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Abstract - Fog is often considered as a mere nuisance rather than a hazard. However,
reduced meteorological visibility conditions cause accidents and transportation delays, with
substantial financial consequences. The visibility loss results from minute airborne droplets
which scatter light, causing drastic alterations in the image of the environment perceived by
vision systems, both human and artificial. Modeling the visual effects of dense fog makes
it possible to simulate foggy conditions, in order to design and test countermeasures for
improved safety and mobility. First, we introduce basic notions about the nature of fog and
we briefly review the microphysical models which usually serve to describe its droplet size
distribution. Second, we explain how light interacts with fog droplets, and we present the
optical descriptors which describe scattering and extinction phenomena. Third, we analyze
how contrast is impaired by these phenomena in the image of the environment perceived
by a vision system, and we propose and discuss a semi-analytic model of the visual effects
of fog. Finally, we show applications of this model to the monitoring of the meteorological
visibility through use of charge-coupled device cameras operating in the visible light range.

1 Introduction

Dense fog drastically impairs visibility, causing important traffic safety issues, particularly
in the field of ground transportation. In order to design and assess solutions for detecting
and counterbalancing the loss of visual information in foggy weather conditions, the use
of simulation can hardly be avoided, since field experiments are made very difficult by the
lack of control over the time and place where fog will occur.

Two approaches are possible for simulating the image of a scene observed in fog: com-
puter graphics and image processing. The first consists in simulating all radiative transfers
between emitting and reflecting surfaces, taking into account the interactions with the par-
ticipating medium [34]. It involves global illumination calculations which are generally
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time-consuming. The other approach consists in simulating the perturbations caused in
the image of the environment by the interactions of light with the scattering medium [7].
Originally designed for remote sensing, this approach has only recently found applica-
tions for horizontal visibility problems because of the depth-dependency of fog visual ef-
fects [29, 35].

This chapter shows how fog effects on vision can be simulated by image processing
through a combination of depth-dependent (2D1/2) operations. First, we examine the na-
ture and origin of fog, and we introduce its microphysical characteristics. Secondly, we
consider the optical interactions between visible light and fog droplets, and we present
the optical parameters characterizing the scattering phenomenon. Then we analyze the
distance-dependent effects of light scattering on human or camera vision, and we propose
a unified photometric model for simulating foggy weather conditions by image process-
ing. Finally, we show applications of the model to the monitoring of the meteorological
visibility through use of charge-coupled device cameras operating in the visible light range.

2 Fog Nature and Microstructure

2.1 Meteorological Phenomenon

The atmosphere always contains some concentration of sub-micron hygroscopic particles,
with higher quantities in polluted areas (smoke, dust) or sea coasts (salt). These particles
serve as condensation nuclei and support the condensation of water vapor when the air
temperature approaches dew point. This may happen in two ways: either as the air cools or
as the humidity rises. The most stable fogs are those which are caused by an inversion of
temperature between the air and the ground. Such conditions usually lead to the formation
of radiation or advection fog.

• Radiation fog (sometimes called ground fog) is the most common type of fog. It
usually happens in late fall or early winter, when the land cools by thermal radiation
after sunset, in calm conditions with clear sky.

• Advection fog happens when moist air moves over a cooler surface. It often happens
when a cold marine layer is pushed or drawn to the coastline.

There are other types of fog, more localized or less stable, such as valley fog (which is
essentially a confined radiation fog), evaporation or steam fog (caused by cold air standing
over warm water or moist land), upslope fog (caused by moist air cooling as it is pushed
upslope by the wind) or ice fog (which only occurs at extremely low temperatures). Fog is
usually classified after the mechanism which lead to its formation, but it should be noted
that several mechanisms may actually work simultaneously in the process.

Fog often dissipates naturally at sunrise, as the ground warms up, or when turbulences
lift it and break it up into clouds. It may also be caused to break up artificially. Spreading
salt or ice crystals, depending on the temperature, causes fog droplets to transform into
raindrops or snowflakes, and forces their precipitation. Only large airports can afford this
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technique, because it is not cost-effective: it only works in certain conditions, and there is
no guaranty that fog will not reappear later on.

2.2 Fog Microstructure

Dispersed media may contain various sorts of solid or liquid particles, characterized by
their numbers, their sizes, their shapes, and in some complex cases by their orientations,
their chemical compositions and their structures [23]. Fog contains both water droplets
formed around condensation nuclei and non-active sub-micron particles, but the latter have
relatively little effect on light propagation. Therefore, fog is ordinarily assumed to contain
spherical water droplets in different numbers and sizes [24, 36, 37].

2.2.1 Particle Size Distribution

Fog microstructure is characterized by a particle size distribution n(r) = dN(r)/dr, where
N(r) is the number of water droplets with a radius between r and r + dr per unit volume.

The droplet size distribution of fog has been observed to be unimodal [22]. It is gener-
ally characterized by the mode radius rm, but other granulometric descriptors such as the
mean radius r̄, the effective radius re and the standard deviation σ are often used. Disperse
media with different particle size distributions but identical effective radii and standard de-
viations are considered optically equivalent [23].

r̄ =
∫ ∞

0
r n(r) dr (1a)

re =

∫∞
0 r3 n(r) dr∫∞
0 r2 n(r) dr

(1b)

σ =

√∫ ∞

0
(r − r̄)2 n(r) dr (1c)

2.2.2 Fog Granulometry

Theoretically, fog is in the same category of aerosols as clouds, with particle sizes between
2 and 50 µm [22]. In reality, different types of fog have different particle size distributions
which evolve during their life-cycle [12]. According to Shettle and Fenn [36], who refer to
several granulometric measurement campaigns, developing fogs contain 100 and 200 par-
ticles per cm3 in the 1 to 10 µm radius range with mean radius of 2 to 4 µm, but as fog
thickens droplet concentration may fall under 2 particles per cm3 while the mean radius in-
creases from 6 to 12 µm. More recent measurements reported by Guédalia and Bergot [14]
seem to agree with these observations.
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2.2.3 Granulometric Models

Measurements in natural fog are extremely difficult, mainly because it is almost impossible
to ensure repeatable thermodynamic and photometric conditions. Artificial fog is an inter-
esting alternative, but many studies simply use simulation, often validating their results by
measurements in a mock-up scattering medium such as diluted milk in a transparent tank.
Among the various laws which serve to model the particle size distribution of a natural dis-
persed medium [22], the modified Γ-distribution proposed by Deirmendjian [6] is the most
popular to study fog [23, 24, 37]:

n(r) = Arα e−b rγ
(2)

where n(r) is the number of droplets per unit volume, r is the droplet radius and A, α, b
and γ are the parameters which allow to fit the model to observations. Shettle and Fenn
proposed a four-class fog typology based on this model [36]; the parameter sets to be used
with (2) are presented in Tab. 1, and the particle size distributions are plotted in Fig. 1.
Models 1 and 2 are characteristic of respectively heavy and moderate advection fogs, while
models 3 and 4 are characteristic of respectively heavy and moderate radiation fogs, but
Shettle and Fenn note that scaling the total particle number N is a relevant way to model
other fog concentrations.

