
 

 

 

Abstract 
 

Driver assistance systems based on camera are strongly 

disturbed by the presence of foggy weather. The 

restoration of images, as pre-processing, would improve 

the performances of such systems. In this paper, we 

propose a method to restore the image contrast of foggy 

road scenes combining a physical approach, based on 

Koschmieders model and a signals approach, based on 

local histogram equalization. Then we optimize the 

parameters of our method using a simulated annealing. 

This method, evaluated on a reference image database, 

presents a significant improvement compared to other 

methods and gives consistent results for both 

homogeneous and inhomogeneous fog.  

 

1. Introduction 

Recent developments in image processing and 

electronics induced a strong increase of the number of 

Advanced Driver Assistance Systems (ADAS) based on 

on-board cameras which equip recent vehicles. Their 

applications are numerous: detection and recognition of 

road signs, lane markings and obstacles. In the presence of 

fog, the road visibility distance decreases considerably, 

which increases the risk of accidents. Similarly, because of 

degraded visibility conditions, ADAS based on camera 

could give erroneous results. It may generate false alarm to 

the driver or misinterpret a dangerous situation. 
 

 

 
In this work, we focus on images degraded by foggy 

conditions during day time. During the last 10 years, 

several methods have dealt with this subject. In this paper, 

we propose a two-stage procedure, presented in Figure 1: 

visibility condition detection then contrast restoration.  

The detection is done using the approach proposed by 

Hautière et al. [4]. 

 

The contrast restoration stage aims to provide for the 

ADAS an improved image where the impact of the fog is 

strongly diminished. 

 

Contrast restoration in real time allows extending the 

operating range of current vision systems and thereby 

potentially reducing the number of accidents. It also meets 

the economic dimension which is to reduce the cost of 

embedded systems by integrating several functions into a 

single sensor.  

 

Contrast enhancement techniques are numerous [5, 6, 

16]. However, the effect of the fog reduces the contrast of 

observed objects as a function of the distance to the 

camera. Thus, conventional techniques do not provide 

satisfactory restorations, because they cannot take into 

account distance variations existing in the scene. More 

recently, methods dealing with foggy image restoration 

rely on the physical model of Koschmieder [9]. This model 

establishes a relationship between apparent luminance and 

intrinsic luminance of an object in a scene with fog. This 

model has four unknowns: the intrinsic luminance, the sky 

luminance, the fog density and the object-observer 

distance. Therefore, we have a single equation with four 

unknowns; the problem is ill-posed. In order to overcome 

this problem, [7] and [11] use approximate 3D model. [10] 

uses several images taken under different visibility 

conditions. Some approaches make assumptions about the 

scene: constraints on image hue [14], on transmission [1], 

on image statistics [2]. In the state of art, other methods 

are dealing with dehazing [8, 12, 13]. However, they are 

generally not suitable to ADAS images [15] for two 

reasons: they are not real time or they do not take into 

account the context of the road (road surface, lane 

marking, and road signs).  

 

Relying on the method proposed by [4] to segment road 

surface vertical objects, we present in this paper, a new 

approach for the restoration of vertical objects. It 

combines a physical approach, based on Koschmieders 

Figure 1: Global scheme of proposed approach. 
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model and a signal based approach, relying on local 

histogram equalization. 

 

The article is organized as follows. In section 2, the 

physical model of fog is introduced. In section 3, we 

present the different steps of our contrast restoration 

method: detection of vertical objects, evaluation of their 

intrinsic luminance by local histogram equalization and 

estimation of the scene depth map. In section 4, the 

parameters are optimized and their sensitivities are 

studied. In section 5, we evaluate the performance on an 

available image database in comparison with other 

methods.  

2. Physical model of fog  

The fog is constituted of small water droplets floating in 

the air that scatters the light: Koschmieder's Law [9]. 

