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Abstract— We investigate the scenario of a vehicle equipped
with a camera and a GPS driving on a road whose 3D map is
known. We focus on the case of a road under fog or/and snow
conditions. The GPS is used to estimate the vehicle pose and
yaw and then the 3D road map is projected onto the camera
image. The vehicle pitch and roll angles are then refined by
fitting the projected road to detected road markings. Finally,
we discuss the pros and cons of the obtained road registrations
in the images and of the vehicle pitch-roll estimates, with respect
to the vehicle dynamics and the driving environment, in adverse
weather conditions.

I. INTRODUCTION

Advance Driver Assistance Systems (ADAS) are designed
to enhance safety and traffic flow. The most widely used type
of ADAS is in-vehicle navigation system: it typically uses
a GPS receiver and a digital map to indicate the location
and path of the vehicle. However the GPS only delivers the
vehicle position. The vehicle pitch can be estimated using
a two antenna GPS at the vehicle front and rear [1]. With
the same approach, the complete estimation of the vehicle
altitude requires a three antenna GPS.

Complementary navigation sensors such as odometers,
accelerometers and gyroscopes, are commonly used to per-
form the dead reckoning task. They constitute the inertial
measurement unit IMU [2] and provide first or second-
order derivative of the position and attitude (yaw, pitch and
roll) of the vehicle. Except for the inertial sensors used in
missile, aircraft or submarines, which have high cost, size
and power consumption, the IMU sensors (MEMS based)
are not accurate and they are sensitive to car vibrations.
The downward and sideway velocity components cannot be
neglected and cause biases on the pitch and roll angles that
can be filtered with a vehicle model, as used in Inertial
Navigation System (INS). This kind of system is sensitive
to motion model uncertainties. Moreover, inertial sensors
cannot be used for trajectory forecasting at long distance or
when the road shape varies rapidly (turns, road bumps . . . ).
In our approach, no information about the vehicle model and
no assumption on the vehicle motion are used.

Detecting the road ahead of a vehicle is crucial to assess
the degree of conformity of information regarding the posi-
tion and velocity provided by the navigation system. Road
following systems use active (laser and radar) or passive
(camera) sensors [3]. Laser and radar are useful in rural areas
to find road boundaries but fail on multi-lane roads. Another
issue is that the radar energy can be reflected by objects
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that can be overridden safely like a metal plate or a Botts’
dot on the road. To solve this difficulty, [4] combines the
structure map extracted from a single plane scanning radar
with an occupancy map deduced from a monocular camera
data (feature detection and tracking), to estimate the road
boundaries. When the road has no other physical bound than
white stripes this approach is not relevant.

A monocular camera pointing at the scene in front of the
vehicle is a very informative source. Algorithms developed
to estimate the lane position usually detect lane features
to which a road model is fitted. The road model can be
a polyline or a parametric function such as a polynomial
approximation, see for instance [5], [6], [7]. However, the
vehicle attitude cannot be obtained without ambiguity using
a single camera. Knowledge on the road are required, for
instance the road width. With two cameras, stereovision can
be used to estimate the road shape as well as the vehicle
attitude [8], [9]. This kind of approach, relying on cameras,
is subject to the occlusion problem: it could be greatly
improved by the a priori knowledge of the map of the road
viewed by the camera, typically with a map and a GPS.

More recent approaches assume the road network has been
surveyed accurately beforehand. In [10] a digital map of the
road is merged with data from a RTK-GPS, an odometer
and a gyrometer to extract the modeling in clothoids of the
road. The map is used as a geometrical constraint in the ego-
positioning of the vehicle and for map-matching purposes.
In [11] a loosely coupled GPS/INS system is used with a
camera to estimate an accurate vehicle localization, its lateral
and longitudinal position and its yaw. The map is made of
polylines and area information divided into three classes (line
landmark, road surface and background). This approach can
estimate the vehicle localization and its yaw, even if the road
boundaries are not precisely localized, but not its pitch and
roll.