Fog Model A α b γ rm (µm) N (cm−3)
Advection 1 0.027 3 0.3 1 10.0 20

2 0.066 3 0.375 1 8.0 20
Radiation 3 2.373 6 1.5 1 4.0 100

4 607.5 6 3.0 1 2.0 200

Table 1: Size distribution parameters of the fog granulometric models reported by Shettle
and Fenn [36]: rm is the mode radius, N is the total particle number, A, α, b and γ are the
parameters of the modified Γ-law (2).

3 Light Scattering in Fog

3.1 Single scattering

What we perceive as light is actually a combination of monochromatic electromagnetic
radiations with wavelengths between 380 and 780 nm, the visible spectrum of the human
visual system. When passing through fog, these electromagnetic waves interact with air-
borne droplets, losing energy at every interaction. This extinction effect results from two
phenomena:

• absorption, which transforms part of the luminous energy into thermal energy;

• scattering, which spreads the luminous energy from the incident direction into other
directions.
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Figure 1: Fog droplet size distribution models reported by Shettle and Fenn [36].

3.1.1 Influent Parameters: Size and Wavelength

The relative importance of absorption in the extinction phenomenon depends on the chem-
ical nature of the particle through the complex refractive index m(λ) of the material it is
made of, an index which depends on the wavelength λ. In the case of fog, formed exclu-
sively of water droplets, it is roughly constant and equal to 1.33 for all wavelengths in the
visible spectrum.

The spatial distribution of the energy scattered by a droplet depends on its radius, as
well as on the wavelength. The ratio of the droplet radius to the wavelength determines the
type of scattering which occurs:

• Rayleigh scattering is prominently caused by air molecules. It happens when the
wavelength is much higher than the droplet radius (r < λ/10). The scattered lumi-
nous energy is then proportional to the fourth power of the wavelength. It causes the
blue color of clear skies, but it is negligible in fog [22].

• Mie scattering concerns bigger particles such as water droplets. The spatial distribu-
tion of scattered energy then strongly depends on the refractive index m(λ) and on
its so called size parameter x:

x = 2πr/λ (3)

3.1.2 Mie Scattering Theory

The importance of the extinction phenomenon is proportional to the section of space in
which the wave interacts with the particle. This section, Cext(r), is called the extinction
cross section. It is related to the particle cross section πr2 by means of the factor Qext(r),
called the extinction efficiency:

Cext(r) = Qext(r) π r2 (4)
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The scattering efficiency Qsca(r) has an equivalent definition, allowing the characterization
of scattering separately from absorption:

θ

φ

scattering
direction

water
droplet

forward
scattering

back-
scattering

incident
direction

Figure 2: Light scattered by a water droplet.

The radiation scattered by the particle is characterized by its intensity, i.e. the energy
flux per unit solid angle in the propagation direction. The scattered intensity thus depends
on the scattering direction, defined by the angles θ and φ relative to the incident direction
of the wave, as illustrated in Fig. 2.

The spatial distribution of scattered intensity is defined by the scattering diagram, more
often called the phase function, P (θ, φ). As fog droplets are spherical, their phase function
is independent of angle φ, and only varies as a function of angle θ, or its cosine:

µ = cos θ (5)

Starting from Maxwell equations for electromagnetic waves, Lorenz expressed the ef-
ficiency factors for extinction, Qext(r), and for scattering, Qsca(r), of a transparent sphere
with a radius r, and the intensity scattered by this particle when it interacts with a pla-
nar monochromatic wave with a wavelength λ. His solution was later and independently
generalized by Mie and by Debye. Here are the resulting equations [38]:

Qext(r) =
2
x2

∞∑

n=1

(2n + 1)<(an + bn) (6a)

Qsca(r) =
2
x2

∞∑

n=1

(2n + 1)(|an|2 + |bn|2) (6b)

S1(µ) =
∞∑

n=1

2n + 1
n(n + 1)

[anπn(µ) + bnτn(µ)] (6c)

S2(µ) =
∞∑

n=1

2n + 1
n(n + 1)

[anτn(µ) + bnπn(µ)] (6d)

S1 and S2 are the complex scattering amplitudes in both orthogonal incident polarization
directions. The scattered intensity is proportional to the phase function:

P (r, µ) =
λ2

8π2

(|S1(µ)|2 + |S2(µ)|2) (7)
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Mie complex coefficients an and bn depend on the size parameter and the refractive index.
They are expressed in terms of primary and secondary Ricatti-Bessel functions and their
derivatives. Function τn and πn are expressed in terms of Legendre polynoms and their
derivatives. The approximate number of terms of these series which need to be computed in
order to obtain accurate results is of the same order as the size parameter x of the considered
particle [40]. The full details of these calculations are reported in [39].

3.2 Multiple Scattering

3.2.1 Monodispersed Medium

Extinction is proportional to the concentration of particles on the path of the radiation.
The consequent attenuation of luminous energy per unit distance is characterized by the
extinction coefficient Kext(r). For a monodispersed medium formed of N particles of
radius r per unit volume, Kext(r) is related to the extinction efficiency as follows:

Kext(r) = NCext(r) = πNQext(r)r2 (8)

The scattering coefficient Ksca(r) is similarly related to the scattering efficiency.

