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Abstract—It is obvious to say that perception is necessary to
drive. Futhermore we can say that a good visibility is a guaranty
for passengers security. The driver will adapt the vehicle speed
to the offered visibility. Strong visibility reductions (dense fog
for instance) are conditions of risk of accident. We therefore
propose here a method to perform an onboard estimation of the
visibility distance. Once this estimate is obtained, assistance could
be offered to the driver (eg if it runs at a speed not adapted to
the current visibility) or to the road infrastructure management
so that it can inform other users of risk on his road network.
This method uses images acquired by an onboard camera filming
the scene and the estimation of vehicle motion. Thus, from this
information we will explain how we can achieve a spatial partial
structure reconstruction to estimate the visibility distance.

Index Terms—Visibility, Estimation, Structure from Motion.

I. INTRODUCTION

The visibility distance estimation is an important issue for
environment perception. The challenge of the work done here
is to obtain an on-board estimation of the visibility distance
in order to inform the driver if its speed is not adapted to the
prevailing visibility condition. Another possibility could be to
inform all the vehicles in the area about the risk due to bad
visibility via a vehicle to vehicle communication system.

The problem we try to solve is to get information with an
onboard camera when the visibility is poor (only few objects
can be seen in the image). Among the methods wich estimate
the visibility distance, some are based on previous detection.
In [1], Mori et al. determine a contrast attenuation coefficient
from the detection of the preceding vehicle with a radar. This
contrast attenuation allows them finding a visibility distance.
In [2], Pomerleau estimates the visibility by measuring the
contrast attenuation of road markings at various distances in
front of the vehicle.

The others do a straightforward calculation of the estimate.
In [3] a visibility distance estimation can be obtained by
daytime fog, using a monocular method [3] adapted to fog
based on Koschmieder’s model [4] (model giving the apparent
brightness of an object depending on the atmospheric extinc-
tion coefficient). In [5] the distance to the furthest element
of the scene belonging to the road plane having a contrast
greater than 5% (in accordance with the definition given by the
CIE [6]) gives the visibility distance. This method is based on
stereovision [7] and is not limited to fog. The distance given

by this method will vary depending on the presence or not
of object in the field of vision (to measure contrast). For this
purpose we will talk about mobilized visibility, the maximum
achievable mobilized visibility being the mobilizable visibility
[8].

The method we aim is as generic as the one based on
stereovision but uses a single camera. Thereby, in the same
way as this method, we estimate the distance to the furthest
object on the plane of the road with a contrast greater than or
equal to 5%. Therefore we develop a new method based on
Vehicle Dynamics Estimation and Structure from Motion. A
complete study of the Vehicle Dynamics Estimation used in the
method can be found in [9]. In this paper, we will explain how
the Structure from Motion (SFM) takes part in the method and
how we develop a new approach based on concepts developped
for classic stereovision methods. Furthermore, we implement
this method on a car and obtained some results presented at
the end of the article.

We will recall our monocular generic method in the next
section. Then we will explain in more detail the SFM. Finally
we will present some results of on-board visibility distance
calculation.

II. MONOCULAR GENERIC METHOD

This method takes into account the definition of visibility
given by the International Commission on Illumination [6] and
is divided into three steps. The first one is to map the depths of
the vehicle environment with Structure From Motion (SFM).
The second one is to compute the elements of the image having
a contrast greater than 5%. Finally, the visibility distance is
obtained from the combination of depth and contrast maps.

Thus we explain how we do SFM with homographic reg-
istration, then how we calculate the contrast to, then, estimate
a visibility distance.

As we said above, the method we aim is based on the
concepts of the method based on stereovision but using a single
camera. We will therefore carry out, through the homographic
registration, a temporal stereovision process.

The method using the conventional stereovision process
(traditional spatial stereovision with at least 2 cameras) uses
an extraction of the road surface within the scene, whereas our
method of temporal stereovision can, at best, discern the flat



world from vertical objects. Our method will therefore have
lower accuracy but gain in ease of use (no calibration of the
stereoscopic sensor).

A. Homographic registration

In monovision, it is impossible to go directly to the depth
in the images. The standard Flat World assumption allows one
to associate the image line with a distance, this being true for
objects belonging to the road plane.