In [12] a numerical map, a GPS and a color camera
are used to detect the road boundaries. The road skeleton
is modeled as junctions of connected piecewise continuous
lines. The road model is made of a drivable area and two
road sides. Consecutive positions of the vehicle are used to
estimate the vehicle orientation and position in the current
frame. Knowing the vehicle yaw, the road map is projected
onto the image. The road borders detection is refined using a
color model of the road image and the road width extracted
from the map attributes. The initial stage of road map
projection in the image is the same as the one proposed in
the present paper. The improvement over the second stage is
that it uses lane markings in gray scale images and explicitly



incorporates the road bank and pitch (and thus does not
assume a planar movement of the vehicle) and is able to
estimate vehicle roll and pitch.

The remainder of the paper is organized as follows.
Section II presents the digital 3D road map characteristics,
the vehicle apparatus used and how the map points are
projected onto the image plane. Section III describes the
estimation of the vehicle yaw from the GPS data, and of
the road bank and slope from the 3D road map, knowing the
current position of the vehicle from the GPS. The process
of map registration in the image by way of a distance
transform to the extracted lane marking elements is explained
in section IV. An estimation of the vehicle pitch and roll
angles is deduced from this registration. In section V, thanks
to the introduction of an image ground-truth, the accuracy
of the road lanes registration in the image is evaluated by a
mean distance to the reference. The accuracy of the results
is evaluated on real data from a test track, under adverse
weather conditions.

II. EUCLIDEAN TRANSFORMATION FROM WORLD TO
CAMERA FRAME

A. Digital Map Description

(a) (b) (c)
Fig. 1. Knowing the 3D topography of the road (a), the GPS coordinates
of the vehicle (b) and the camera calibration, the pan-tilt-roll angles of the
camera are estimated and the 3D points of the road map are projected in
the image (c).

The Satory test road (France) is a 3.5 km track the 3D
topography of which was accurately measured by profes-
sional land surveyors. Points along the road were accurately
georeferenced: along each section of the 2-lane road a triplet
of points is measured, one point for each of the three lines
drawn on the road, as shown in Fig. 1(a). The red and the
blue lines define the borders of the road, while the green line
shows the middle of the road, see Fig. 1(b).

The map is made of 380 triplets of 3D points which makes
a total of NMap = 1140 points. This set is named SMap in
the following. A feature point Pk ∈ R3 of SMap is indexed
by an integer k ∈ [1, NMap].

B. In-Vehicle Apparatus

The experimental setup includes a Real Time Kinematic
(RTK) GPS system and a camera, both mounted on a Peugeot
307 car. The camera framerate is 25Hz while the GPS
frequency is ≈ 20Hz: data are timestamped in order to
be associated. The GPS is slower than the image grabber:
a lag in the data recording process induces a positioning
imprecision growing with the vehicle speed. Therefore, the
estimation of the vehicle yaw needs some data filtering:

this stage is explained thereafter in this paper. The camera
provides quarter PAL 384 × 288 grayscale images. The
relative position between the GPS and the camera were
accurately measured.

GPS data are Cartesian coordinates expressed in the same
world frame <0 as the 3D road map points.

C. Pinhole Camera

In order to project a point P of the real world onto
the image plane, three reference frames are introduced: the
world frame is denoted <0, the GPS frame <gps, and the
camera frame <cam. The image plane is referenced by two
coordinates (u, v) where (0, 0) is the top left corner of the
image. The camera center Ocam projection in the image
plane is denoted (u0, v0). In the case of a pinhole perspective
camera model, the projection of P in the image plane is the
point IP = (uP , vP ) with the following coordinates:

IP = (uP , vP ) with

{
uP = u0 − λx

camyP
camxP

vP = v0 − λy
camzP
camxP

(1)

where f , λx = f/∆x and λy = f/∆y are the camera
intrinsic parameters, and coordinates of P in the camera
frame are camP = (camxP ,cam yP ,cam zP ).

