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Mitigation of Visibility Loss for Advanced
Camera based Driver Assistances

Nicolas Hautière, Jean-Philippe Tarel and Didier Aubert

Abstract—In adverse weather conditions, in particular in
daylight fog, the contrast of images grabbed by in-vehicle cameras
in the visible light range is drastically degraded, which makes
the current driver assistances relying on cameras very sensitive
to weather conditions. An onboard vision system should take
weather effects into account. The effects of daylight fog vary
across the scene and are exponential with respect to the depth
of scene points. Because it is not possible in this context to
compute the road scene structure beforehand contrary to fixed
camera surveillance, a new scheme is proposed. Fog density is
first estimated and then used to restore the contrast using a
flat world assumption on the segmented free space in front of
the moving vehicle. A scene structure is estimated and used to
refine the restoration process. Results are presented using sample
road scenes under foggy weather and assessed by computing the
visibility level enhancement gained by the method. Finally, we
show applications to the enhancement in daylight fog of low level
algorithms used in advanced camera based driver assistances.

I. INTRODUCTION

Under adverse meteorological conditions, the contrast of
images which are grabbed by a classical in-vehicle camera
in the visible light range is drastically degraded, which makes
current in-vehicle applications relying on such sensors very
sensitive to weather conditions. An in-vehicle vision system
should take fog effects into account to be more reliable. A
first solution is to adapt the operating thresholds of the system
or to deactivate it momentarily if these thresholds have been
surpassed. A second solution is to remove weather effects
from the image beforehand. Unfortunately, the effects vary
across the scene. They are exponential with respect to the
depth of scene points. Consequently, space invariant filtering
techniques cannot be used directly to adequately remove
weather effects from images. A judicious approach is to detect
and characterize the weather conditions so as to estimate the
decay in the image and then to remove it.
The majority of sensors dedicated to measuring visibility

distances (scatterometer, transmissometer) are expensive to
operate and quite often complicated to install and calibrate
correctly. However, systems that meet this purpose with an
onboard camera are encountered less frequently. Pomerleau
[21] estimates visibility by means of measuring the contrast
attenuation of road markings at various distances in front of
a moving vehicle. Hautière et al. [12] detect the presence
of daytime fog and estimate the meteorological visibility
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distance. An extension of their method using stereovision [9]
or a monocular camera [3] estimates the so-called mobilized
visibility distance. Mori et al. rely on a camera coupled with
a millimeter wave radar to detect fog presence [18].
Methods which restore image contrast under bad weather

conditions are encountered more often in the literature. Un-
fortunately, they all have too strong constraints to be used
onboard a moving vehicle using images taken at different
times [20] or using images with different polarizing filters
[22]. Recently, different methods have been proposed which
rely only on a single image as input. [10] first estimates the
weather conditions and approximates a 3D geometrical model
of the scene which is given a priori and refined during the
restoration process. The method is dedicated to in-vehicle
applications. The key point is to optimize the scene model.
In [24], image contrasts are restored by maximizing the
contrasts of the direct transmission while assuming a smooth
layer of airlight. The method may produce halos near depth
discontinuities. [5] estimates the transmission in hazy scenes,
relying on the assumption that the transmission and surface
shading are locally uncorrelated. The method uses a local
window-based operation and a graphical model. Despite their
good looking results, these methods solve the problem using
optimization algorithms (Powell’s method or graph cuts and
belief propagation among other methods) which make them
heavy to implement and run: five to seven minutes using a
600×400 image on a double Pentium 4 PC for [24] and 35
seconds using a 512×512 image on a dual core processor for
[5]. Moreover, [5] can not deal with grayscale images, which
is problematic for in-vehicle applications. Based on principle
proposed in [24], i.e. the inference of the atmospheric veil,
[13] and [25] have proposed improved algorithms. However,
only [25] is fast enough to be used in real-time applications.
The problem of these methods is that the depth map produced
by their atmospheric veil inference may be erroneous due to
the ambiguity between white objects and fog.
In this paper, we propose a scheme to restore automatically

the contrast of any image grabbed by an in-vehicle camera
which enables a real-time use of the proposed principle.
Weather conditions are first estimated and then used to restore
the contrast using a flat world assumption on the segmented
free space in front of the equipped vehicle. Thanks to flat
world assumption, the 3D scene structure is inferred and used
to restore the contrast of the whole image.
The paper is organized as follows. We first present a

model of fog visual effects. Second, our previous technique
estimating the extinction coefficient of the atmosphere in the
current image from a single camera is recalled from [12]
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Fig. 1. Fog or haze luminance is due to the scattering of daylight. Light
coming from the sun and scattered by atmospheric particles towards the
camera is the airlight A. It increases with the distance. The light emanating
from the object R is attenuated by scattering along the line of sight. Direct
transmission T of R decreases with distance.