3.2.2 Polydispersed Medium

A polydispersed medium can be characterized as an “equivalent” monodispersed medium,
formed of one-sized particles which confer the same extinction and scattering properties
to the equivalent medium as those of the actual medium. The equivalent extinction and
scattering coefficients can be computed by convoluting the size-dependent extinction and
scattering cross sections with the particle size distribution n(r):

Kext = πN

∫ ∞

0
Qext(r) n(r) r2 d r (9a)

Ksca = πN

∫ ∞

0
Qsca(r)n(r) r2 d r (9b)

The equivalent phase function can be calculated in the same way:

P (µ) = πN

∫ ∞

0
Qext(r) P (r, µ) n(r) r2 d r (10)

3.3 Fog Optical Properties

3.3.1 Extinction Coefficient

Thus, a monochromatic luminous wave undergoes extinction and scattering along its path
in a dispersed medium, because of the particles which absorb and scatter its energy. The
transmissivity T , i.e. the proportion of luminous energy transmitted along a path of length
d, is given by Beer-Lambert law:

T = e−Kext d (11)
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where Kext is the extinction coefficient of the medium, expressed in m−1.
The relative part played by scattering in this extinction phenomenon is characterized by

the albedo a:
a =

Ksca

Kext
(12)

In the case of fog, in which the particles are water droplets, absorption of visible light is
negligible. It follows that extinction is entirely caused by scattering. With an albedo equal
to one, the extinction coefficient suffices to characterize the energy loss of light transmitted
through fog. It is simply noted K:

K = Kext ' Ksca (13)

The extinction phenomenon along a path of length d may also be described by means
of the optical depth τ :

τ = Kd (14)

3.3.2 Phase Function

In the visible light spectrum and in the size range of fog droplets, Mie scattering does
not vary much with the wavelength. Therefore, fog optical properties can be calculated
for a wavelength of 550 nm, where the human visual system is most sensitive in photopic
conditions, and reasonably generalized to other visible wavelengths.

Because of the complexity of Mie equations, the phase function if often approximated
by means of analytic expressions [13]. Nishita separated “hazy” and “murky” media, and
proposed the following analytic expressions for their phase functions [2]:

Phazy(µ) =
1
2

+
9
2

(
1 + µ

2

)8

(15a)

Pmurky(µ) =
1
2

+
33
2

(
1 + µ

2

)32

(15b)

Despite the fact that it was originally destined to the characterization of interstellar
dust [21], the analytic phase function proposed by Henyey and Greenstein is very often
used for scattering in the atmosphere:

PHG(µ, g) =
1− g2

(1 + g2 − 2 g µ)3/2
(16)

The parameter g ∈ ]−1, 1[ of this function is called the asymmetry factor:

g =
1
2

∫ 1

−1
P (µ) µ dµ (17)

Its variations describe different scattering behaviors: when g is close to 1, scattering in the
forward direction predominates; when g is close to −1, it is back-scattering (scattering in
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the backward direction) which predominates; and when g is close to 0, scattering is almost
isotropic. A simpler analytic form of Henyey-Greenstein phase function was proposed by
Schlick [2]:

PS(µ, k) =
1− k2

(1− k µ)2
(18)

where k is equivalent to the asymmetry factor g in (17). Schlick also showed that it was
possible to produce phase functions resembling those of (15) or (16) by means of a linear
combination of two of his phase functions:

P2S(µ, α, k, k′) = α PS(µ, k) + (1− α) PS(µ, k′) (19)

where (α, k, k′) ∈ [0, 1]×]−1, 1[2

Cornette and Shanks [5] proposed an analytic phase function which is similar to that of
Henyey-Greenstein, only more physically-based and without the need for the extra weight-
ing parameter of (19):

PCS(µ, g) =
3
2

1− g2

2 + g2

1 + µ2

(1 + g2 − 2 g µ)3/2
(20)

Fig. 3 illustrates the limits of analytic models. Even with equal asymmetry factor, none
of the listed expressions suitably accounts for the shape of the phase function computed
for a given particle size distribution with Mie equations (6-7). The models tend to under-
estimate back-scattering, and to over-estimate scattering at intermediate angles, around 90◦.
The most important discrepancy lies in the forward-scattering “peak” caused by diffraction.
Therefore, the Mie phase function should be preferred to analytic models when the granu-
lometric data is available.

3.4 Visibility in Fog

Visibility is a complex notion, usually referring to the greatest distance at which an object
can be detected or recognized. It depends on the geometric and photometric characteristics
of the observed object and its background. In the presence of fog, visibility is affected
on both geometric and photometric aspects because of the distance-dependent extinction
effect.

Fog opacity is ordinarily characterized by means of the meteorological visibility Vmet,
defined as the visibility distance of a black object of “suitable” dimensions by day against
the horizon sky [4]. However, meteorological visibility is a perceptual notion which cannot
be easily measured. Fog opacity is more easily characterized by means of the meteoro-
logical optical range, defined as the length of the path in the atmosphere which is required
to attenuate by 95% the luminous flux from a collimated light source [4]. This attenua-
tion value was chosen because 5% is considered as the minimum visual contrast required
to recognize an object against its background, in order to set an equivalence between the
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Figure 3: Comparison between Mie phase functions (computed from the fog granulometric
models in Tab. 1) and different analytic models.

meteorological optical range and the meteorological visibility.

T = e−KVmet = 0.05

Vmet ' 3
K

(21)

Hence, meteorological visibility is in fact a more intuitive expression of the extinction
coefficient K. Therefore, it is only an indication of fog opacity, and it should never be
confused with the actual visual range of anything except a black object on the horizon sky
in daytime.

4 Modeling Fog Effects on Vision

4.1 Fog Effects on the Visual Signal

4.1.1 Composition of the Visual Signal

As shown in Fig. 4, the image of the visual environment is formed by the luminance distri-
bution which is projected into the eyes of an observer (or the aperture of a camera) by the
elements of the observed scene. The luminance comes from the luminous energy emitted
by the sky on the one hand, and by artificial light sources on the other hand. In normal
visibility conditions, a small part of this energy reaches the observer directly, and the rest
illuminates the surfaces throughout the scene. These surfaces then become secondary light
sources, and a small part of the luminous energy is reflected toward the observer. Hence,
the visual signal is composed of primary and secondary zones, depending whether light
followed a single path or multiple paths to reach the observer.



A Semi-Analytic Model of Fog Effects on Vision 11

light
sources

primary light path

visual
signal

secondary
light path

surface

Figure 4: The visual signal is formed of the luminance which is either emitted by light
sources (primary zones) or reflected by surfaces (secondary zones). Scattering by fog
droplets occurs along light paths between the light sources, the surfaces and the observer.