The camera has no pan nor roll and a fixed tilt θcam0

with regard to the vehicle axis: it is the angle between the
Xgps and Xcam axes (rotation about the Ycam axis). The
transformation between <gps and <cam frames also includes
the translation from Ogps to Ocam which is estimated with
a centimeter accuracy.

The transformation between the GPS frame and the world
frame involves three angles: ψ for yaw, θ for pitch, φ for roll,
and a translation vector. The vehicle position is expressed in
<0 as: Ogps =

(
0xgps,

0 ygps,
0 zgps

)
. The roll is the sum of

the road bank φ0 and of the vehicle roll φV , the pitch is the
sum of the road slope θ0 and of the vehicle pitch θV .

III. ESTIMATES FROM THE GPS AND THE 3D MAP

A. Estimation of the Vehicle Yaw

The yaw ψ is estimated at current time t0 using the
vehicle trajectory. As mentioned in [13], the imprecision
of the yaw estimated using a first order derivative (i.e.
Ogps(t0) − Ogps(t0 − 1)) of the GPS data can lead to an
imprecision of 1 radian. To avoid this level of inaccuracy,
the vehicle yaw is filtered over N0 previous GPS points.

Let Ft0 be the set of the N0 = 15 GPS points prior to
time t0 after projection on the horizontal plane of <0. To
filter out the GPS noise, a second degree polynomial fitting
is performed on the subset Ft0 .

Let us denote
(

0x, 0y
)

the coordinates of the mean point

of Ft0 . Denoting the best polynomial fit as y(x) − 0y =

a
(
x− 0x

)2

+ b
(
x− 0x

)
+ c, then the yaw angle at time

t0 is defined as:

ψ = tan−1
(

2a
(

0xgps(t0)− 0x
)

+ b
)

(2)



Fig. 2. The 3D map is made of bands, each band is made of 6 vertices
(yellow circles) and 4 triangular faces. The road slope and bank angles are
computed from the normal vector n.

B. Estimation of the Road Slope and Bank

Both angles are calculated using the 3D road map. The
sampled points are drawn as yellow circles in Fig. 2. Let us
assume the vehicle GPS position is over a triangle AB0B1

where B0B1 are two adjacent points of the same line of the
road. One can compute the normal vector of the AB0B1

triangle as the cross product n = B0B1 ∧B0A. Let us call
Bxy the orthogonal projection of B0B1 on the horizontal
plane of <0:

Bxy =
(
0xB1 −0 xB0 ,

0yB1 −0 yB0 , 0
)t

(3)

and let np be the orthogonal projection of n on the
(Z0,Bxy) vertical plane containing the B0B1 segment. We
set k0 as the unitary vector along Z0 axis. As shown in Fig. 2
right, φ and ψ angles are the oriented angles ∠ (np,n) and
∠ (k0,np) respectively. Therefore, one can compute the road
bank angle in <0 as:

φ0 = sin−1

(
n · (Bxy ∧ k0)
‖n‖ ‖Bxy‖

)
(4)

and the road slope as:

θ0 = − tan−1

(
n · (Bxy/ ‖Bxy‖)

n · k0

)
(5)

IV. ROAD MAP REGISTRATION IN THE IMAGE

A. Lane Marking Elements Extraction

The best extraction algorithm of lane marking elements
from [14] is applied on the image, followed by a skeletoniza-
tion to obtain lane markings centers. Fig. 3(b) shows the
detected pixels (black pixels) from the image in Fig. 3(a).
The road map data is projected in the image with the road
slope θ0 and bank angle φ0 estimated at the current position
Ogps and with the estimated vehicle yaw ψ. This projection
is drawn in dotted line in Fig. 3(b): one can notice the gap
between the projected map and the reference lanes positions.
To evaluate the additional vehicle pitch θV and roll φV , the
3D road map is projected on the image and registered on the
extracted lane marking elements.