for completeness. Once the weather condition is known, we
present our free space area detection technique, see sec. IV.
This one is used to reconstruct the 3D scene and to perform the
contrast restoration. Then in sec. V, we present experimental
results, the analysis of the method sensitivity as well as the
assessment of the method with other relevant methods [13],
[24], [25]. Finally in sec. VI, we give applications of the
proposed contrast restoration method.

II. FOG EFFECTS ON VISION

The literature on the interaction of light with the atmosphere
has been written over more than two centuries. These works
still serve as reference for recent works in computer vision
[4], [12], [19]. In this section, selected results dealing with
fog effects on vision are presented.

A. Visual Properties of Fog

The attenuation of luminance through the atmosphere was
studied by Koschmieder [17], who derived an equation relating
the apparent luminance or radiance L of an object located at
distance d to the luminance L0 measured close to this object:

L = L0e
−βd + L∞(1 − e−βd) (1)

This expression indicates that the luminance of the object seen
through fog is attenuated in e−kd (Beer-Lambert law); it also
reveals a luminance reinforcement of the form L∞(1− e−βd)
resulting from daylight scattered by the slab of fog between
the object and the observer, also named airlight. L∞ is the
atmospheric luminance. In the presence of fog, it is also the
background luminance on which the target can be detected.
The previous equation may then be written as follows:

L − L∞ = (L0 − L∞)e−βd (2)

On the basis of this equation, Duntley developed a contrast
attenuation law [17], stating that a nearby object exhibiting
contrast C0 with the background will be perceived at distance
d with the following contrast:

C =
[

(L0−L∞)/L∞

]

e−βd = C0e
−βd (3)

This expression serves to base the definition of a standard
dimension called "meteorological visibility distance" Vmet, i.e.
the greatest distance at which a black object (C0 = −1) of
a suitable dimension can be seen in the sky on the horizon,

with the threshold contrast set at 5% [1]. It is thus a standard
dimension that characterizes the opacity of a fog layer. This
definition yields the following expression:

Vmet = −
1

β
log(0.05) ≃

3

β
(4)

B. Camera Response

Let us denote f the camera response function, which models
the mapping from scene luminance to image intensity by the
imaging system, including optic as well as electronic parts [7].
With the notations of Fig. 1, the intensity I of a pixel is the
result of f applied to the sum of the airlight A and the direct
transmission T , i.e:

I = f(L) = f(T + A) (5)

In this work, we assume that the conversion process between
incident energy on the CCD sensor and the intensity in the
image is linear. This is generally the case for short exposure
times, because it prevents CCD array to be saturated. Further-
more, short exposure times (1 to 4 ms) are used on in-vehicle
cameras to reduce the motion blur. This assumption can thus
be considered as valid and (5) becomes:

I = f(T ) + f(A) = f(L0e
−βd) + f(L∞(1 − e−βd))

= f(L0)e
−βd + f(L∞)(1 − e−βd)

= Re−βd + A∞(1 − e−βd) (6)

where R is the intrinsic intensity of the pixel, i.e. the intensity
corresponding to the intrinsic luminance value of the corre-
sponding scene point and A∞ is the background sky intensity.

III. ESTIMATION OF THE EXTINCTION COEFFICIENT OF

THE ATMOSPHERE

For automotive applications, a camera or a LIDAR can both
be used to recover the value of the atmospheric extinction
coefficient β. In this section, a method to compute the extinc-
tion coefficient β using a single camera behind the vehicle
windshield is recalled from [12], [16].