4.1.2 Effects of Light Scattering

As seen in the previous section, light interacts with the airborne particles along its path. In
fog, which is formed of water droplets with diameters ranging from several tenths to a few
tens of microns, visible wavelengths are scattered without absorption. According to Mie
theory, the directional distribution of scattered energy depends on the size of the droplets:
the bigger droplets of advection or heavy radiation fog yield stronger forward scattering.

The main effect of fog on the visual signal is the attenuation of luminance caused
by transmission through scattering droplets. This extinction effect is described by Beer-
Lambert law (11), which results in an exponential attenuation of luminance with distance.
It should be noted that extinction not only occurs between the elements in the scene and the
observer, but also between the light sources and the surfaces.

L(d) = e−KdL(0) (22)

Since water droplets do not absorb visible light, scattered energy does not simply dis-
appear: it is re-distributed throughout the scene. Part of it reaches the observer, causing
further alterations to the visual signal. Scattered light thus produces two major visual ef-
fects, illustrated in Fig. 5.

(a) Airlight. (b) Halo.

Figure 5: Airlight and halos are the two major alterations caused by scattered light in the
visual environment of an observer in fog.
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The first effect is caused by fog droplets scattering daylight toward the observer. Ac-
cording to Koschmieder theory of horizontal visibility, later generalized to slant visibility
by Duntley (as reported in details by Middleton [28]), the resulting atmospheric veil Lv

which is superimposed on the image of an object at a distance d is related to the luminance
Lf of the fog at the horizon:

Lv =
(
1− e−Kd

)
Lf (23)

This effect is often referred to as airlight, and sometimes as path luminance. Koschmieder
model provides a very simple and elegant expression for the luminance L(d) of a non-
luminous object at a distance d in daytime fog:

L(d) = e−KdL(0) +
(
1− e−Kd

)
Lf (24)

The luminance at close range L(0) is generally called the intrinsic luminance.
The second effect is caused by fog droplets scattering the light they receive from arti-

ficial light sources toward the observer. According to the atmospheric modulation transfer
function (MTF) theory [26], the resulting halo (or glow) effect is equivalent to the convo-
lution of the image of the light source with the point spread function (PSF) of the fog. The
PSF is the inverse Fourier transform of the MTF, which is distance-dependent. But using
the analogy between a slab of fog and an optical filter, the MTF M(K, d) of a homogeneous
slab of fog of width d and extinction coefficient K can be derived from the MTF M of a
slab of unit optical depth, called the frequency contrast operator (FCO) [9]:

M(K, d) = MKd (25)

It should be noted that the FCO not only depends on the particle size distribution, as shown
in Fig. 6, but also varies with the divergence of the considered light beam, because the halo
comes essentially from light emitted outside of the observer’s direction. Narrow beams
(like those used in transmissometers) produce a negligible halo, especially in small droplet
fogs.

4.2 Modeling Fog Visual Effects

4.2.1 Combining Extinction, Halos and Airlight

Based on the previous analysis of the mechanisms underlying visibility impairment, a uni-
fied model for the effects of fog on the visual signal can be proposed. The altered visual
signal is computed in three steps: attenuation of secondary zones, convolution of primary
zones and addition of airlight.

In the first step, the intrinsic luminance of visible surfaces must be decomposed in two
parts: L0 coming from daylight, and Ls∈[1,n] issued by n artificial light sources present in
the scene. The transmitted luminance of the secondary zones, Lsec, is computed by applying
Beer-Lambert attenuation factor, first to the paths of lengths ds from every light sources to
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Figure 6: MTF of three types of fog with different droplet size distributions, computed by
Monte-Carlo light tracing [9].

the surface, and then to the path of length d from the surface to the observer:

Lsec = e−Kd

(
L0 +

n∑

s=1

e−KdsLs

)
(26)

In the second step, the intrinsic luminance Ls of each luminous object is “spread” onto
the neighboring zones of the visual signal using the range dependent PSF of fog as a con-
volution kernel. The PSF is obtained by taking the inverse Fourier transform of the MTF of
the slab of length d separating the object from the observer. The MTF is derived from the
specified FCO M using (25). Thus, the transmitted luminance Lpri of primary zones can
be expressed as follows:

Lpri = Ls ∗ F−1
{

MKd
}

(27)

In the final step, the path luminance, expressed in (23), is added to the result of the two
previous steps, and yields the apparent luminance L perceived by the observer:

L = L{pri|sec} +
(
1− e−Kd

)
Lf (28)

where L{pri|sec} is either Lpri for primary zones or Lsec for secondary zones in the visual
signal, and Lf is the fog luminance.

4.2.2 Pros and Cons

Equations (26-28) constitute a unified photometric model of fog visual effects. It is in fact
a generalization of Koschmieder law which accounts for artificial lighting, extending the
field of applications to luminous objects and night-time or twilight situations.

However, very detailed photometric and geometric information is needed for its imple-
mentation. Moreover, the model retains some of the hypotheses and approximations of the
theories on which it is based: in Koschmieder theory, fog is assumed to be homogeneous;
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in the atmospheric MTF theory, light sources are assumed to emit isotropically toward the
observer.

Also, the model does not deal with hidden light sources, though their halo may actually
be visible. Finally, the scattered energy from the light sources is not taken into account in the
intrinsic luminance of the surfaces. But getting past these limitations would require global
illumination calculations, which are far less versatile than the presented image processing
approach. And the model can be customized to overcome particular problems. For instance,
when the observer is driving in fog, light from the headlamps of his motor-vehicle is scat-
tered back into his field of vision as illustrated in Fig. 7: as the resulting back-scattered veil
is independent of the scene, it can be pre-computed and then simply added to the foggy
image of the scene [10, 11].

Figure 7: When driving in fog, light from the headlamps is back-scattered toward the driver,
producing an additional veil in the driver’s field of vision.

4.3 Implementation

4.3.1 Input

In order to use the proposed model to compute the bi-dimensional luminance distribution
L(i, j) seen by an observer looking at a scene in foggy weather conditions, detailed geo-
metric and photometric information is needed. For each direction (i, j) in the visual field
(which corresponds to a pixel in the image of the scene), the distance d(i, j) of the pointed
element in the scene, as well as its intrinsic luminance L0(i, j) as produced by ambient
lighting, must be known. Furthermore, the distance ds(i, j) between the pointed element
and each artificial light source s in the scene must be known, as well as the luminance
Ls(i, j) produced on the element by this light source. Hence, if n light sources are present
in the scene, n + 1 luminance and range distributions are needed as input to the simulation,
as described in Fig. 8.

