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ABSTRACT 47 
 48 
The measurement of atmospheric visibility is an important element for road and air transpor-49 
tation safety. We propose in this paper a novel estimator of the atmospheric visibility by al-50 
ready-existing conventional highway cameras, with a technique based on the gradient magni-51 
tude obtained by applying Lambert's law with respect to changes in lighting conditions. The 52 
response of this estimator is calibrated by non-linear regression with data from a visibility-53 
meter installed in a test site which has been instrumented with a camera. Through our tech-54 
nique, atmospheric visibility estimates are obtained with an average error of 30% for images 55 
taken in the day, with lighting conditions between 10 to 8,000 cd.m-2 and visibility distances 56 
up to 15 km. Our emerging results indicate that a primary next step could be to deploy on cur-57 
rent or future roadsides a practical implementation of our research results to determine local 58 
visibility for the benefit of drivers and the safety of our roads, while addressing the needs of 59 
meteorological observation and of air quality monitoring. 60 
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INTRODUCTION 61 
 62 
In the presence of fog, haze or pollution, atmospheric visibility is reduced. This constitutes a 63 
common and vexing transportation problem for different public authorities in multiple coun-64 
tries throughout the world. 65 

First, low visibility is obviously a problem of traffic safety. Road crashes which occur in fog 66 
are generally twice as severe as the average crash. According to the NOAA [1], in the United 67 
States there are approximately 700 annual fog-related fatalities, defined as occurring when 68 
visibility is less than ¼ mile (400 meters). Fog constitutes an equally important issue in 69 
France, a smaller country, with over 100 annual fatalities attributed to low visibility. Indeed, 70 
fog causes similar and significant problems on Northern America and French highways. It 71 
should be stressed that the solution lies not necessarily in better fog detection but in driver 72 
response to fog that is detected.  73 

Indeed, the behavior of drivers in fog is often inappropriate (e.g., reduced headways, altered 74 
reaction times) but to understand the origins of these dangerous behaviors is difficult [2]. Dif-75 
ferent countermeasures have been tested to mitigate the impact of critically reduced visibility 76 
[3]. The California San Joaquin and Sacramento Valley regions are particularly adequate test-77 
beds for such measures, because of the well-known Tule fog phenomenon. In the Stockton 78 
area of Caltrans District 10, the Caltrans Automated Warning System (CAWS) employs road-79 
side weather stations and visibilitymeters to provide automated detection [4]. In District 6, 80 
Caltrans has installed the “Fog Pilot” system, which provides a high-technology solution 81 
every ¼ mile along a 12-mile (200-km) portion of State Route 99. 82 

In addition to the safety problem, reduced visibility is cause of delays and disruption in air, 83 
sea and ground transportation for passengers and freight. On freeways, massive pile-ups cre-84 
ate exceptional traffic congestions which sometimes force the operator to momentarily close 85 
the road. Fog-related road closures are not an uncommon subject for news headlines. Another 86 
example is the Heathrow airport which was blocked for three days during 2006 Christmas pe-87 
riod. Such events have of course important economic impacts [5]. According to [6], in 1974 88 
fog was estimated to have cost over roughly £120 millions at 2010 prices on the roads of 89 
Great Britain. This figure includes the cost of medical treatment, damage to vehicles and 90 
property, as well as the administrative costs of police, services and insurance, but they do not 91 
include the cost of delays to vehicles not directly involved in the accident. 92 

Moreover, reduced visibility also creates environmental problems. Visibility is generally val-93 
ued for environmental and aesthetic reasons that are difficult to express or quantify. Except 94 
for American national parks [7] and regulations on freeway advertisements, there are few 95 
places where visibility is considered a protected resource. Impaired visibility is also a symp-96 
tom of environmental problems because it is evidence of air pollution [8]. In addition, it has 97 
been shown that impaired visibility and mortality are related [9]. According to the authors, 98 
visibility provides a useful proxy for the assessment of environmental health risks from ambi-99 
ent air pollutants and a valid approach for the assessment of the public health impacts of air 100 
pollution where pollutant monitoring data are scarce. 101 