During day time, two effects are combined: (1) the 

intrinsic luminance of an object decreases exponentially 

with the distance to the observer, (2) the contribution of 

the atmospheric luminance increases exponentially with 

distance: 
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With I the apparent luminance of an object, I0 its intrinsic 

luminance, Is the atmospheric luminance which correspond 

to the luminance of the sky, d the distance between the 

object and the observer and β the extinction coefficient of 

the atmosphere. Assuming that the camera has a linear 

response, we can apply the equation (1) directly to pixel's 

intensity.  

 

 
 

The Figure 2 illustrates the principles of light scattering by 

daytime fog. The radiance R corresponds to I0, the direct         

transmission is the first term of the equation (1) and the 

airlight is the second tem of this equation. 

 

 

The restoration formula is given by inverting this model: 
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This model does not apply to daytime scenes containing 

any bright object, because it does not take into account the 

artificial light and the halo effect. 
 

3. Method 

Figure 3 shows the different steps of our algorithm 

described in this section. 

3.1. Fog characterization and vertical objects 

segmentation 

The method introduced by [4] allows both the fog 

characterization and the vertical objects segmentation. 

First the extinction coefficient β is estimated by using 

equation (1) and searching the inflection point on the 

intensity with respect to the image line [4]. The depth map 

of the road surface, assumed flat, is estimated using the 

camera parameters. In this approximate depth map, the 

distance of vertical objects is overestimated.  

 

The equation (2) shows that, due to this overestimation, 

the estimated intensity Io tends towards zero exponentially. 

Thus, it allows the segmentation between road plane and 

vertical objects.  

 

 

 

 

 

 

 

 
 

Figure 4 shows an example of restoration and 

segmentation. The road surface is nicely restored using 

this approach. In the rest of the paper, we will focus on 

restoration of objects above the road plane. 
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Figure 3: Different steps of our approach. 

Figure 2: Scattering of light by daytime fog. 

 

 

 

 

Figure 4: Original image, restoration using planar assumption 

and segmentation result.  

 

 

 

 

2058



 

 

3.2. Histogram equalization 

The local histogram equalization is used to provide a 

first estimation of the intrinsic luminance image. It 

enhances contrast locally and uniformly across the entire 

image. Thus it mitigates the fog effect by making all 

details in the image visible (see Figure 5.b). 

 

 
Histogram equalization distributes the intensities of 

pixels over the entire range of the histogram or on a certain 

interval, thereby increasing the contrast of the image. 

Figure 6 illustrates its principle: first the normalized 

intensity distribution function is calculated, and then 

applied on the image histogram in order to spread it 

uniformly. 

 

 

 

 

 

 

 

 

 

In case of foggy images, the local histogram 

equalization is done on a partition of the image into small 

windows of size 3*3. For each window, the eight 

contiguous blocks are taken into account to calculate the 

function. It reduces the final difference in intensity 

between neighboring blocks in the restored image. This 

operation is then performed on 81 pixels (9 blocks) and 

only the central block is modified. We apply the additional 

constraint I0<I resulting from equation (1 with the 

additional constrain that the sky is the brightest area in 

outdoor scenes (I0<Is). Therefore we apply equalization 

between 0 and the maximum of intensity for the central 

block. 

 

When the area to process is uniform, the equalization 

does not modify this area (such areas have no interest 

because they are containing no information). 

 

On the contrary, when we have areas with texture, the 

equalization will depend on neighboring blocks: two 

blocks having the same texture but different contiguous 

blocks will not be identically restored because the shapes 

of their normalized intensity distribution function are 

different. This generates blocks effects that are attenuated 

in the following (Section 3.5) by the smoothing of the 

depth map. 

 

To reduce the processing time, color images are 

converted in Lab color space and the equalization is 

performed only on the luminance component (one channel 

instead of three). Indeed, the equalization step is the most 

time consuming in the overall process.  