The extinction coefficient K and the FCO M of the fog must also be specified in order
to apply the proposed model, as well as the fog luminance Lf . The extinction coefficient is
directly related to the meteorological visibility using (21). The FCO may be approximated
from a model MTF [1] or from a model PSF [27]. As for fog luminance, Paulmier showed
that it varies greatly with the altitude of the sun (and thus the hour of the day), the height of
the fog layer and the type of fog, as well as the direction of observation with respect to the
position of the sun [33].
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Figure 8: Detailed geometric and photometric description of the visual environment of an
observer is needed to implement the photometric model of fog visual effects.

4.3.2 Semi-analytic Model

With the visual signal represented by the bidirectional luminance distribution L(i, j) in the
observer’s field of vision, the model can be summarized in one equation, here including the
back-scattered veil Lb(i, j) mentioned earlier:

L(i, j) =
{

e−Kd(i,j)
(
L0(i, j) +

∑n
s=1 e−Kds(i,j)Ls(i, j)

)
Ls(i, j) ∗ F−1

{
MKd(i,j)

}

+
(
1− e−Kd(i,j)

)
Lf + Lb(i, j) (29)

4.3.3 Sample Results

To demonstrate the implemented model, it was applied to compute photometric images of
a simple rural road scene in night-time and daytime foggy weather conditions. The 2D1/2
description of the driver’s visual environment is presented in Fig. 9.

Radiation and advection types of fog were simulated. The computed luminance values
were mapped to gray levels in order to produce the images presented in Fig. 10 for the
night-time situation, and in Fig. 11 for the daytime situation.

It can be noted from the results that the relative importance of fog visual effects strongly
depends on the lighting conditions (night or day) and on the microphysical nature of the fog
(droplet size). The extinction effect yields the most important perturbations in the image
of the scene. In night-time, particularly, every details vanish except the front- and rear-
lamps of other vehicles, whereas they quickly fade into the distance in daytime because of
the atmospheric veil. The halo effect around the light sources is much “smoother” with
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(a) Illumination from daylight.

(b) Illumination from the driver’s vehicle headlights.

(c) Illumination from the oncoming vehicle headlights (at 150 m).

(d) Illumination from the rear-lights of the vehicle ahead (at 75 m).

Figure 9: Luminance and depth maps characterizing a rural road scene as described in
Fig. 8, computed by Monte-Carlo light tracing [8]. Zones with undefinite depth from the
observer (sky) or a light source (shadows) are shown in red.
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(a) Without fog.

(b) Radiation fog.

(c) Advection fog.

Figure 10: Computed luminance maps in the field of vision of a driver in a foggy rural scene
during night-time (the meteorological visibility is 100 m).
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(a) Without fog.

(b) Radiation fog.

(c) Advection fog.

Figure 11: Computed luminance maps in the field of vision of a driver in a foggy rural
scene during daytime (the meteorological visibility is 100 m, and the fog luminance is
500 cd.m−2).
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radiation fog, more like a veiling effect than with advection fog. As a consequence, the
importance of the halos is greatly reduced by daytime airlight: they even seem negligible
in radiation fog.

Although the images in Figs. 10&11 are only a tone-mapped representation of what the
observer actually perceives, this example illustrates the complexity of fog effects on vision.

5 Application to the Validation of a Fog Observation Test Bench

5.1 Objectives

To improve road safety or the comfort of future vehicles, methods are being developed to
detect the presence of fog and estimate the meteorological visibility distance through use
of either in-vehicle [3, 19, 20] or roadside cameras [16, 17]. A major issue of this research
is the quantitative evaluation of the methods [15]. To perform this task, the classical ap-
proach is to test the methods against a reference database [32]. The problem is to build the
ground truth on the images in the database, usually by means of reference sensors. This
involves some sort of visibilitymeter. Unfortunately, transmissometers are very expensive
and scatterometers have some drawbacks, which make them unsuited to our needs [18].

To overcome this problem, we have thus proposed to build a fog observation test bench.
This test bench is composed of a road track equipped with photometric targets which con-
stitute a reference for assessing the meteorological visibility distance. They are passive
targets for daytime and artificial light sources for nighttime, as already proposed in [25].
The fog model presented in the previous section is used to simulate the visual appearance
of the test bench in foggy weather. We can then propose and test meteorological visibility
distance estimation methods relying on the reference objects. It allows to predict the the-
oretical maximum accuracy of these methods, and to check if they are relevant to validate
other methods which do not rely on any reference targets.

5.2 The Test Bench

For the daytime situation, our goal is to assess the contrast reduction in the reference targets,
in order to estimate the value of the meteorological visibility distance. We equipped our
test track in Versailles (France) with five large specific targets (cf. Fig. 12), located between
65 m and 200 m from the cameras onboard a vehicle stationed at a reference position (cf.
Tab. 2a). For a maximum intrinsic contrast, we have designed black and white targets. To
avoid aliasing effects, we have designed the targets so that they have the same apparent size
in the images. An additional mobile target is used at a closer range when the fog is very
dense.

For the nighttime situation, our goal is to assess the luminance reduction of artificial
light sources. These light sources are set on top of the previous targets. Another mobile
light source is set on the left side of the test track (see Fig. 12b). We use signal lights which
ordinary serve in work zone areas. A typical configuration of the light sources in night tests
is given in Tab. 2b.



20 Eric Dumont, Nicolas Hautière and Romain Gallen

Finally, based on the measurements given in Tab. 2, a virtual mockup of the test bench
has been built. Fig. 13 shows this mockup in clear weather in full daylight. We have all
the necessary geometric and photometric information concerning this mockup to simulate
foggy weather on the test bench with the model presented previously.

(a)
Target index 1 2 3 4 5 6
Distance [m] 0-35 65.2 97.6 130.7 162.4 195

L [m] 0.5 1 1.5 2 2.5 3
t [m] 0.1 0.19 0.28 0.37 0.47 0.56

(b)
Target index 1’ 2’ 3’
Distance [m] 35 35-200 200

Table 2: (a) Index, distance and dimensions L, t (see Fig. 12c) of the different reference
targets on the test bench for the daytime use. (b) Index and distance of the different light
sources on the test bench for the nighttime use.

5.3 Daytime Situation

In this section, we first propose a process to measure the meteorological visibility distance
using the black and white passive targets. Secondly, we check if this process is relevant by
applying it on simulated images of the observation test bench in daytime fog.