B. Distance Transform

The distance transform [15] to the set of lane markings
centers is computed, as shown in Fig. 3(c). The used distance
in the distance transform is the L1 or city block distance.
The result of the distance transform is stored in an image

denoted DT hereafter. The top and bottom of the image are
removed so as to discard the vehicle and the top of the sky.

C. Optimization Criterion

A Chamfer matching is done using the DT image as
a potential energy to be minimized, see Fig. 3(d). The
coordinates of the projection in the image of the points of
SMap depends on the Euler angles (θ, φ, ψ). Let us consider
a line segment [Pk Pk+1] of the 3D map. Its projection in
the image is the line segment

[IPk IPk+1

]
. Points along

all visible line segments are sampled. This set is denoted
IL (θ, φ, ψ):

IL (θ, φ, ψ) =
{IM ∈

[IPk IPk+1

]
, Pk, Pk+1 ∈ SMap

}
(6)

The Chamfer matching consists in finding the minimal mean
distance between the projected lanes and the lane centers
extracted in the image. The score function is thus defined as
follow:

S (θ, φ, ψ) =
1

Npts

∑
IM∈IL

DT
(IM) (7)

where Npts = Card
(IL (θ, φ, ψ)

)
.

At current time t0, the vehicle yaw ψ is estimated as
explained previously. To simplify the presentation, we here
consider that the estimated yaw is valid and does not need
any refinement. This assumption is questionable but may be
easily relaxed. Under this assumption, the score S reduces
to a function of θ and φ. We recall that the road slope and
bank angle are respectively θ0 and φ0. The calculation of
S (θ, φ) is performed in a neighborhood of these two values:

θ ∈ [θ0 − αmax, θ0 + αmax] (8)
φ ∈ [φ0 − αmax, φ0 + αmax] (9)

with αmax = 6◦ in our experiments.

D. Estimation of the Vehicle Roll and Pitch

Fig. 3(e) shows the values of S (θ, φ) around (θ0, φ0)
where warm colors correspond to high values and cold colors
to small values. The vehicle pitch θV and roll φV at time t0
are then deduced from the location of minimum of S after
discretizing roll and pitch:

(θV , φV ) = arg min
θ,φ

S (θ0 + θ, φ0 + φ, ψ) (10)

The uncertainty about these two estimates can be obtained
by the quadratic modeling of S in the neighborhood of the
minimum location.

For example, at point A of the test track of Fig. 5, the
slope and bank angles are (θ0, φ0) = (−1.7◦, −2.9◦).
At point A, Fig. 3(d) plots on the DT image the pro-
jected lanes IL (θ0, φ0) in dotted lines. The mean distance
tranform value is L1 = 18.1 pixels. The resulting lanes
IL (θ0 + θV , φ0 + φV ) after minimization of S are at a mean
distance of L1 = 6.1 pixels to the extracted road marking
elements. The set IL (θ0 + θV , φ0 + φV ) is plotted as solid
lines on Fig. 3(d). The minimum is achieved for (θ∗, φ∗) =
(1.9◦, −5.9◦) so that (θV , φV ) = (3.6◦, −3◦). The vehicle



(a) (b) (c) (d) (e) (f)
Fig. 3. (a) Source image. (b) Lane marking detection in black, projected road map in the image (dotted lines) knowing the GPS position of the car.
(c) The distance transform displays the distance from each pixel to the closest marking pixel. (d) Distance transform shown using a colormap which is
decreasing from red to blue. The gray lines are the road lanes registered after minimization of the mean L1 distance. (e) The mean L1 distance as a
function of pitch θ and roll φ angles. The location of its minimum is used to estimate the vehicle pitch and roll. (f) Dashed lines are the initial road lanes
projection, the solid lines are the results after lanes registration.

pitch and roll are particularly high at this point A of the
circuit, due to entering into a hairpin turn with high speed.