3.3. Intensity adjustment 

Histogram equalization restores details that were barely 

visible in the foggy image. However, it strongly modifies 

the image dynamic range, providing intensity values from 

0 to the maximum of I. Therefore, the dynamic is adjusted 

by a simple affine transformation "a * Iequalized + b". The 

constants a and b are optimally chosen (a = 0.2 and b = 

40) using simulated annealing (see Section 4.2). Figure 5 

shows the equalized images before and after dynamic 

range adjustment.  

3.4. Approximate depth map 

From equation (1), we derive an expression for the 

distance of each pixel depending on images I and I0 with 

and without fog, the intensity of the sky Is and the β 

coefficient:

 

   

 

                                        (3) 

 

By replacing, in equation (3), I0 by the result of the 

histogram equalization, an approximate depth map of the 

scene is obtained (Figure 7). 

 

Note also that the estimation of β is only required to 

perform the restoration of the road plan. To restore vertical 

objects, instead of estimating a depth map, we could 

estimate a t map, with t = β * d.  

 

 
 

If the planar assumption method does not provide a 

good estimation of the coefficient β, we can apply our 

(a)                               (b)                                (c) 

Figure 5: original image (a), equalized image (b) and image after 

intensity adjustment (c). 

 

 

 

 

Figure 7: Estimated depth map (m). 
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Figure 6: Original histogram, normalized intensity distribution 

function and histogram equalized uniformly.   
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algorithm on the entire image. This may occur when there 

are many obstacles on the road. 

 

In the case of color images, we apply the equation (3) 

on each channel, obtain three depth maps and choose d as 

the minimum of the three maps.  

3.5. Smoothing 

The obtained depth map is affected by block effect due 

to the local equalization (Figure 7). This is attenuated by 

an adapted smoothing filter. 

 

A Gaussian filter with a large size compared to the 

window equalization, here 11*11, is applied to 

homogenize the depth of large objects. However, around 

objects borders, depth values are false: depth of the most 

distant objects is spread inside of closest object and vice 

versa. It generates dark (respectively clear) area in restored 

image according to equation (2) (see Figure 8.a). Applying 

a Sobel filter to the restored image allows us to detect the 

gradient maxima that correspond to boundaries between 

objects. By dilating these edges with half of the Gaussian 

size, we detect area where the depth is misestimated (see 

Figure 8.b). We apply a second smoothing using a 

Gaussian filter of size 3*3. The final depth map for pixels 

in this area is a combination of both filtered depth maps: 

2*)1(1* ddd           (4) 

 

With δ the normalized distance between pixel and the 

edges, d1 the depth map obtained with the Gaussian filter  

of size GS1=11 and d2 the depth map obtained with the 

Gaussian filter of size GS2=3.  

 
Finally, the restoration is performed using this depth 

map with the equation (2) (Figure 8.c). 

3.6. Depth map mixing 

The depth map could be mixed with the depth map of 

the road surface, assumed flat, evaluated in a previous step 

(Section 3.1). In this case, we apply the distance d only for 

vertical object, segmented during the same step. 

 

The final restoration using this mixed depth map is 

called “with planar assumption” in the following. 

4. Parameter optimization and sensitivity 

study 

4.1. Database 

Since it is difficult to obtain the same road image with 

and without fog, a database of synthetic images containing 

66 color images of different scenes (city, highway, rural) 

was produced by [15]. Thanks to the access to depth maps, 

using the Koschmieders model four different types of fog 

were added to images: uniform, variable sky intensity, 

variable fog density and variable sky intensity and fog 

density. 

 

Note that for the optimization of parameters and the 

sensitivity study, only uniform fog images are used. 

However the whole database is used to compare our 

approach with other restoration methods in section 5.2. 

 

The metric used to calculate the error is the sum of 

absolute differences between pixel values of the restored 

image and the reference image without fog, without taking 

into account the sky to avoid biased results.  

 

Let's recall the parameters of our algorithm: WS the 

window size of equalization, a and b the coefficients 

allowing the intensity adjustment of the equalized image 

and GS1 and GS2 the size of the large and small Gaussian 

filters, respectively. GS2 size is fixed to 3 in order to 

recover the small details. 