5.3.1 Measurement Process

In daytime, with the sky as only light source, the model (29) simply comes down to
Koschmieder law (24). Based on this equation, we can build two methods to estimate the
meteorological visibility distance. The first method only uses the black part of the targets.
The second one uses the black part as well as the white part of the targets.

• Using the black part of the targets

We consider the black part of two black targets located at distances d1 and d2 from the
camera. We assume that they have a negligible intrinsic luminance (Lb(0) = 0). According
to (24), their apparent luminances are:

{
Lb(d1) = (1− e−Kd1)Lf

Lb(d2) = (1− e−Kd2)Lf
(30)

Taking the ratio rb = Lb(d1)
Lb(d2) of these values, we obtain the following equation, which we

need to solve for K:

rb =
1− e−Kd2

1− e−Kd1
(31)
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(a) (b) 
t t t t 

tL )24( +=

t 
(c)

Figure 12: (a) Actual picture of the fog observation test bench dedicated to visibility mea-
surement, taken in sunny weather conditions; (b) the mobile light source used in nighttime
tests; (c) graphic design of the reference targets.
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200 m80 m 33 m

Figure 13: Image of the virtual mockup of the fog observation test bench. The signal lights
are marked in red, and their relative positions are specified.

(31) admits analytical solutions for certain values of the ratio d2
d1

. We deduce the value of
the extinction coefficient K in different ways:

K =





− 1
d1

log
(
rb − 1

)
if d2 = 2d1

− 1
d1

log
(√

4rb−3−1
2

)
if d2 = 3d1

− 1
d1

log
((

rb−1
)(√

rb+3−√rb−1
)2

4

)
if d2 = 3

2d1

(32)

• Using both black and white parts of the targets

An alternative technique consists in using the white and the black parts of the targets,
whose apparent luminances Lw(d) and Lb(d) are given by (24):

{
Lw(d1)− Lb(d1) = e−Kd1Lw(0)
Lw(d2)− Lb(d2) = e−Kd2Lw(0)

(33)

Again taking the ratio rbw of these values, we have:

rbw = e−K(d1−d2) (34)

We deduce the value of extinction coefficient K:

K =
1

d2 − d1
log(rbw) (35)
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• Averaging the measurements

(32) and (35) each gives a single estimate of the meteorological visibility distance. By
fusing the different estimates, we can have a more accurate overall estimate. In this aim,
we must take into account the relative accuracy of each estimate. An estimation V(K) of
the variance of K is thus associated with each formula (32) or (35). V(K) is expressed by:

V(K) ≈ VI

∑(
∂K

∂Lb,w(d1,2)

)2

(36)

where VI is the variance on the pixel value due to the digitalization of the pictures, assuming
a Gaussian centered distribution with a standard deviation of 1

2 . From (21), we deduce the
variance of Vmet:

V(Vmet) ≈
(

Vmet

K

)2

V(K) (37)

Assuming that the measurements are not correlated, these estimates are optimally averaged
using the variances:

V̂met =

∑
i

Vmeti
V(Vmeti)∑

i
1

V(Vmeti)

(38)

We deduce the variance of this estimator:

V(V̂met) =

( ∑

i

1
V(Vmeti)

)−1

(39)

5.3.2 Process Validation on Photometric Simulations

To check the measurement process presented in the previous paragraph, we must ensure
that the equations are relevant for estimating the meteorological visibility distance. In this
aim, using the model of fog effects on vision given in section 4.3.2, we simulated pictures
of the virtual mockup of our test bench in daytime fog, for different values of Vmet: 33 m,
66 m, 100 m, 133 m, 166 m and 200 m. These pictures are shown in Fig. 14.

Tab. 3a gives the values of V̂met obtained thanks to averages of estimates (32). Tab. 3b
gives the values of V̂met obtained thanks to averages of (35). First, some results at the
bottom of the tables are bad. The reason for that is the round-off caused by the digital
nature of the simulated images. Thereafter, the logarithmic formula is more sensitive to the
small intensity differences on the distant targets, than with the large intensity differences
of closer targets. The estimated visibility distance is thus necessarily worst using the most
distant targets. All these considerations are confirmed by the standard deviation values,
which are given between brackets in Tab. 3. Second, the standard deviations in Tab. 3a
are smaller than in Tab. 3b. Unfortunately, the method seems to be biased, because the
estimated visibility distance is biased and always smaller than the ground truth. This may
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(a) Vmet = 33 m (b) Vmet = 66 m

(c) Vmet = 100 m (d) Vmet = 133 m

(e) Vmet = 166 m (f) Vmet = 200 m

Figure 14: Photometric simulations of the test bench in daytime fog for different meteoro-
logical visibility distances.
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(a)
Vmet [m]

V̂met(σ) [m] 200 166 133 100 66
1 → 2 172 (2.2) 144 (1.7) 119 (1.4) 92 (1.4) 61 (1)

1 → 3 183 (1.7) 151 (1.4) 124 (1.4) 95 (1) -
couple of 2 → 3 199 (2.2) 161 (2) 132 (1.7) 100 (1.4) -
targets 2 → 4 197 (1.7) 162 (1.4) 132 (1.4) - -

2 → 6 198 (1.4) - - - -
3 → 6 197 (1.7) - - - -
4 → 6 199 (2) - - - -
V̂met 194 (1) 155 (1) 126 (1) 95 (1) 61 (1)

(b)
Vmet [m]

V̂met (σ) [m] 200 166 133 100 66
1 → 2 203 (3.7) 170 (3.5) 138 (3.2) 103 (3) 74 (3.3)

1 → 3 198 (3.2) 173 (3.2) 135 (3.2) 103 (3.3) -
1 → 4 201 (3.3) 162 (3.3) 138 (3.6) - -
1 → 5 189 (3.6) 172 (3.9) - - -
1 → 6 203 (4.1) - - - -
2 → 3 194 (4.6) 176 (4.8) 133 (4.5) 103 (4.8) -

couple of 2 → 4 200 (4) 158 (4) 138 (4.5) - -
targets 2 → 5 184 (4.1) 172 (4.5) - - -

2 → 6 203 (4.6) - - - -
3 → 4 206 (6.2) 143 (5.4) 142 (6.8) - -
3 → 5 180 (5) 170 (5.6) - - -
3 → 6 207 (5.5) - - - -
4 → 5 160(6.5) 210 (10.2) - - -
4 → 6 207(6.8) - - - -
5 → 6 294 (14.6) - - - -
V̂met 197 (2) 168 (2.2) 137 (2.4) 103 (2.6) 74 (3.3)

Table 3: Estimated meteorological visibility distance and standard deviation (between
brackets) on simulated pictures using the reference targets and (a) average estimates (32) or
(b) average estimates (35).
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be due to the fact that the targets are not really black, as is assumed for establishing (32). In
our simulations, we implemented a reflectance factor of 1% in order to stick to reality.