An ability to accurately monitor visibility helps resolve these problems. Important transporta-102 
tion facilities where safety is critical, such as airports, are generally instrumented for monitor-103 
ing visibility with devices that are expensive and hence, scarce. Cost is precisely the reason 104 
why highway meteorological stations are seldom equipped with visibility metering devices. In 105 
this context, using already existing and ubiquitous highway cameras is of great interest, as 106 
these are low cost sensors already deployed for other purposes such as traffic monitoring [10]. 107 
Furthermore, introducing new functionalities into roadside cameras will make them multipur-108 
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pose and thus more cost-effective, easing the deployment of these cameras along the roads.  109 

In the United States, this potential has been identified by US DOT and was evaluated in the 110 
CLARUS Initiative [11,12], and these efforts may continue with the US DOT IntelliDrive 111 
program. In France, a similar initiative has been launched between LCPC (French Public 112 
Works Research Laboratory), Météo France and IGN (French National Geographical Insti-113 
tute), different French public research institutes dealing respectively with road operation, 114 
weather monitoring and forecasting, and geography and cartography. The French initiative 115 
aims at assessing the potential of highway cameras to monitor visibility for different applica-116 
tions ranging from safety hazard detection to air quality monitoring. This topic is also a mat-117 
ter of discussion and of potential collaboration between LCPC and California Partners for 118 
Advanced Transit and Highways (PATH) at Berkeley University. 119 
 120 
In the future, such initiatives might make it possible to predict visibility reductions at the 121 
scale of a road itinerary, as it will soon be the case for airports [13]. 122 

  123 

BACKGROUND 124 

Visibility measurement 125 

Reduced visibility in the atmosphere is directly related to light scattering by air molecules and 126 
airborne particles. This tenet of physics is the basis of the operating principle of visibility-127 
meters. There are two types of instruments for measuring atmospheric visibility: transmis-128 
someters and scatterometers. The transmissometer extrapolates the attenuation of a light beam 129 
emitted from a source to a receiver at a known path length in order to estimate the distance for 130 
which the emitted light is attenuated by 95 %. The transmissometer is also used to calibrate 131 
the scatterometer. A scatterometer assesses the dispersion of a light beam. Visibilitymeters 132 
can measure the meteorological visibility distance up to a few tens of kilometers with an ac-133 
curacy of 10%. Some studies seek to exploit the photosensitive cells of fixed cameras to 134 
measure the meteorological visibility. 135 

Related research 136 

There are several general approaches to measuring meteorological visibility with a camera. 137 
The first is to detect the contrast of the most distant targets in a scene. For road safety, and 138 
visibility distances below 400 m, Hautière [14] assumes that the road is flat. He calculates all 139 
contrasts above 5% for objects obtained from the camera images. Using the geometric projec-140 
tion, he then estimates the distance to the farthest visible object with an accuracy of 10%. In 141 
another study Bäumer [15], in a panoramic scene, extracts gradients of targets whose dis-142 
tances are known based on a 2-dimensional map. In this work, ranges are longer because in 143 
meteorology, visibility distances are of the order of 10 km. 144 

The second general approach to measuring meteorological visibility is based on machine 145 
learning, and requires a calibration phase with meteorological data collected with a visibili-146 
tymeter for several days and in different visibility conditions. In his study, Hallowell [12] ex-147 
ploits the road surveillance video camera network by proposing a fuzzy logic-based method 148 
which identifies four classes of visibility using image information. Other approaches which 149 
exploit machine learning seek to find the frequency response characteristics linking the image 150 
with visibility data. Indeed, Xie [16] and Liaw [17] seek the linear correlation between some 151 
indicator of contrast and meteorological visibility data. Xie [16] applies a low pass filter to 152 
the Fourier transform of the image. Hagiwara [18] also proposes a frequency operator WIPS 153 
which was proven to be well correlated with human perception. Liaw [17] acquires images at 154 
midday, seeking ways to reduce the influence of changing illumination.  155 
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The approach in this paper belongs to the second category. Indeed, an image-based estimator 156 
using a fixed Closed Circuit Television (CCTV) camera is proposed. Estimation results can 157 
be verified with meteorological visibility ground truth data collected with meteorological in-158 
struments. Unlike previous approaches, this one is stable to illumination change and therefore 159 
more indicative of the visibility. This article is organized as follows: Section 2 establishes the 160 
link between visibility and the gradient in the image; Section 3 clarifies the robustness of the 161 
approach; the results are presented in Section 4; a discussion follows, from which conclusions 162 
are drawn.  163 