Fig. 3(f) shows the result of the road lanes registration
on the source image at point A. The initial location of the
lanes is plotted in dotted line. The final location obtained
after optimization of S is represented by the solid lines. The
ground-truth is plotted as yellow segments. The mean dis-
tance DGT between the projected lanes IL and the ground-
truth is initially DGT (θ0, φ0) =12.6 pixels and is reduced to
DGT (θ∗, φ∗) = 4.3 pixels after S minimization.

V. EXPERIMENTAL RESULTS

The GPS and camera data were acquired on a portion of
the Satory test track, as shown in Fig. 5, and contains various
and typical situations such as straight portions, sharp turns
or S-shape bend, and road bumps. A few interesting points
are used to illustrate the obtained results, they are labeled by
letters A to K.

The images were acquired in adverse weather conditions
with fog and snow: road marks are heavily occluded, with
small contrasts and in presence of many false positives due
to the tracks left by previous vehicles. Fig. 4 shows some
examples of the initial and final 3D projected map in the
image, with the ground-truth on the interesting points. The
dotted lines show the initial lanes projection (mean distance
D0
GT to ground-truth). The lanes after registration in the

image are plotted as solid lines (distance D∗GT to ground-
truth). The thin yellow lines represent the manually labeled
ground-truth.

A. Distance to Ground-truth in the Image

To evaluate the accuracy of the road map registration in the
image, we manually built a ground-truth on sampled images.
On a sequence of 1920 images, one image every 10 frames
is picked and the location of the three lanes present in the
images are hand labeled. For each of these images, a set of
ground-truth segments ILGT is thus available. An example
of ground-truth is drawn as yellow lines in Fig. 3(f).

When available, the mean distance between the ground-
truth and the projected road map is calculated. This mean
distance is computed as the Modified Hausdorff Distance
(MHD) [16], i.e as the average of d

(IM, ILGT
)

over the
points IM ∈ ILGT (θ, φ, ψ) of the projected map and the

reference location of the lanes:

DGT (θ, φ) =
1

Npts

∑
IM∈IL

d
(IM, ILGT

)
(11)

Fig. 6 plots DGT versus the frame number over the test se-
quence. We computed the statistics of D

0

GT = DGT (θ0, φ0)
and D

∗
GT = DGT (θ∗, φ∗) (before and after registration) over

the test images. Initially, the average D
0

GT over the sequence
is 5.6 pixels with a standard deviation of 2.95 pixels. After
registration, the average D

∗
GT over the sequence is 1.9 pixels

with a standard deviation of 1.0 pixel. As a conclusion,
the road lanes registration improves the accuracy of lanes
localization in the image.

B. Vehicle Pitch and Roll

Knowing the road bank and pitch angles, our algorithm es-
timates the vehicle pitch θV and roll φV angles. The optimal
angles range is [−6◦, +6◦] and the accuracy is ∆θ = 0.03◦

and ∆φ = 0.06◦. It is compared to the reference angles
θGTV and φGTV computed from the image based ground-truth.
No gyrometer measurements were available for this test data
and, as mentioned in the introduction, a not-too-expensive
MEMS-based IMU is too noisy to be used.

Fig 7(a) plots the vehicle pitch angle θV versus the frame
number of the test sequence as a continuous red curve. The
ground-truth θGTV is plotted as a black dotted curve. One
can see that the two curves significantly overlap: most of the
time, the estimated vehicle pitch equals the reference one.
In 83% of the cases the deviation

∣∣θV − θGTV ∣∣ is less than
0.6◦, and for 89% of the images

∣∣θV − θGTV ∣∣ ≤ 1◦. The error
θV −θGTV seems normally distributed over the sequence with
a mean of θV − θGTV = 0.1◦ and with a standard deviation
of 0.5◦.