The challenge is to discern the road objects to others. The
most generic way of achieving this is to make successive
images registration. Objects belonging to the plane of the
road are registered from an image to another. In contrast, the
vertical objects are distorted. This method allows, in theory,
distinguishing the points that belong to the road plane from
the others.

In general, the successive images registration is done us-
ing conventional techniques of image processing [10]. These
methods match the contours between both images and estimate
the transformation between both images. An application for
calculating the speed of the vehicle is described in [11].

In our context of low visibility, this approach is not suitable
because the contrasts are highly degraded. The originality
of our approach is to do homographic registration using
the knowledge of vehicle motion, observed or measured by
proprioceptive sensors (odometer, Inertial Measurement Unit).

The construction of the depth maps with one camera goes
through the understanding of several steps that have been
developed in [9]. They begin with the camera modelization,
following the application of the Flat World homography, and
then, using the vehicle motion to realize the image registration.

We can see in Fig. 1 the result obtained with synthesized
images from a simulator [12] after the vehicle has traveled
distances of 1 m (top) and 2m (below) before making the
homographic registration.

Fig. 1. left: current image and right: registered image - top: 1m traveled
before registering / down: 2m traveled before registering.

Big black lines in the images highlight the fact that objects
belonging to the plane of the road are not distorted (road

markings, base of the tower, ...) as opposed to objects not
belonging to it. Indeed we can notice that the top of the tower
is distorted and the more the distance before registering is
large.

B. Structure from Motion

Now that we have made the image registration, we will
compare them to find connections between two local regions
of each image. Initially, we determined areas of interest in
the image by retrieving the contours of objects in the scene.
Then we calculated the correspondence between these regions
of interest of the two images using a correlation method
(comparison between different techniques of correlation can be
found in [13]). After the correlation calculation performed on
all regions of interest of the two images, a matching distance
d or disparity is calculated. The detailed calculation can be
found in [9]. From this disparity calculation we can identify
in the image pixel belonging to the road plane from others.
The detailed explanation of this process is given in the next
section.

C. Estimation of the visibility distance

To estimate the visibility distance, we combine a measure
of contrast greater than 5% with the map of pixels belonging
to the road plane obtained from the Structure from Motion
process. To this end, we compute the local contrast of the
image points belonging to the road plane by scanning the
image from top to bottom starting from the horizon [14]. Once
we found a point with a contrast greater than or equal to 5%,
the process stops and the distance to this point is the visibility
distance. The distance of a pixel belongings to road plane can
be calculated from the projective model (1):

Dist =

{
λ

v−vh if v > vh
∞ if v ≤ vh

where λ = Hα
cos(θ) (1)

where H is the mounting height of the camera, α is the ratio
between the focal length of the camera and the size of a pixel,
θ the pitch angle of the camera and vh the position of the
horizon line in the image.

III. STRUCTURE FROM MOTION BASED ON DISPARITY
COMPUTATION

In this section, we detail our SFM approach. We tried to
exploit the work already undertaken in the context of spatial
stereovision (with at least two cameras). The first approach
is based on the notion of V-disparity, the second exploits the
geometry of the scene considered.

A. First approach: V-disparity

1) V-disparity in spatial stereovision: Labayrade et al.
developed the concept of V-disparity [7]: from a pair of
rectified stereoscopic images (left and right images), we may
for the detected objects, calculate the difference in position
between the two images. This allows us to calculate a disparity
distance as shown in Fig. 2.



Fig. 2. V-disparity in the case of spatial stereovison. The dotted lines belong
to the road, the black stick is a vertical element of the scene.

If we project this distance depending on the height in the
image (height pixel v), we get the right image of Fig. 2. We can
see that the elements of the road (dotted lines) have a strong
disparity in the bottom of the image and a low disparity at the
top. Conversely, the vertical elements of the scene (the black
stick), will have for all points the same disparity as a function
of height in the image.

The disparity of the vertical element is the same for all
points belonging to it. We can therefore, from this, discern
the road plane (the oblique line in the V-disparity space
representation) from the vertical object (the vertical line in
the V-disparity space representation).