A. Flat World Hypothesis

In the image plane, the position of a pixel is given by
its (u,v) coordinates. The coordinates of the optical center
projection in the image are designated by (u0,v0). In Fig. 2,
H denotes the mounting height of the camera, θ the angle
between the optical axis of the camera and the horizontal, and
vh the horizon line. The intrinsic parameters of the camera are
its focal length fl, and the horizontal size tpu and vertical size
tpv of a pixel. We have also made use herein of αu = fl

tpu
and

αv = fl

tpv
, and have typically considered: αu ≈ αv = α. The

hypothesis of a flat road is adopted, which makes it possible
to associate a distance d with each line v of the image (see
[12] for further details):

d =
λ

v − vh

if v > vh, where λ =
Hα

cos θ
(7)
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Fig. 2. Modeling of the camera within its environment; it is located at a
height of H in the (S,X ,Y ,Z) coordinate system relative to the scene. Its
intrinsic parameters are its focal length f and pixel size t. θ is the angle
between the optical axis of the camera and the horizontal. Within the image
coordinate system, (u,v) designates the position of a pixel, (u0,v0) is the
position of the optical center C and vh is the vertical position of the horizon
line.

B. Recovery of Koschmieder’s Law Parameters

Following a variable change from d to v based on (7), (6)
then becomes:

I = A∞ + (R − A∞)e
−β λ

v−vh (8)

By twice taking the derivative of I with respect to v, one
obtains the following:

d2I

dv2
= βϕ(v)e

−β λ
v−vh

(

βλ

v − vh

− 2

)

(9)

where ϕ(v) = λ(R−A∞)
(v−vh)3 . The equation d2I

dv2 = 0 has two
solutions. The solution β = 0 is of no interest. The only useful
solution is given in (10):

β = 2(vi−vh)/λ (10)

where vi denotes the position of the inflection point of I(v). In
this manner, the parameter β of Koschmieder’s law is obtained
once vi is known. Finally, thanks to vi, vh and β values, the
values of the other parameters of (6) are deduced through use
of Ii and dI

dv |v=vi
, which are respectively the values of the

function I and its derivative in v = vi:

Rroad = Ii − (1 − e−βdi)
(vi − vh)

2e−βdi

dI

dv |v=vi

(11)

A∞ = Ii +
(vi − vh)

2

dI

dv |v=vi

(12)

where Rroad is the intrinsic intensity of the road surface.

C. Implementation

1) Estimation of the inflection point: To estimate the pa-
rameters of (6), the median intensity on each line of a vertical
band is estimated and an inflection point is detected. So as
to be in accordance with Koschmieder’s law assumptions, this
band should only take into account a homogeneous area and
the sky. Thus, a region within the image that displays minimal
line-to-line gradient variation when browsed from bottom to
top is identified thanks to a region growing process, illustrated
in Fig. 3. A vertical band is then selected in the detected area.
Finally, taking the median intensity of each segment yields the
vertical variation of the intensity of the image and the position
of the inflection point.

(a) (b)

Fig. 3. (a) Results of the region growing on the test images: the road
and the sky are partially segmented and are painted white. (b) Results of
fog detection and meteorological visibility estimation: the black segments
represent the measurement bandwidth; the curve on the left gives the vertical
variation of intensity within the bandwidth; the horizontal line gives the image
line representative of the meteorological visibility distance.

2) Estimation of the position of the horizon line: To obtain
the values of the parameters of (6), the position of the horizon
line must be estimated. It can be estimated by means of the
pitching of the vehicle when an inertial sensor is available,
but is generally estimated by an additional image process-
ing. Generally, this type of processing seeks to intersect the
vanishing lines in the image. However, under foggy weather,
the vanishing lines are only visible close to the vehicle. It
is thus necessary to extrapolate the position of the horizon
line through the fog. Consequently, this kind of process is
prone to a significant standard deviation, even if in [15] a
new approach can lead to improvements. For the moment, we
use the a priori sensor calibration. More precisely, by carrying
out a sensitivity analysis on (10), it can be easily shown that
underestimating the difference of positions between vi and
vh is more penalizing that overestimating it. To have stable
measurements, we thus chose to set the horizon line slightly
above its actual position. However, a recent publication seems
to show interesting results allowing expecting more accurate
results. Having now the vertical positions of both the inflection
point and the horizon line, the parameters of (6) can be
recovered and the position of the image line representative
of the meteorological visibility distance is deduced. Fig. 3
illustrates the process.