Fig 7(b) displays the estimated vehicle roll φV versus
the frame number as a continuous red curve. The reference
vehicle roll angle φGTV is plotted as a black dotted curve.
The estimation of the roll angle is less accurate than it is for
the pitch. The outliers are due to lack of information about
the lane markings in the image due to snow on the road.
However, for 81% of the images the deviation

∣∣φV − φGTV ∣∣
is less than 1◦. The mean error along the test sequence is
φV − φGTV = 0.4◦ with a standard deviation of 1.1◦.

The kind of statistics on the roll and pitch errors, here
reported, are rarely given in the literature on real data.
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Fig. 4. Road markings projection (dotted lines) and registration (solid
lines) in images of points A to J of the Satory track.

This illustrates the need for common reference databases in
Intelligent Vehicle community.

C. Sensitivity to Perturbations

In our experiments, high quality data are used (3D map
of the test track, RTK-GPS). We still have to evaluate the
behavior and performance of the approach regarding the

Fig. 5. Velocity profile on a circuit portion from point A to the end point.
Sections close to point B and F are zoomed in with the vehicle trajectory
drawn as dots and the vehicle yaw as a red line.

Fig. 6. Mean distance DGT between projected road map and ground-truth
versus the image number (time stamp). The mean distance DGT (θ0, φ0)
of the road lanes from the GPS is plotted in black. After registration on the
image(red plot), the mean distance is smaller most of the time.

following perturbations:
• uncertainty of the positioning system,
• uncertainty and spatial sampling of the 3D points of the

road markings.
Our approach does not provide an improvement in the

positioning, the vehicle position being directly obtained from
the GPS. We experienced that the RTK-GPS accuracy is
sufficient. We observed that an error in the vehicle yaw
estimation induces important errors on lanes registration.
This happens particularly when the vehicle slides, especially
when the car rotates around a vertical axis without changing
the direction of its trajectory, as in Fig. 4(G). The yaw angle
can be refined similarly to the pitch and roll angles.

On the linear portions of the track, the points in the digital
map are sampled every 20 meters. The longitudinal sample
frequency is increased up to one triplet every four meters
on curved sections of the road. In our investigations, we
observed that such a high spatial sampling rate is required
only on curved sections. The total road width is 7 meters
on average, and the accuracy of surveyed points is important



(a)

(b)

Fig. 7. (a) Vehicle pitch angle (in ◦) evolution over time: estimation θV

(red) and reference pitch θGT
V (dotted black line). (b) Vehicle roll angle (◦)

versus time: estimation φV (red) and reference roll angle φGT
V (black).

in the horizontal plane. The accuracy of their altitude is not
relevant because the registration mainly takes into account
the near field of the camera. A locally constant altitude could
be inferred and set to 0zgps − H0 where H0 is the initial
vertical distance of the GPS from the ground.

VI. CONCLUSIONS AND FUTURE WORKS

Using a digital road map made of triplets of 3D points
along markings and knowing the RTK-GPS position of the
vehicle, we computed the road bank and slope angles, and
estimated the vehicle yaw. When using these estimates with
the camera calibration, the projected map in the image is 5.6
pixels in average from the reference on our test sequence.

Then we proposed a vehicle attitude estimation algorithm
which precisely localizes the lane markings in images and
estimates the vehicle pitch and roll without using any inertial
sensors. Using the lane marking elements extracted in the
image, we proposed to use the Chamfer matching approach
to refine the road marks localization. After this registration
process, the road lanes are localized with an average error of
1.9 pixels to the reference location in the image. The vehicle

pitch and roll are also estimated by our algorithm with an
error lower than 1.0◦ in most of the cases (90%). We tested
the proposed algorithm in adverse weather conditions with
fog and snow, and with the vehicle in various dynamical
states.

Future work consists in reducing the processing time
in order to incorporate our system into a prototype and
then assessing the behavior of the algorithm in real time
conditions. The refinement of the vehicle yaw angle is also
interesting to consider by following the same approach. Po-
tential applications include all aspects of ADAS, especially
safety in adverse weather conditions, visual guidance by
augmented reality. Other nomad applications using devices
such as smart phones (that have built-in camera and GPS/INS
sensors) can be envisioned also for both pedestrian and biker
guidance.