2) V-disparity for temporal stereovision: The V-disparity
concept can be applied to our case of temporal stereovision.
This was tested by Alix et al. in [15].

In this case, the comparison is done between a normal image
and registered image. The objects belonging to the road plane
will not be distorted, in contrast to vertical objects (see eg
Fig.1). We have shown in Fig. 3, a road (dotted lines) and a
vertical element (black stick) in the image and the registered
image.

Fig. 3. V-disparity representation in the case of temporal stereovision

Here, the objects belonging to the road plane are the same
in both images, unlike the vertical elements. The matching
distance or disparity will be zero for elements of the road.
For vertical elements it can be approximated, for the sake of
simplicity by:

d = |uN1 − uR1|

The projection of this matching distance in the V-disparity
space representation gives us the right part of Fig. 3. For
vertical elements, the distance will be increased depending
on the height position of the points considered. We can

therefore, in theory, from this representation, discern vertical
objects (oblique lines) of elements belonging to the road plane
(matching distance close to 0).

This approach is interesting but to get good results the
registered image must be computed after a sufficiently large
displacement of the vehicle in hopes of obtaining a large
enough difference to be taken into account. The larger the
windows used to calculate the correlation, the larger the
disparity between both images will be. But large areas of
research involves greater computational power. In our case,
to preserve the real-time aspect in our estimation, we turned
to another method of spatial stereovision that we applied to
our case of temporal stereovision.

B. Second approach: Compensation of perspective projection

The second approach developed by Williamson et al. in
[16] uses the geometry of the scene. Indeed, if one assumes
that we seek in the image elements belonging to the plane
of the road and vertical elements, one can change the region
of interest for disparity calculation. We will initially explain
the approach used by Williamson et al. in the case of spatial
stereovision and show how we can apply this concept to our
case.

1) Compensation for spatial stereovision: Willamson et al.
operate in [16] the fact that the geometry of elements belonging
to the road plane are not the same in the pair of stereoscopic
images. Indeed, as shown in Fig. 4, the comparison of regions
belonging to the road plane is not effective, unlike regions of
elements belonging to vertical objects.

Fig. 4. Calculation of the disparity in the case of stereoscopic images [16].
The elements belonging to vertical objects are the same in both images (picture
left). The elements belonging to the road plane (eg the white line), are not the
same in both images (right panel).

If you change one of the two images of the pair of
stereoscopic images using a flat world hypothesis, we get the
image in Fig. 5. As we can see, in this case, the comparison
of areas belonging to the road plane gives much better results.

Fig. 5. Calculation of the disparity in the case of stereoscopic images where
the image on the right has been adjusted using the perspective projection [16].
The elements belonging to the road plane are, in this case, the same in both
images (right panel).



The method proposed by Williamson et al. is based on the
difference in correlation score in the case where an image is
changed after the flat world hypothesis in the classical case.
The different results can discern the elements belonging to the
road plane from vertical objects.

Note that the perspective projection may vary during move-
ment of the vehicle, for example if it rolls or pitches. This
method should, strictly speaking, take into account the dy-
namics of the vehicle.

2) Compensation in temporal stereovision: In the case
of temporal stereovision objects which not belong to the
road plane are distorted upwards and in the edges direction.
We have therefore defined searching windows following this
deformation. We can account for this distortion in Fig. 1.
When the pixel is to the right of the image, that window is
distorted upwards and right, when the pixel is left, the window
is distorted upwards and the left. This is shown schematically
in Fig. 6.

Fig. 6. Correlation with an oblique windows for the Non-Road hypothesis

In the same way as in the case of spatial stereovision,
the deformation of this window will allow us to get better
correlation scores for objects not belonging to the road. The
idea of our method lies in the fact that for each pixel, we calcu-
late a disparity with normal correlation windows (undeformed)
and another with distorted windows. The objects belonging to
the road will have a smaller disparity distance with normal
windows. Conversely, objects which do not belong to the road
will have a disparity distance smaller with oblique windows.
This is the approach that we used in our study.