IV. CONTRAST RESTORATION METHOD

In this section, we present a contrast restoration method
based on Koschmieder’s law. The principle of the method
as well as its different steps are successively detailed in the
following sections.
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Fig. 4. 3D plot of the contrast restoration function (17) for β = 0.05 and
A∞ = 255. One can see that objects intensity tend to become null after
contrast restoration.

A. Restoration Principle

In this section, we describe a simple method to restore scene
contrast from an image of a foggy scene. Let us consider
a pixel with known depth d. Its intensity I is given by (6).
(A∞, β) characterizes the weather condition and is estimated
thanks to section III. Consequently, contrary to (11), R can be
estimated directly for all scene points from:

R = Ieβd + A∞(1 − eβd) (13)

The previous equation can be written as follows:

R − A∞ = (I − A∞)eβd (14)

and thus the contrast Cr in the restored image is:

Cr =
[

(I−A∞)/A∞

]

eβd = Ceβd (15)

However, R may become negative for certain values of (I , d).
We can solve the equation R(d∗) = 0 and obtain:

d∗(I) =
1

β
log

(

A∞

A∞ − I

)

(16)

In case of negative values during the restoration process, we
propose to set these values to 0. The restoration equation
becomes finally:

R = max
[

0, Ieβd + A∞(1 − eβd)
]

(17)

To properly restore the scene contrast, the remaining problem
is the estimation of the depth d of each pixel. The plot of this
function is shown in Fig. 4.

B. Flat World Restoration

[10] proposed a parameterized 3D model of a road scene
to restore the contrast. The proposed model is relevant for
most road scenes but it is not enough generic to handle all
traffic scenes configurations. In a first step, we propose to use
a quite opposite scheme, which consists in only assuming that
the road is flat. The distance of a pixel in the image is thus
assumed given by (7). Only large distances are clipped using

a parameter c. The distance dc of a pixel p of coordinates (i,j)
is thus expressed by:

dc

(

i ∈ [0, N [, j ∈ [0,M [
)

=

{

λ/(j−vh) if N > j > c
λ/(c−vh) if 0 ≤ j ≤ c

(18)
where N×M denotes the size of the image and c ∈ [cmin, N−

vh]. cmin is used to reduce the modeling errors. In particular,
flat world and non flat world are mixed near the horizon line.
It makes sense to set the position of this clipping plane equal
to the meteorological visibility distance. Indeed, nothing can
be seen further than Vmet. Using (4), (7) and (10), we thus
set:

cmin = (2vi+vh)/3 (19)

By using (18) in (17), the contrast of objects belonging to
the road plane is restored. Conversely, the contrast of objects
out of the road plane (other vehicles, trees...) is falsely restored
since their distance in the scene is overestimated. Conse-
quently, according to (13), their intensity R becomes null in
the restored image, what is shown in Fig. 5. This is a major
inconvenient, which was tackled in [8] by underestimating the
value of the horizon line.

C. Free Space Area Detection

The inconvenient of the flat world restoration can be turned
into our advantage. Indeed, by detecting the pixels whose
intensity is null after contrast restoration for c = cmin, we
can very easily extract the free space in front of the vehicle
accordingly by looking for the biggest connected component
in front of the vehicle. This region is denoted D. To improve
the results of this last step, a morphological opening of the
connected component is performed. Some sample results are
shown in Fig. 6. The segmented region Scmin

, corresponding
to the vertical objets, is overlaid in red and the segmented
free space region D is overlaid in green. The proposed
method allows obtaining quite good results, even if some
minor improvements could be made on the segmentation of
curbs and very bright objects. The quality of these results
can be compared with color based or stereovision approaches
[14]. The good point in our method is that we only use one
gray level image. However, it only works in daytime foggy
weather. The classical methods and the proposed one are
thus complementary. Second, we can take advantage of this
segmentation to compute a 3D model of the environment. This
is the topic of the next section.

Fig. 5. Sample result of flat world restoration. The intensity of vertical
objects becomes null in the restored image: (a) original image and (b) result.
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Fig. 6. Free space extraction of the road scene obtained thanks to the flat world restoration: (a) original images; (b) results of vertical objects segmentation
in overlaid red and free space segmentation in overlaid green.