REFERENCES

[1] H. Bae, J. Ryu, and J. Gerdes, “Road grade and vehicle parameter
estimation for longitudinal control using gps,” in Proceedings of IEEE
Conference on Intelligent Transportation Systems (ITSC’01), 2001, pp.
166–171.

[2] I. Skog and P. Handel, “In-car positioning and navigation technologies
- a survey,” IEEE Transactions on Intelligent Transportation Systems,
vol. 10, no. 1, pp. 4–21, 2009.

[3] J. McCall and M. Trivedi, “Video based lane estimation and tracking
for driver assistance: Survey, system, and evaluation,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 7, no. 1, pp. 20–37,
2006.

[4] M. Darms, M. Komar, and S. Lueke, “Map based road boundary
estimation,” in IEEE Intelligent Vehicles Symposium (IV’10), 2010,
pp. 609–614.

[5] J. Goldbeck, B. Huertgen, S. Ernst, and L. Kelch, “Lane following
combining vision and dgps,” Image and Vision Computing, vol. 18,
pp. 425–433, 2000.

[6] J. Park, J. Lee, and K. Jhang, “A lane-curve detection based on an
lcf,” Pattern Recognition Letters, vol. 24, pp. 2301–2313, 2003.

[7] J.-P. Tarel, P. Charbonnier, and S.-S. Ieng, “A revisited half-quadratic
approach for simultaneous robust fitting of multiple curves,” in
Computer vision and Computer Graphics, revised selected papers of
visigrapp’07, CCIS 21, 2009, pp. 121–133.

[8] R. Labayrade and D. Aubert, “A single framework for vehicle roll,
pitch, yaw estimation and obstacles detection by stereovision,” in IEEE
Intelligent Vehicles Symposium (IV’03), 2003, pp. 31–36.

[9] J.-P. Tarel, S.-S. Ieng, and P. Charbonnier, “Accurate and robust image
alignment for road profil reconstruction,” in Proceedings of IEEE
International Conference on Image Processing (ICIP’07), vol. V, San
Antonio, Texas, USA, 2007, pp. 365–368.

[10] R. Toledo-Moreo, D. Betaille, F. Peyret, and J. Laneurit, “Fusing
gnss, dead-reckoning, and enhanced maps for road vehicle lane-level
navigation,” IEEE Journal of Selected Topics in Signal Processing,
vol. 3, no. 5, pp. 798–809, 2009.

[11] N. Mattern, R. Schubert, and G. Wanielik, “High-accurate vehicle
localization using digital maps and coherency images,” in IEEE
Intelligent Vehicles Symposium (IV’10), 2010, pp. 462–469.

[12] J. Alvarez, F. Lumbreras, T. Gevers, and A. Lopez, “Geographic
information for vision-based road detection,” in IEEE Intelligent
Vehicles Symposium (IV’10), 2010, pp. 621–626.

[13] R. Gallen and S. Glaser, “Vision based tangent point detection algo-
rithm, evaluation and validation,” in Proc. Machine Vision Application
(MVA’08), 2009, pp. 518–521.

[14] T. Veit, J.-P. Tarel, P. Nicolle, and P. Charbonnier, “Evaluation of road
marking feature extraction,” in Proceedings of 11th IEEE Conference
on Intelligent Transportation Systems (ITSC’08), 2008, pp. 174–181.

[15] G. Borgefors, “Distance transformations in digital images,” Computer
Vision, Graphics, and Image Processing, vol. 34, no. 3, pp. 344–371,
1986.

[16] M. P. Dubuisson and A. K. Jain, “A modified Hausdorff distance
for object matching,” in Proceedings of International Conference on
Pattern Recognition (ICPR’94), 1994, pp. 566–568.