To confirm these statements, we plotted in Fig. 15 the estimated meteorological visi-
bility distances with respect to the simulated meteorological visibility distances as well as
the averaged estimates (32) and (35). In addition, linear regression lines are plotted using a
black line for the averaged estimates and a dashed line for the ground truth. By looking at
Fig. 15a, we have the confirmation that the method relying on the averaged estimates (32) is
biased. However, the bias seems to be constant, which is a somehow interesting. By look-
ing at Fig. 15b, it seems that the method relying on the averaged estimates (35) is relevant
to estimate the meteorological visibility distance. Indeed, the regression line of the aver-
aged estimates seems to merge with that of the ground truth for the highest meteorological
visibility distances, where there are enough points to compute reliable averaged estimates.

Consequently, based on Tabs. 3a&b and Figs. 15a&b, it seems reasonable to only rely
on the averages of (35) to compute the reference measurement V̂met. This reference mea-
surement can then be used to assess the performances of methods which detect and estimate
the fog density in daytime without any reference.

5.4 Nighttime Situation

In this section, we first propose a process to measure the meteorological visibility distance
using artificial light sources. Second, we check if this process is relevant by applying it on
simulated images of the observation test bench in nighttime fog.

5.4.1 Measurement Process

In nighttime, the light sources are the single visible objects in the test bench. Based on (29),
the luminance of these light sources is given by:

Ls(d) = Ls(0) ∗ F−1
{

MKd
}

(40)

This equation models both the luminance attenuation effect and the halo effect of night fog.
We can split the model in two parts, where each part is related to each visual effect:

Ls(d) = Ls(0) ∗ F−1
{

MKd − e−Kd
}

+ Ls(0) ∗ F−1
{

e−Kd
}

(41a)

= Ls(0)e−Kd + Ls(0) ∗ F−1
{

MKd − e−Kd
}

(41b)

The first term of (41b) is related to the luminance attenuation effect, whereas the second
term models the halo visual effect. Let us consider two targets located at two distinct
distances d1 and d2. We can again take the ratio rs of their luminances:

rs =
Ls1(d1)
Ls2(d2)

=
Ls1(0)e−Kd1 + Ls1(0) ∗ F−1

{
MKd1 − e−Kd1

}

Ls2(0)e−Kd2 + Ls2(0) ∗ F−1
{

MKd2 − e−Kd2

} (42)
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Figure 15: Plots of estimated vs. simulated meteorological visibility distances in daytime
fog using the reference targets and (a) average estimates (32) or (b) average estimates (35).
Linear regression lines are plotted using a black line for the averaged estimates and a dashed
line for the ground truth.
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In [30], the authors neglect the contribution of the halos to rs. Based on this assumption,
they compute the relative depth of light sources. This measurement process is rather simple
since measuring the maximum luminance of the light sources is enough to compute fog
density. We propose to use this assumption and thus (42) becomes:

rs =
Ls1(0)
Ls2(0)

e−K(d2−d1) (43)

Assuming that the light sources are identical, their intrinsic luminances are equal. We obtain
finally:

K =
1

d2 − d1
log(rs) (44)

Since we have more than two light sources in the test bench, we can, like in section 5.3,
fuse the different estimates obtained using (44). An estimation V(K) of the variance of K
is thus associated with (44). V(K) is expressed by:

V(K) ≈ VI

∑(
∂K

∂Ls1,2(d1,2)

)2

(45)

where VI is the variance on the pixel value due to the digitalization of the pictures, assuming
a gaussian centered distribution with a standard deviation of 1

2 . From (21), we deduce the
variance of Vmet:

V(Vmet) ≈
(

Vmet

K

)2

V(K) (46)

Assuming again that the measurements are not correlated, these estimates are optimally
averaged using the variances:

V̂met =

∑
i

Vmeti
V(Vmeti)∑

i
1

V(Vmeti)

(47)

The variance of this estimator is again:

V(V̂met) =

( ∑

i

1
V(Vmeti)

)−1

(48)

5.4.2 Process Validation on Photometric Simulations

In the previous section, we assume that the halos can be neglected to compute the meteoro-
logical visibility distance. In this section, we propose to check if this assumption is valid.
Based on the model of fog effects on vision given in section 4.3.2, we have performed
photometrical simulations of the test bench in nighttime. We simulated different meteoro-
logical visibility distances (33 m, 66 m, 100 m, 133 m, 166 m and 200 m) and droplet size
distributions using moderate advection and radiation fogs from Tab. 1. Some samples of
simulated pictures are shown in Fig. 16. One can see that the visual appearance of the light
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sources differ even if the meteorological visibility distance is the same, as it was already
mentioned in section 4.3.3. The halos seem to be more intense for advection fog than for
radiation fog. One can see also that the most distant light source (index 3’) is no longer
visible for very low meteorological visibility distances. The intermediate source (index 2’)
is also barely visible.

(a) Vmet = 33 m G2 (b) Vmet = 33 m G4

(c) Vmet = 200 m G2 (d) Vmet = 200 m G4

Figure 16: Samples of the photometric simulations of the test bench in nighttime fog for dif-
ferent meteorological visibility distances and different droplet size distributions (G2 mod-
erate advection fog; G4 moderate radiation fog).

Tab. 4a gives the values of V̂met obtained thanks to averages of estimates (44) in ad-
vection fog (denoted G2). Tab. 4b gives the values of V̂met obtained thanks to averages of
estimates (44) in radiation fog (denoted G4).

