: Luminances of a source at 35m in four dif-
ferent fogs depending on the Vmet

3.2 A model with 2 Sources

From Eq. (5), using two light sources Li and Lj of
exitances Li(0) and Lj(0) at different distances di and
dj , we can estimate k with Eq. (5) :

k =
ln

(

LiLj(0)

LjLi(0)

)

dj − di

, Li(0) = Lj(0) ⇒ k =
ln (Li/Lj)

dj − di

(6)



For example, with a pair of sources at 80m and
200m, we see different estimations of k as a function of
Vmet on figure 3 :

50 100 150 200
50

100

150

200

250
Meteorological Visibility Distance estimated with two sources at 80m and 200m

Meteorological visibility distance (m)

M
e

te
o

ro
lo

g
ic

a
l 
v
is

ib
ili

ty
 d

is
ta

n
c
e

 e
s
ti
m

a
te

d
 (

m
)

 

 

G1

G4

Ground truth

Figure 3: Estimation of Vmet using pairs of sources at
80m and 200m

For radiation fog like G4(small particles, mode ≤
2µm) the forward scattering isn’t too strong and ex-
tinction law is still valid, given an error which depends
on the transmittance of the atmosphere. In our exam-
ple, this error is less than 10% with a peak at 50% for
the highest density of fog.

For advection fog like G1(big droplets, more forward
scattering, mode ≥ 3µm or superior) the error on the
estimation of k is greater than that of radiation fog, and
also depends on T . In our example, the error increases
beyond 100% for small Vmet.

3.3 A model with n sources

The range of fogs that can be studied depends on
the placement of the sources with the method exposed
in subsection 3.2. The main problem we met is on very
small visibility distances, but in the field of road safety
those are critical and need to be correctly estimated.

3.3.1 Sensitivity Composition

Using three light sources, we compute three different
estimations of k. We propose a method to extract the
most reliable estimation of k, based on the notion of
sensitivity. Sensitivity is a blind way to estimate the
variance of a computation, based on the partial deriva-
tives of a function.

Here, we want to know how reliable are the estima-
tions depending on the positioning and the perceived
intensity of the sources. We take the sensitivity as the
L2 norm of partial derivatives [4]:

ν(k) =

(

∂k

∂Li

)2

+

(

∂k

∂Lj

)2

+

(

∂k

∂di

)2

+

(

∂k

∂dj

)2

(7)

We estimate k from the three estimations k12, k13, k23 :

k =

∑ kijest

νij
∑

1

νij

(8)

We can also estimate the sensitivity of Vmet with the
same principle and compose these values in the same
manner.

3.3.2 Results

Using three sources S1, S2, S3 at 35m, 80m and 200m
we see in tab. 1 different estimations of k and the sen-
sitivities associated to these computations.

Adv. ν
Vmet(m) ν12 ν23 ν13

33 14 464173 107805
100 517 56 459
200 8441 311 8732

Table 1: Sensitivity depending on the couple of sources
observed for different Vmet in advection fog
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Figure 4: Estimation of Vmet using three sources and
sensitivity composition (8)

The sensitivity is well suited to our problem, we can
see that it’s lower for closer sources (1 and 2) in the
heaviest fog (Vmet = 33m) and lower for distant sources
(2 and 3) when the fog is lighter (Vmet > 100m). In
any case, we know we can rely more on the information
of one particular pair among the three possible pairs.
It works well for radiation fogs (see fig. 4), despite that
even with the sensitivity composition and three sources
some k ’s are badly estimated, particularly in advection
fog.

The sensitivity composition of the estimates of k (or
Vmet) can be used with any number of lights at any dis-
tances, supposing we had numerous sources at different
distances from 30m to 400m or farther, we could study
very large range of fogs. We have tested it on noisy
measurements generated using PROF and it greatly
improves robustness to noise.

4 The Forward Scattering Bias

Depending on the size of the droplets, fog may have
very different visual effects at night. It also impacts on
the intensities perceived, specifically for light sources.
The presence and size of halo around sources depends
on the granulometry of fog and the intensity perceived



from a source may differ from Beer-Lambert’s extinc-
tion law depending on the transmittance as we’ve seen
on fig. 2. This results in biased estimations of the at-
mospheric extinction parameter and an overestimation
of the Vmet (see part 3.2).

4.1 Impact of the Forward Scattering

We saw in fig. 2 that even sensitivity composi-
tion doesn’t lead to accurate results in advection
weather: 100% error in the worst case, the inten-
sity perceived is 60% greater in the fog composed of
the bigger droplets(G1) than in the fog with smallest
droplets(G4). The Vmet has also been overestimated
by 55%.

Using this estimation, we overestimate the original
intensity Li(0) of the sources if we compute it by re-
versing Eq. (5) following :

Li(0) = Li(d)ekestdi (9)

We know the real perceived intensity without fog
and we compute the relative error in the estimation of
the source intensity using Eq. (9). We show on fig. 5
the relative error when computing the sources intensity
depending on the Vmet and distance.
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Figure 5: Error in the computation of sources intensity

This relative error is independent of the intensity of
the source. Knowing this error and the meteorological
visibility distance estimated Vmetest

we can classify the
type of fog due to its forward scattering properties.
We computed a tabulated function of the relative error
depending on the transmittance and the granulometry
(see fig. 5).

We propose a measure linked to the forward scat-
tering parameter FS ∈ [0; 5]. For a given Vmetest

, we
compute the error and locate it with respect to the four
error curves. Fogs G4 to G1 present increasing forward
scattering. Our measure FS should be more important
for G1 fog than for G4 fog. FS = 0 corresponds to the
theoretical case of Beer-Lambert’s extinction law. If
the error is greater than the error of G1, it is thresh-
olded at 5. Intermediate values relate the importance
of the forward scattering in the fog.

4.2 Results

We have tested our measure of the forward scatter-
ing of the particles with noisy simulations generated

with PROF. We chose to study the measure with our
advection and radiation real phase functions and with
two Henyey-Greenstein phase functions with forward
scattering parameter of 0.95 (corresponding to an ad-
vection fog) and 0.55 (radiation fog).

Phase Vmetref
Vmetest

Rel. Err. FS
HG g=0.55 100 99.5 0.041 0.71
HG g=0.95 100 102 0.228 2.95
clf-RAD 100 100.6 0.117 2.1
clf-ADV 100 102 .3 0.274 3.33

Table 2: Result of our forward scattering estimation
with different natures of fog

5 Conclusion and outlook

We have presented a new way of characterizing me-
teorological visibility distance that needs at least 1 im-
age and three sources of known distance and intensity.
This method has been tested on synthetic images in
order to design our test site. This method improves
previous results, particularly in the case of dense fogs.
It also provides a measure related to the forward scat-
tering of the fog, a phenomenon linked to droplets gran-
ulometry and that strongly impacts on the appearance
of light sources in fog at night. We showed the needs
for a more complete model than classic Beer-Lambert’s
extinction law for light propagation in fog. We estimate
our measure FS from a tabulated function. The next
step is to generalize this function with a functional de-
scription instead of a tabulated one. The method has
been tested and validated in simulation. The goal is
now to test it on a road site with real sources.
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