D. 3D Reconstruction

The segmentation of the vertical objects gives a practical
solution to compute a simplified 3D model of the scene, which
constitutes the key point of the method. Indeed, it allows to
estimate the depth of the corresponding pixels (red layer in
Fig. 6, denoted Scmin

). In this aim, we test different values
of c, the parameter of the clipping plane, from the biggest to
the smallest one. We compute the corresponding depth map
dc using (18). We restore the vertical objects with respect to
this depth map and test if some pixels are saturated. If a pixel
is saturated for a given value of c, the depth of the above
pixels is set to the depth of the corresponding clipping plane,
i.e. λ

c−vh
. We keep the biggest value of c, which correspond

to the smallest depth leading to the saturation of the pixel.
The depth of the other pixels, i.e. the pixels which belong to
D and the sky, is set to dcmin

. This practical 3D model is
mathematically expressed by:

{

∄c ∈ [cmin, N − vh[, p ∈ Sc, d1(p) = dcmin
(p)

∃c ∈ [cmin, N − vh[, p ∈ Sc, d1(p) = dc∗
(20)

where dc∗ is defined by:

dc∗ = min
P∈Sc

c∈[cmin,N−vh[

dc (21)

Doing this, we build a 3D model of the environment. However,
this 3D model has two problems. First, the 3D model is locally
false. Indeed, some distances are overestimated since the depth
of the vertical objects is assumed to be the depth at which the
restored pixels becomes zero. Moreover, this depth depends
on the albedo of the objects in the road scene. To solve this
issue, we introduce a geometric constraint. Since we know the
depth of the pixels belonging to the road plane, we compute a
mean correcting coefficient ν to apply to the depth of the pixels
belonging to the vertical objects. This one allows reducing the
depth discontinuity along the border B between the free space
area D and the vertical objects Scmin

:

ν =
P

p∈D∩B
d(p)/

P

p∈Scmin
∩B

d(p) (22)

We then correct the depth of pixels belonging to Scmin
as:

{

∀ p(i, j) ∈ Scmin
, d2(p) = ν × d1(p)

∀ p(i, j) ∈ Scmin
, d2(p) = d1(p)

(23)

Second, depending on the step we choose to vary the value
of c from N − vh to cmin, the obtained 3D model may be
discontinuous. In this aim, we smooth the 3D model using a
Gaussian kernel to obtain a smoother 3D model:

∀ p(i, j) ∈ [0, N [×[0,M [, d3(p) = d2(p) ∗ Gσ (24)

where Gσ denotes a 2D Gaussian Kernel. Finally, we correct
the depth of the pixels which is higher than d∗ (see (16)):

∀ p(i, j) ∈ [0, N [×[0,M [, d2 > d∗(I), d3 = d∗(I) (25)

Some samples of the obtained 3D reconstruction are shown in
Fig. 7c. The albedo of the objects belonging to the road surface
does not influence the reconstruction of their depth since
we only use a geometric constraint. The depth of the clear
vertical objects may be not correct. However, the continuity
between the vertical objects and the free space area is corrected
thanks to (23). This type of 3D reconstruction is denser than
disparity maps obtained from dense stereovision approaches
[26]. Nevertheless, this 3D reconstruction is subject to the
ambiguity between white objects and fog. But this is not a
problem since this final 3D reconstruction is only used to
restore the image, as described in the next paragraph.

E. 3D Model Based Contrast Restoration

Based on (13) and the 3D reconstruction of the road
scene, the contrast of foggy images may be restored. We
thus maximize the contrasts of the road surface and of the
near vertical objects. However, it is not adequate to totally
restore the contrast, like [24] does, since it creates some visual
artefacts. It seems better, like in [13] and [25], to reduce
the contrast restoration rate. In this aim, we introduce a last
parameter ρ ∈]0, 1[ to control the strength of the restoration.
Based on (17), the final contrast restoration equation is given
by:

R = max
[

0, Ieβρd3 + A∞(1 − eβρd3)
]

(26)

To finalize the restoration, we lighten the image by a constant
factor equal to the difference of the means of the bottom third
of the images between the original and the restored image.
Indeed, the restoration process tends to darken the image. In
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Fig. 7. 3D model based contrast restoration results: (a) original images; (b) results; (c) estimated depth map; (d) contrast improvement gained by the method.

this way, we ensure that the original and the restored image
have the same look close from the camera, where the fog is
the less visible. Finally, apart from the fog input parameters
(A∞, β) and the camera calibration parameters, the proposed
contrast restoration method has only two parameters ρ and Gσ .
In the following section, we evaluate the performances of the
method. In particular, we study the sensitivity of the method
to some of these parameters.