First, we can see that the variances of the averaged estimates are bigger that those
obtained in daytime. This can be related to the fact that fog effects are more complex in
nighttime than in daytime. Indeed, the model used in nighttime is semi-analytic whereas
in daytime it is completely analytic. The non-analytic part of the model is noise sensitive,
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Figure 17: Plots of estimated vs. simulated meteorological visibility distances in nighttime
(a) advection and (b) radiation fog using the artificial light sources and average estimates
(44). Linear regression lines are plotted using a black line for the averaged estimates and a
dashed line for the ground truth.
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(a)
Vmet [m]

V̂met(σ) [m] 200 166 133 100 66 33
1′ → 2′ 198 (98) 169 (69) 138 (45) 108 (26) 78 (12) 53 (4.8)

couple of 1′ → 3′ 225 (123) 197 (91) 172 (66) 155 (51) 155 (48) 167 (45)

targets 2′ → 3′ 237 (22) 209 (16) 189 (12.5) 186 (11.5) 246 (20) 846 (389)

V̂met 235 (21) 207 (16) 185 (12) 173 (10) 127 (10) 55 (5)

(b)
Vmet [m]

V̂met(σ) [m] 200 166 133 100 66 33
1′ → 2′ 186 (84) 157 (58) 127 (36) 97 (20) 66 (8) 36 (8)

couple of 1′ → 3′ 198 (91) 167 (62) 135 (38) 107 (22) 91.5 (21) 99 (56)

targets 2′ → 3′ 203 (15) 171 (10) 138 (7) 110 (10) 107 (30) 294 (699)

V̂met 203 (15) 170 (10) 138 (7) 108 (8) 72 (7) 37 (8)

Table 4: Estimated meteorological visibility distance and standard deviations (between
brackets) on simulated pictures using the artificial light sources and (44) in (a) moderate
advection fog and (b) moderate radiation fog.

which partly explains the higher variances of the measurements.
Second, we can see that the averaged estimates are far from the ground truth in advec-

tion fog (see Tab. 4a), whereas they are quite close to the ground truth in radiation fog (see
Tab. 4b). This can be directly related to the droplet size distributions. For the moment, we
can state that the halo effect cannot be neglected to estimate the meteorological visibility
distance. (44) is thus questionable.

To go further in the details, we plotted in Fig. 17 the estimated meteorological visibility
distances with respect to the simulated meteorological visibility distances as well as the
averaged estimates (44). In addition, linear regression lines are plotted using a black line
for the averaged estimates and a dashed line for the ground truth. These plots are given
for advection fog in Fig. 17a, as well as for radiation fog in Fig. 17b. By looking at these
plots, we have the confirmation that the proposed measurement process is biased, since it
overestimates the meteorological visibility distance. However, the bias seems to be constant
thanks to the proposed averaging process, which is rather interesting. Indeed, it provides
a practical solution to correct the bias. In this aim, with approximate knowledge of the
granulometry of the fog, i.e. the type of fog, we can correct the bias to get a better estimate
V̂met of the meteorological visibility distance. We can also ignore this bias if radiation fog
is encountered.

In the future, it would be relevant to not only use the luminance attenuation of the light
sources, but also to use the shape of the halos to estimate the granulometry of the fog and
thus correct the bias. [27,31] are good examples of such a process, but for the fact that they
both rely on the Henyey-Greenstein phase function (16), which we saw was not the best
model for fog.
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5.5 Partial Assessment

In this section, we have shown an application of the proposed model of fog effects on vision
to the validation of a fog observation test bench. First, we have described the test bench, in
particular the photometric references which are used. Second, we have tackled the daytime
fog situation. It has been shown that using both black and white parts of the passive targets
leads to a good estimation of the meteorological visibility distance. Third, we have tackled
the nighttime fog situation. It has been shown that the contribution of halos to the visual
appearance of light sources cannot be neglected to estimate the meteorological visibility
distance. Indeed, it leads to underestimate the fog density. However, in the specific case
of radiation fog, which is the most typical type of fog, the proposed measurement process
provides quite good results.

6 Conclusion

After examining the microphysical and optical characteristics of fog, and the resulting ef-
fects on the visual environment perceived by an observer or recorded by a camera, one thing
at least appears obvious: there is more to fog than just the meteorological visibility distance.
Indeed, we found that there are different kinds of fog, radiation and advection fogs being the
most common, which appear and dissipate in different places and at different times. And
we saw that these fogs are formed of water droplets which come in different sizes, between
several tenths of a micron for radiation fog to several microns for advection fog. Then we
showed that each droplet scatters visible light in an angular distribution which depends on
its size, bigger droplets favoring the forward scattering. And when light travels through fog,
scattered by multiple droplets along the way, it is exponentially attenuated with distance
(Beer-Lambert law). This phenomenon is characterized by the extinction coefficient, which
describes fog density. The meteorological visibility distance was conventionally defined as
a more intuitive way to express the extinction coefficient. But extinction does not entirely
describe the visual effects of fog. Some of the light scattered along light paths reaches the
field of vision, adding two kinds of veils. The most obvious is the airlight, caused by the
scattering of daylight: it adds a distance dependent veiling luminance to the visual signal
(Koschmieder law). But artificial light sources also contribute some scattered light to the
visual signal, only in a more localized way, under the form of halos which strongly depend
on the type of fog because of the influence of droplet size on light scattering.

When investigating visual perception in fog, or when designing solutions to detect,
measure or remove fog in digital images, one should not forget that extinction, airlight and
halos happen simultaneously, with different relative effects. This is what led us to propose a
unified model of fog effects on vision, applicable for both dark and luminous objects, under
both daytime and night-time, as well as in twilight. It is a semi-analytic model because of
the halo effect, modeled as a distance dependent PSF. Its implementation requires detailed
geometric and photometric knowledge on the scene. But despite its limitations, it offers a
convenient and versatile tool to predict fog effects, or to extract information about the scene
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or the fog by image processing.
To demonstrate the benefit of using the model, we show how it helped us validate a fog

observation test bench for camera-based fog monitoring applications. The test bench con-
sists of black and white targets for daytime fog and light sources for nighttime fog. Several
targets are installed at different distances from a reference observation point along a test
track. A virtual mockup of this test bench was built, and the model of fog effects on vision
was applied to compute digital images of the scene in different daytime and nighttime vis-
ibility conditions (with radiation and advection fog, and meteorological visibility distances
between 30 m and 200 m). Different methods were tested to estimate the meteorological
visibility distance from the reference objects in the images, and the estimated values were
compared to the simulated values. It allowed us to prove that evaluating fog density directly
in the images, using the reference objects, was a valid alternative to the deployment of an
expensive visibilitymeter. It also allowed to reveal that neglecting the halo effect may lead
to an underestimation of the meteorological visibility distance in advection fog.
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