METHOD 164 

Reduction in visibility by scattering 165 
Although, the word “visibility” seems to be trivial, a more precise definition dedicated to me-166 
teorology is established through the theory of Koschmieder [19] which provides an analytic 167 
expression of the luminance L of an object observed from a distance d through an atmosphere 168 
with an extinction coefficient k. This is given by Equation 1. 169 

 170 

( )-kd-kd -eL eLL 1b0 +=                                          (1) 171 

 172 
The physical luminance of an object L reaching the camera is a linear combination of the 173 
intrinsic luminance of the object L0 and the luminance of the sky behind the object Lb. The 174 
linear coefficient is an exponential function of the optical depth kd of the atmosphere which 175 
lies between the object and the camera (following Beer-Lambert law). From Equation 1, 176 
Duntley [19] derived a contrast attenuation law: 177 
 178 

( ) -kdeC/LL-L C 0bb ==        (2) 179 

 180 
The quantity C denotes the apparent contrast at a distance d of an object of luminance L 181 
against the sky in the background with a luminance Lb. C0 is the intrinsic contrast of this ob-182 
ject. 183 
 184 
The International Commission on Illumination (CIE) recommends a threshold contrast of 5% 185 
to define visibility, so the meteorological visibility VMet, expressed in Equation 3, is defined as 186 
the distance for which a black object (C0 = −1) has a 5% contrast against the sky [20]: 187 

1
log(0.05) 3 /MetV k

k
= ≈                   (3) 188 

Stability of contrast in Lambertian zones 189 
In order to work with pixel intensity (or gray level) values given by a camera, the arguable 190 
assumption can be made that the response of the sensor is linear with a slope α. The intensity  191 
I of an object in the image can be expressed according to the value L of its physical luminance 192 
as shown in Equation 4: 193 
 194 

LαI =                                           (4) 195 

 196 
Using Equation 4 with Koschmieder’law in Equation 1 yields the following relation between 197 
the intensity I of a pixel, the optical depth kd of the atmosphere between the camera and the 198 
object in the direction subtended by this pixel, and the intensity A∞ of the background sky: 199 
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 200 

     ( )-kd-kd -eA eII 10 ∞+=      (5) 201 

 202 
Let us introduce the texture contrast CTexture, defined for two adjacent points of intensity I1 and 203 
I2 found at the same distance d1=d2=d. Then from Equation 5, Equation 6 is obtained: 204 
 205 

( ) ( )[ ]   e/A-II/A-II C -kd
∞∞ == 010212Texture       (6) 206 

 207 
The luminance of an object results from the reflection of both direct sunlight and light scat-208 
tered through the atmosphere onto its surface. For objects with rough (and therefore Lamber-209 
tian) surfaces, the reflected part of illuminance E is scattered evenly in all directions, and the 210 
luminance L is directly related to the albedo ρ of the surface material. In that case ρ is the dif-211 
fuse reflection factor of the object. This is expressed by Lambert’s law, where E is the illumi-212 
nance on the surface: 213 

π
EρL =            (7) 214 

 215 
Hence, the expression of texture contrast for Lambertian objects is independent of illumina-216 
tion, and only depends on the object albedos ρ1 and ρ2, the distance d and the extinction coef-217 
ficient k as shown in Equation 8: 218 
 219 