Some samples of contrast restoration are shown in Fig. 7b.
To facilitate the comparison with the original images, these
ones have been added in Fig. 7a. On one hand, the obtained
images have their contrast largely improved where the objects
are located far away. In particular, the vehicles and the cyclists
are now clearly visible. On the other hand, the contrast is
slightly improved at a closer range, where there is less fog.
The next section of the article is dedicated to the assessment
of our method.

V. ASSESSMENT OF THE METHOD

To assess the performances of our method, we first propose
a methodology to quantitatively evaluate the restoration. We
then analyse the sensitivity of the method to the fog inputs
parameters and the method internal parameters. Finally, we
analyse the performances of the method by looking at the
computation time and by comparing our method with current
state of the art methods.

A. Quantitative Evaluation Methodology

To quantitatively assess and rate the contrast restoration
method, we use the method dedicated for visibility restoration
proposed in [11]. Stating that a contrast restoration algorithm
should create new visible edges, increase the contrast of
existing visible edges, and not create saturated pixels, this
method computes three indicators e, r̄ and s allowing to
compare two gray level images: the input image and the
restored image. The visible edges in the image before and
after restoration are selected by a 5% contrast thresholding.
This allows to compute the rate e of edges newly visible
after restoration. The maps of the ratio r of the gradients at
visible edges are shown in Fig. 7d for our algorithm. Then,
the mean r̄ over these edges of the ratio of the gradient
norms after and before restoration is computed. This indicator
r̄ estimates the average visibility enhancement obtained by
the restoration algorithm. At last, the percentage of pixels s
which becomes completely black or completely white after
restoration is computed. We propose to define an empirical
restoration score τ , which is given by the sum of the different
indicators.

τ = e + r̄ + 1 − s (27)

This τ indicator is helpful to plot the different indicators on a
single curve. Thanks to these different indicators, we are able
to assess the sensitivity of the method to its different inputs
and parameters and to rate the different existing methods with
respect to our method.
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Fig. 8. Sensitivity analysis of the contrast restoration method: (a) sensitivity
to the background sky intensity A∞, where the restoration score τ is plotted
with respect to A∞ value on sample images; (b) sensitivity to the fog density
β; (c) sensitivity to the parameter ρ.

B. Sensitivity Analysis

1) Sensitivity to Fog Input Parameters: Fog input param-
eters are (A∞, β). The sensitivity of the method to these
parameters is moderate but can not be neglected to optimally
run the algorithm. First, we studied the sensitivity to the
sky intensity A∞. Based on (15), τ should be an increasing
function of A∞. To confirm or not this assertion, we computed
τ for different values of A∞ on different sample images. The
resulting plot is given in Fig. 8a and confirms the relationship
which binds τ and A∞. Based on this result, we propose to
set A∞ = 2n − 1 for n bits images, i.e. A∞ = 255 in our
case.
We then study the sensitivity of the algorithm to the fog

density value β, which is provided by the fog detection
algorithm. In this aim, we computed τ for different values
of β on different sample images issued from the same video
sequence to have more or less the same fog density value
(β ≈ 0.06). The resulting plot is given in Fig. 8b. For small
values of the fog density, τ is quite small and increases rapidly
with respect to β until reaching a maximum value. This value
is roughly reached for the value of β provided by the fog
detection algorithm. However, this curve is flat around the

(a)

e He&al Tan Tarel&al Our
all 2.56 2.63 4.69 2.26

bottom 1.74 1.81 5.31 1.14
top 3.96 3.77 3.57 3.37

(b)

r̄ He&al Tan Tarel&al Our
all 5.43 6.08 10.62 2.8

bottom 2.24 2.06 11.06 0.23
top 14.5 18.43 11.49 15.24

(c)

s He&al Tan Tarel&al Our
all 0.03 0.015 0 0

bottom 0.025 0.03 0 0
top 0.016 0.001 0 0

TABLE I
MEAN INDICATORS e, r̄, s PRODUCED BY THE FOUR COMPARED METHODS

ON NINE IMAGES.