4.2. Simulated annealing 

In order to find the best combination of parameters, we 

have extracted, from the database, 5 representative images 

with uniform fog. On these 5 images, we have applied a 

simulated annealing. 

The simulated annealing is an iterative optimization 

algorithm for finding the global minimum of a function. In 

our case we seek to minimize the average error between 

the 5 restored images and the corresponding original 

images without fog.  

 

The principle is the following: at each iteration a new 

set of parameters is randomly generated in the 

neighborhood of the last selected parameters. This set is 

used to perform restoration and the error is compared to 

the best error previously found. The set is selected in two 

cases: (1) if the error decreases. (2) To avoid that the 

algorithm converges to a local minimum, larger errors are 

accepted in a random manner, according to a variable 

called "temperature" that decreases at each iteration 

(cooling cycles): the greater is the error the lesser the set 

are selected. Then it reiterates. Finally, if the algorithm 

(a)                                (b)                               (c) 

Figure 8: restoration using d1, segmentation of misestimated area, 

final restoration using d.  
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Figure 9: Sensitivity to WS and GS1. 

 

 

 

 

keeps the same parameter set after several consecutive 

iterations it is stopped. By running simulated annealing 

with our algorithm, we get the best score for the 

parameters presented in table I. 

  
Parameter WS GS1 a b 

Value 5 15 0.2 40 

Std 0.55 0.51 6.22 2.32 

Table I: Best parameters determined by simulated annealing. Std 

corresponds to error standard deviation among the 66 images. 

 

The values of WS and GS1 to which the simulated 

annealing converges, may be explained by the following 

remarks. The distant objects are strongly affected by the 

fog. Because their pixel size is small, a small WS size 

leads to a better restoration of their contrast. Similarly, the 

details of near objects (such as road signs) will be better 

restored with a small WS. The parameter GS1 must be 

larger than WS in order to achieve the best 

homogenization of the depth map for large object.  

4.3. Sensitivity study 

To perform the sensitivity study, one of the parameters 

varies when others are fixed. The average error is 

calculated over all 66 images with uniform fog from the 

synthetic database. The results are shown in figures 9 and 

10. 

We observe in Figure 9 that the method is not very 

sensitive to changes in WS and GS1 (the error is in the 

range 22 to 24). We have set the values of these 

parameters to WS =5 and GS1=11. On the contrary, Figure 

10 shows that it is very sensitive to changes on coefficients 

a and b. Values of a = 0.2 and b = 40 give the best results. 

 

As explained above, the method without “planar 

assumption” is insensitive to β, because it only depends on 

the product β*d. Thus, we studied the sensitivity of β for 

the method with "planar assumption". As shown in [4] the 

parameter β is inversely proportional to the distance of 

visibility Vis, we chose to work on visibility rather than β. 

In Figure 11, we have plotted the error according to Vis. 

This curve presents a minimum at 80m., which 

corresponds to the chosen visibility in synthetic images. 

We observe that the method is quite sensitive to changes in 

Vis. 

 

For very small values of Vis (less than 40m.), the error 

decreases. This comes from the fact that the road surface 

restoration is very sensitive to Vis. However, when 

decreasing Vis, a larger part of the image is classified as 

vertical object during the segmentation step. Thus, a 

smaller part of the image is restored using the wrong 

estimated value of Vis. The rest of the scene is restored as 

vertical objects and is less penalizing by an incorrect value 

of Vis, because it is compensated by an incorrect, but 

proportional, estimation of the depth.  

 

 
 

 
 

 

5. Results 

5.1. Qualitative results on synthetic and real 

images  

 

The Figure 12 shows the restoration results on synthetic 

images using the presented method with the planar 

assumption.  

 

We see that using our approach without planar 

assumption (2nd column in Figure 12), the lane markings 

are over-restored. This is due to the fact that the lane 

markings have a white color. Thus the equalization 

operation increases their contrast as if they were distant 

objects. To circumvent this problem, the combination with 

the planar assumption (3rd column in Figure 12) produces 

a very nice restoration of these areas. It emphasizes the 

interest of the combination with planar assumption on 

typical road images. 