 ( ) -kdeρρC 12LambertTexture, −=                    (8) 220 

 221 
The main advantage of using the texture contrast is that its value is robust to variations of il-222 
lumination in the scene since it is expressed as a function of albedo, an intrinsic characteristic 223 
of materials. Therefore, according to Equation 8, this contrast is expected to be a very strong 224 
indicator of the meteorological visibility despite illumination changes. There is no need to 225 
assume that all objects in the scene are Lambertian, only to select those that are. 226 

Contrast as a module of Sobel gradient  227 
The contrast defined above is a one-dimensional concept. In our case, however, the image is 228 
two-dimensional. The module of Sobel gradient, which indicates the value of the largest 229 
change from bright to dark at each pixel, is calculated with Equation 9: 230 
 231 

22
yx GGG +=                                                            (9) 232 

 233 
The horizontal and vertical gradients, respectively Gx and Gy, are calculated by the convolu-234 
tion of the masks given in Equation 10: 235 
 236 
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 238 
The outcome of this processing is illustrated in Figure 1. The original image is shown in Fig-239 
ure 1 (a) and the gradient image – with edges enhanced as a direct result of the Sobel operator 240 
– is presented in Figure 1 (b). 241 
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 242 

                               243 

                          (a)                                                   (b)                    244 

 FIG.1 –Module of Sobel gradient of the image: (a) image in good visibility conditions;  245 
(b) Module of Sobel gradient of the same image. 246 

 247 

Segmentation of Lambertian surfaces 248 
Calculating the gradient of the image has been explained above. Those gradients which are 249 
most robust against illumination changes are extracted by selecting Lambertian surfaces 250 
within the scene. The best indicators of visibility variations are determined via this method, as 251 
shown with Equation 8. In practice, segmenting Lambertian areas in an image can be 252 
achieved by seeking the best linear correlation between the intensity changes of each pixel 253 
over time and the variations of illumination characterized by the sky luminance Lscene. The 254 
probability PL

i,j that the surface at pixel (i,j) is Lambertian can be calculated using the tempo-255 
ral correlation of Bravais-Pearson: 256 
 257 

( )scenecorr ,LLP i,j
L

i,j =                                                         (11) 258 

 259 
This is illustrated in Figure 2 where red denotes high correlation and, as a consequence, high 260 
probability for the surfaces to be Lambertian. Other robust methods exist to segment Lamber-261 
tian surfaces in the image [21] but were found to be more complex to be used in practice. 262 
 263 

 264 

 265 

FIG. 2 – Confidence that the area is Lambertian. Red determines the correlation between pixel 266 
intensity and scene illumination over time. 267 

This segmentation allows discarding the specular reflections, such as sunlight on smooth sur-268 
faces, as well as shadows created by the movement of the sun during the day.  269 
 270 
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ESTIMATION OF METEOROLOGICAL VISIBILITY 271 

Visibility estimation based on robust gradient 272 
Let the estimator E equals the sum of all existing gradients in the image, absent any consid-273 
eration of reflection (for the time being). This allows using Equation 12 and also corresponds 274 
to precedent in the literature [16, 17]. Now, let us consider the estimator of visibility EL based 275 
on the sum of the module of Sobel gradient taken within Lambertian areas defined by Equa-276 
tion 13. 277 

∑∑
−=

i j

kdL ji

ji
eCE ,

,0     (12) 278 

∑∑
−=

i j

kdL
ji

L ji

ji
eCPE ,

,0,     (13) 279 

To adjust the response function of the visibility estimator given by Equation 13, an empirical 280 
model described by Equation 14 is given. This function is the response of the estimator EL 281 
according to changes in visibility conditions VMet obtained by a visibilitymeter. Therefore, the 282 
response of the estimator LE

~  of Equation 14 is adjusted by refining its parameters A and B. 283 
This is done by minimizing the quadratic error between the response function and the cloud of 284 
points relating the visibility estimator EL from the image and the measured meteorological 285 
optical range VMet: 286 
 287 

( )Metlog
~

VBAE L +=                       (14) 288 

Correlation as a reliability indicator of visibility estimation 289 
When the quadratic error is minimal, the correlation factor between estimator and visibility is 290 
close to 1. So, estimating the visibility VMet by inversing the function LE