maximum value, which means that the sensitivity to the fog
density value is small. Indeed, the algorithm needs a correct
value for the product βd rather than a correct value of β. If
the value of β is too small, the algorithm compensates and
computes a bigger depth to saturate the intensity of the pixels
and vice versa. Indeed, only the value of βd is important for
the result of the contrast restoration. But it also means that the
3D reconstruction is correctly sealed if and only if a correct
value of β is used.
2) Sensitivity to the Method Parameters: The method has

two parameters, ρ and Gσ. To study the sensitivity of the
method to ρ, we used the same methodology than in the
previous paragraph. We thus computed τ for different values of
ρ on sample images. The resulting plot are given in Fig. 8c.
Based on these plots, we propose to set ρ = 0.8, the value
where the maximum is obtained. The computation of τ is
not relevant to study the sensitivity to the smoothing kernel
Gσ , since it does not change a lot the amount of contrast
restoration. We have tried different values of Gσ . We saw that
a too small value create a lot of visual artefacts around the
occluded edges. A too big value of Gσ reduces the precision
of the contrast method since the smoothing of the depth map
is too important. According to our experiments a value of Gσ

between 10 and 20 pixels is a good trade off for PAL images.

C. Performance Analysis

1) Comparison with other Methods: Based on the state
of the art, few methods can be compared with our method.
[24], [13] and [25] are generic enough and only need a
single grayscale image to run properly. We have selected
some relevant images to compare the methods. We have sent
these images to the authors of the different methods, which
have processed them before sending us their results. The
indicators e, r̄ and s are evaluated for Tan [24], He&al. [13],
Tarel&al. [25] and our method on nine images, see Tab. I.
Used parameters are ρ = 0.8, A∞ = 255 and Gσ = 20. To
see the behavior of the algorithms in the near range and the far
range, we have computed the indicators thanks to the entire
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(a) (b) (c) (d) (e)

Fig. 9. Comparison of the different contrast restoration methods: (a) original road images in daytime fog; (b) restored images by our algorithm; (c) He&al.
algorithm [13]; (d) Tan algorithm [24]; (e) Tarel&al. algorithm [25].

images, to the bottom third of the images and thanks to the
top third of the images.
Results on five images of the database can be seen in

Fig. 9. From Tab. I(a), we deduce that Tan, He&al. and
our algorithm create the same amount of new visible edges.
Tarel&al. algorithm create more visible edges.
From Tab. I(b), we can order the four algorithms in de-

creasing order with respect to average increase of contrast on
visible edges in the entire images: Tarel&al., Tan, He&al. and
our. This confirms the observations on Fig. 9. The results in
Tab. I(b) must be balanced. Indeed, if visibility restoration
algorithms must increase the contrast, they must not increase
the contrast where there is no fog. Tarel&al., Tan, He&al.
increase the contrasts in the bottom of the images where there
is less fog. Our algorithm almost does not increase the contrast
in the near range. Conversely, our algorithm restores the
contrast like the three other algorithms in the top of the images,
where it is the most important to restore the contrast for
intelligent vehicles. In this way, the restored images produced
by our algorithm appear more natural.
Tab. I(c) gives the percentage of pixels which become

completely black or completely white after the restoration.
Compared to others, our and Tarel&al. algorithms do not
create black pixels, contrary to He&al. and Tan algorithms.
2) Computation Time: The computation of the fog density

takes less than 10 ms in C++ using a 2.4 GHz Intel Core 2

Duo PC on 1/4 PAL images. On the same hardware platform,
the flat world restoration takes less than 5 ms, since it only
needs one single loop on the entire image, whereas the contrast
restoration takes 40 ms including the 3D reconstruction. Such
computation times are obtained using a few look-up-tables.
Consequently, the complete image processing framework takes
at most 60 ms per image. We are thus able to process 15
images per second. These results must be compared with
existing contrast restoration algorithms whose computation
times are given in minutes (see introduction), apart from [25].

VI. APPLICATIONS

In this section, we propose some applications of the pro-
posed contrast restoration algorithm: improvement of road
marking features extraction, improvement of camera-based
obstacle detection and improvement of circular road signs
detection. Indeed, these applications rely on gradients compu-
tation. Moreover, it allows estimating the mobilized visibility
distance in a very simple manner.