 

Figure 11: Sensitivity to visibility. 

 

 

 

 

Figure 10: Sensitivity to a and b. 
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Other applications where we do not have access to 

camera settings are presented in Figure 13 and 14. Our 

approach without planar assumption still provides good 

results, for both grayscale and color images. It shows that 

the contrast restoration is increasing details that are barely 

visible in foggy images.  

 

Fig 14 displays some unrealistic colors. They results 

from the atmospheric light Is of the observed scenes that is 

not white (contrary to the synthetic image where Is equals 

to 255 on each RGB channels). A solution could be to 

operate a white balance on input images, in order to obtain 

a white sky. However, as our method is focused on ADAS, 

the objective is not to obtain images with the best visual 

appearance but rather to provide ADAS with an image 

containing as much information as possible. 

 

 

5.2. Quantitative results on synthetic images 

In order to evaluate our results, we compare the 

restoration errors obtained by other approaches on the 

synthetic database (cf. Section 4.1). This evaluation is 

presented in table II, for the 4 types of fog. The error 

Figure 11: Results of restoration on synthetic images. Original 

image, restoration using our method and restoration using the 

combination with planar assumption. 

 

 

 

 

Figure 14: Results of restoration on real color images without 

planar assumption. 

 

 Figure 13: Results of restoration on real grayscale images.  
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values of other approaches were extracted from [15]. We 

evaluated the two versions of our method (with and 

without "Planar Assumption"). The chosen parameters 

correspond to those determined by simulated annealing for 

uniform fog (Table I). 

 

Table II: Comparison of restoration methods. Mean absolute 

difference between restored images and original images without 

fog, for the 7 compared algorithms and for 4 types of fog.  

 

 

The obtained result clearly shows that our method 

outperforms all existing restoration approaches, regardless 

of the nature of the fog (homogeneous or inhomogeneous). 

The error decreases of at least a factor of 12% in 

comparison with the best available result.  

 

It shows that using or not of the “planar assumption” 

gives equivalent results. The “planar assumption” provides 

better results when Is is constant. However, the restoration 

of the road surface is degraded by the “planar assumption” 

when Is varies. This comes from the fact that the model 

used for the restoration is not valid for this type of fog.  

 

The method FSS in Table II is a variation of the “planar 

assumption approach” [3]. We can see the improvement 

that we have made to this method by combining it with our 

approach. 

6. Conclusion 

We have proposed a method for restoring the contrast of 

road images taken in fog. The originality of our method 

lies in the combination of a physical approach, based on 

Koschmieders model and a signals approach, based on 

local histogram equalization. The evaluation of our 

algorithm on 66*4 synthetic images with various types of 

fog shows that our algorithm outperforms all existing 

restoration method. 

 

To validate the choice of using or not the “planar 

assumption” in combination with our method, we plan to 

test the restoration on advanced driving assistance system. 

Depending of the improvement of the system behavior, we 

will select the best configuration of the final restoration 

method.  
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      β 
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      Is 
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  β & Is 
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MSR [5] 

CLAHE [16] 
DCP [2] 
FSS [3] 

NBPC [15] 
NBPC+PA[15] 

Our 
Our + PA 

81.6±12.3 
46.7±16.3 
66.9±10.7 
46.3±15.6 
34.9±15.1 
50.8±11.5 
31.1±10.2 
30.9±11.1 
29.6±11.3 

78.7±12.3 
86.4±24.7 
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50.5±11.5 
36.0±10.3 
25.9±7.1 
24.0±7.7 

69.0±10.9 
44.8±17.1 
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32.5±11.4 
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25.2±6.2 

73.9±13.2 
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60.1±10.9 
45.2±16.7 
36.3±13.1 
44.5±12.1 
30.6±8.9 
26.1±8.3 
26.1±8.1 
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