~  will be closer to the 291 
reference values given by the visibilitymeter. The correlation factor constitutes an indicator of 292 
reliability in estimating this response function LE

~ . 293 

Error due to model fitting 294 
Parameters A and B must be adjusted so as to minimize the quadratic error χ2 between the 295 
measured visibility VMet and the visibility estimated by the function V( LE

~ ,A,B) with Equation 296 
15: 297 
 298 

( ) 2

² , ,L
Met

i j

V V E A Bχ  = − ∑∑ ɶ                   (15) 299 

Weighted fitting for low visibilities  300 
Most of the time, images of low visibility will be rare compared to images of good visibility.  301 
Because the proposed model is empirical, this drives the largest error of the estimation in the 302 
more sparse low visibility data set. Therefore the curve fitting is weighted by giving more 303 
confidence to cases of low visibility as shown in Equation 16. Since the error increases line-304 
arly with visibility, the inverse of the accuracy σVMet is used as a confidence factor. This typi-305 
cally corresponds to 10% of the value of visibility VMet. The results are shown in Figure 5. 306 

( )
Met

2

Met

1
² , ,L

i j V

V V E A Bχ
σ

 = − ∑∑ ɶ     (16) 307 
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RESULTS  308 

Image and data collection 309 
Visibility and lighting data have been collected over several months. These data were 310 
matched with images taken from a camera. Indeed, a meteorological observatory was instru-311 
mented with a CCTV camera and a digital video recorder. The camera has the same quality as 312 
a typical roadside camera: 640 x 480 and a dynamic range of 8 bits per pixel. Images were 313 
acquired every 10 minutes for several months, with sky luminance between 0 and 10,000 314 
cd.m-2 and meteorological optical range between 80 m to 50 km. Sample images with differ-315 
ent weather conditions are shown in Figure 3. The luminance data were collected by means of 316 
a luminancemeter, and the visibility data were given by means of a scatterometer. Both in-317 
struments are common meteorological measurement systems often found on airports. Their 318 
operating principle was recalled in the background section. Sample data are shown in Figure 319 
4. 320 
 321 

 322 

(a)    (b)    (c)  323 

FIG. 3 – Examples of images taken over several months under lighting conditions from 0 to 324 
10,000 cd.m-2 and visibility conditions from 0 to 50 km: (a) Sunny day with shadows, (b) 325 

cloudy day, (c) low visibility. 326 

 327 

 328 

FIG. 4 – Sky luminance variation (red curve) and meteorological optical range variation (blue 329 
curve) during three days. 330 

 331 

Comparison of results 332 
The sum of the module of Sobel gradient computed from the images is plotted as a function of 333 
the measured meteorological visibility in Figure 5 (a). An instability and dispersion of the re-334 
sponse of the estimator E can be observed. This instability is related to the change in lighting 335 
conditions, and this directly affects the values of object luminance in the scene and therefore 336 
it affects the resulting gradients. The instability is also related to the different reflections of 337 
sunlight on glass or other smooth, non-Lambertian surfaces. Because the imaged scene con-338 
tains these elements, the module of Sobel gradient of the entire image cannot be a robust indi-339 
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cator of the measured meteorological visibility. 340 
 341 
Results for the estimator LE

~  are shown in Figure 5 (b). Points representing the visibility esti-342 
mator LE

~  as a function of the measured visibility VMet follow an empirical law which appears 343 
to be logarithmic. For visibility distances below 1.5 km, the curve fit is weighted so as to re-344 
duce the influence of data with very high visibility. Results of this weighted curve fitting are 345 
shown in Figure 5 (c). 346 
 347 

 348 

                           (a)                        (b)                       (c) 349 

FIG. 5 – Logarithmic model fitting of the plot of the estimators as a function of reference visi-350 
bilities: (a) E, sum of the module of Sobel gradient in the entire image; (b) LE

~ , sum of the 351 
module of Sobel gradients on Lambertian areas; (c) LE

~ , sum of the module of Sobel gradient 352 
considering Lambertian areas and with weighted fit for low visibility distances. 353 