IV. ON-BOARD VISIBILITY DISTANCE CALCULATION

We have seen that knowing of the vehicle dynamics is
necessary for our method to calculate the registered image
needed for the SFM. In fact, knowing the six degrees of
freedom which are the three rotations (roll, pitch and yaw)
and three translations (longitudinal Tx, lateral Ty and vertical
Tz), we can achieve our homographic registration.

To estimate the vehicle dynamics that we need for our
application, we will use an instrumented vehicle. The sensors
on this vehicle during our tests are a camera, an inertial
measurement unit (IMU) and an odometer:

• the odometer provides information on the vehicle speed.
• the IMU provides the inertial angular velocities of the

three axes of rotation of the vehicle (roll, pitch and yaw)

and the accelerations along the three axes (X, Y, Z) of
the vehicle.

A. Presentation of the test

The test was conducted on the test track in Versailles-Satory
(see Fig. 7) in fog. The three sensors on the vehicle were an
IMU, an odometer and a camera.

Fig. 7. Test track in Versailles-Satory

The vehicle starts with a zero speed and then accelerated to
a speed of 50 km/h and finally produced a peak at 70 km/h,
as shown in Fig. 8.

Fig. 8. Vehicle speed during test

We can see in Fig. 9 on an actual fog image that the
combination of the depth map of the elements belonging to
the road plane (right) and the map of contrast greater than 5%
(left) helps to determine the visibility distance. The distance
to the furthest point having a contrast greater than 5% will be
our range of vision and it is represented by the horizontal line
on the pictures. The complete method and initial results are in
[17], [9].

B. Results

We calculated the visibility distance in various parts of
the test track. Estimates of visibility distance were made on
straight parts or slightly bend. Indeed, since measurements
from the IMU are very bad, we were unable to readjust the
image correctly at high cornering. You can see these results in
Fig. 10.



Fig. 9. Visibility distance obtained from a contrast and a depth maps. Up: Image from the camera - Left: contrast map (a contrast higher than 5%) - Right: in
white elements not belonging to the road plane, in black elements belonging thereto

The first sequence (left) was acquired in an area with a
guardrail and a barrier on the side of the road. Our estimation
method provides visibility scores at around 40 m except for
the beginning and the end of the sequence where it reached
80 m. These errors are due to vertical objects found on the
roadside which were not properly matched in the registered
image.

The second sequence (middle) was acquired in an area
with trees located a few meters right of the road. Our method
considers the visibility distance at a value of around 40 m.

The last sequence (right) was obtained in an area where
there are no vertical elements on the roadside. The estimated
visibility distance is 40 meters.

In comparison to these results, it was shown in Fig. 11 the
results obtained with the method exploiting the effect of haze
created by the fog [3]. This method considers the mobilizable
visibility distance while our method considers the mobilized
visibility distance.

It may be noted that the mobilizable visibility distance (in
blue) is estimated to approximately 60 m, while the mobilized
visibility distance is 40 m. Overall, if we don’t consider the
uncertainties due to our methods, the method exploiting the
effect of haze considers a range of vision higher than that
provided by our method. This result is obvious since the former
provides a mobilizable visibility distance while the second
provides a range of vision mobilized [8].

V. CONCLUSION AND PERSPECTIVES

We have presented in this paper a method to estimate
the visibility distance with a camera. This method is based

Fig. 11. Comparison of results of visibility distance calculation. Our method
in red, in blue the method based on the effect of haze[3].

on SFM and therefore we developed a new SFM method
for a monocular sensor. Results have been obtained and a
comparison with a method of estimation with mobilizable
visibility has been made.

We see two perspectives to this study:
• We have presented in the state of the art a method based

on the same type of consideration (coupling between a
depth map and a contrast map) where the depth map is
determined by stereovision [5]. It would be interesting
perspective to this study to evaluate and compare the two



Fig. 10. Visibility distance estimated with our method on three different sequences of the test.

methods.
• Any method propose and tested here is based on the

flat world homographic shift. We therefore considered all
our transformation from elements found on a plane at an
altitude in the reference vehicle frame. One idea might be
to consider not only homographic shift transformation but
for several different heights. This would validate various
hypotheses for the elements of the scene. If an item is
considered outside the road plane, we might as well check
if it does not belong to a plane lying at a different altitude.
We could thus determine the vertical elements and their
height.
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