A. Road Marking Features Extraction

Road marking detection is a fundamental task to develop
camera-based driving assistances which aims at avoiding road
departure. Road marking feature extraction is the low level
processing of the road marking detection. A comparison of
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Fig. 10. Example of road marking features extraction enhancement: (a) road
marking features extraction on the original image; (b) road marking features
extraction on the restored image with the same parameters; (c) ROC curves
obtained after lane-marking extraction without and with different visibility
restoration algorithms. A ROC curve displays the True Positive Rate (TPR)
versus the False Positive Rate (FPR) for different values of the extraction
threshold.

the different existing algorithms has been proposed in [27].
According to this paper, the symmetrical local threshold filter
gives the best results. We applied this filter to the image
given in Fig. 10a and the restored version of this image
given in Fig. 10b with the same settings of the filter. We
can see an improvement of the detection range of the road
markings. Using the same images than in Sect. V-C1, the
ROC curves were computed without restoration and with Tan,
He&al, Tarel&al and our algorithms. Fig. 10c shows the slight
improvement obtained by Tan, He&al and our algorithms on
the lane-marking extraction.

B. Road Signs Features Extraction

In the same way, the detection of road signs may be
improved. Indeed, most approaches rely on symmetry de-
tectors, like the approach proposed in [2] and could benefit
from contrast improvement in the images. Based on a similar
approach proposed in [6], Fig. 11 shows the detection of
circular signs using a foggy image and a restored image.
Thanks to the restoration, five signs have been found whereas
none of them has been found using the original image. The
parameters of the detection method are the same in both cases
and set to typical daytime values.

C. Road Obstacle Detection

A review of existing methods for camera-based road obsta-
cle detection has been proposed in [23]. Weather conditions
reduce the operation range of most methods. Consequently,
contrast restoration may of course improve the operation range

of these methods. For example, corner extraction, gradients
extraction or texture classification are improved. On the other
side, the flat world restoration method presented in section
IV-B is able to segment all vertical objects (see Fig. 6),
among which the road obstacles. By merging the output of
this algorithm with existing obstacle detection techniques, road
obstacle detection in daylight fog may be largely improved.

VII. DISCUSSION AND PERSPECTIVES

A novel efficient algorithm for restoring the contrast of
foggy images grabbed by in-vehicle cameras has been pro-
posed. Based on this algorithm, we have shown that it is
possible to improve the reliability of camera-based driving
assistances in daylight fog. One key point of the process
is a monocular 3D reconstruction based on fog properties.
First, since this problem is ill posed, the proposed heuristic
might be wrong despite the use of (22), in particular on
bright objects like road signs or vehicle beams which are
not connected to the ground. The quantitative evaluation of
the proposed 3D reconstruction is difficult since we do have
access to the ground truth, apart from using synthetic images
which are generally less complex than actual images. Instead
of using such a 3D ground truth, we think that an interesting
alternative more related to our field of applications is to
assess quantitatively the gain procured by contrast restoration
algorithms on real applications like lane markings recognition,
where it is easier to build ground truth data (e.g. [27]).
Second, the method uses only one camera. It has the classical
limitations of a monocular method and may be not relevant
anymore in mountain areas. However, the proposed approach
can be extended to the use of stereovision, like it is suggested
in [10]. To go further, a temporal tracking of the contrast
restoration parameters may be added, as well as a more reliable
estimation of the horizon line. A fusion of Tarel&al. method
and of the here proposed method would also be profitable
so as to take advantages of both methods. We want also
to deal with the restoration of stereo pairs and with other
meteorological conditions such as rain. Finally, the extension
and the improvement of the objective criterion (27) on the
effectiveness of a contrast restoration algorithm are foreseen.

VIII. CONCLUSION

In this paper, a framework for restoring the contrast of
images grabbed from a moving vehicle has been presented.

Fig. 11. Example of circular road signs detection improvement [6]: (a)
original image; (b) restored image. The symmetry centers are marked with a
red cross.
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We first estimate the weather conditions and then we infer
the scene structure which is refined during the restoration
process. Due to our application context, the initial structure is
based on a flat world assumption merged with depth heuristics
to reconstruct the rest of the 3D environment, from which
contrast restoration is performed. Results are assessed by
measuring the visibility level enhancement gained by the
contrast restoration algorithm and by analyzing the sensitivity
of the algorithm to its parameters. A quantitative comparison
with current state of the art is carried out. Finally, applications
to the improvement of road markings, road signs and obstacle
detections in daytime fog are shown. To conclude, perspec-
tives are given to pave the line to new contrast restoration
approaches.
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