DISCUSSION 354 

Meteorological visibility was estimated using an empirical response function. The values ob-355 
tained are given in Table 1 for different applications, along with the average relative error 356 
∆V/V from the reference values measured by a visibilitymeter. Processing the whole image 357 
results in a correlation factor of 0.82. For large visibility distances, this corresponds to an av-358 
erage relative error of 100 to 200%, meaning that the visibility estimation is irrelevant. Using 359 
gradients in Lambertian surfaces and a weighted fit for low visibility distance as described in 360 
this paper brings the average relative error down to 25%, which makes the estimation of the 361 
visibility more robust and reproducible over time. For visibility distances beyond 5 km, the 362 
average relative error becomes 33%, and it is as low as 10% for visibility distances below 363 
400 m. 364 
 365 
Despite these good results, the proposed model has still two main limitations. First, fixed 366 
camera is a requirement for the here proposed method which is intended to operate with road-367 
side cameras such as those used for traffic surveillance. Second, the method does not deal cur-368 
rently with dynamic variance in the field of view such as traffic presence. This second limita-369 
tion can be easily circumvented by using background modelling methods, as previously pro-370 
posed by Hautière et al. in [14]. 371 
 372 
To implement this method of visibility estimation in a specific site, calibrating the logarithmic 373 
response curve is mandatory. In this aim, the simplest method consists in matching image 374 
contrasts with visisibility and luminance data collected by reference sensors (visibilitymeter 375 
and luminancemeter) during at least one foggy episode. For a massive deployment of the 376 
method on many different sites, more dedicated work is needed to simplify the calibration 377 
process so as to get rid of the reference sensors.  378 

 379 
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 380 
Application Highway 

fog 
Fog  Haze Air quality Correlation 

Visibility range 
(Number of images) 

0-400m 
13 images 

0-1000m 
19 images 

1000-5000m 
26 images 

5000-15000m 
105 images 

R2 

150 images 

∆V/V for E 22% 39 % 205 % 125 % 0.82 

∆V/V before weighted fit for LE
~

 11% 53 % 60 % 33 % 0.95 

∆V/V after weighted fit for LE
~

 10% 25 % 26 % 48 % 0.90 

Table. 1 –Average relative error expressed in % as a function of range of application. Here the 381 
correlation factor is between 0.90 and 0.95 and corresponds to an error of 25% to 33%. For 382 

highway fog with less than 400 m visibility, the error is reduced to 10%.    383 

 384 

CONCLUSION AND PERSPECTIVES 385 

This study is aimed at a robust empirical law for estimating the meteorological visibility in 386 
daylight by means of a typical CCTV camera. The methodology presented in this paper is to 387 
link meteorological visibility to the sum of the module of Sobel gradient taken over Lamber-388 
tian surfaces. It is demonstrated and validated that the proposed estimator is robust to changes 389 
in lighting conditions, and that any variation in measurement results are due to the variation 390 
of visibility in the atmosphere. Applying this estimator on real images acquired under a vari-391 
ety of visibility and lighting conditions, an estimated atmospheric visibility was obtained and 392 
then compared and validated with reference data collected with a meteorological instrument. 393 
 394 
The approach for estimating visibility was also tested and validated under a large range of 395 
visibility and lighting conditions. It showed the relevance and the reproducibility of the ap-396 
proach. We believe therefore that this method for estimating meteorological visibility is easily 397 
deployable using the camera network already installed alongside highways throughout the 398 
world and therefore of high impact to traffic safety at marginal cost. Once deployed, this con-399 
cept should increase the quality and the spatial accuracy of the visibility information and 400 
could feed weather forecasting systems. Importantly, our system may serve to inform drivers 401 
of relevant speed limits under low visibility conditions.  402 
 403 
In future work, we will express errors in estimating visibility as a function of camera charac-404 
teristics to ascertain the accuracy with which visibility can be estimated with current and fu-405 
ture CCTV systems. We believe, however, that our work has given both a fundamental and 406 
practical basis to consider deployment of our potentially life-saving real-time roadside visibil-407 
itymeters. 408 
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