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Abstract

One important trend in edge detection starts from current
knowledge about the Human Visual System (HVS) in order
to mimic some of its components. We follow this trend and
propose a new edge detector which also computes the edge
visibility for the HVS. Two important processes in the HVS
are taken into account: visual adaptation and contrast sen-
sitivity. Our model is in good agreement with some classical
results in human vision, such as Weber’s law and Ricco’s
law, as well as the visibility of sine and square gratings.
The main contribution is to propose a unified framework,
biologically inspired, which mimics human vision and com-
putes both edge localization and edge visibility.Compared
to previous approaches, the visibility of a target is estimated
without segmentation of the target. This work may con-
tribute to military applications, Intelligent Transportation
Systems, and low vision simulation.

One important trend in Edge Detection started from cur-
rent knowledge about the visual system in order to mimic
some of its components [20]. The underlying idea was to
simulate edge detection, which is achieved with great per-
formance by biological sensors. In the following, we come
back to some aspects of Marr and Hildreth’s insights, and
propose a new edge detector which also computes the edge
visibility for the Human Visual System (HVS).

Two important processes in the HVS are taken into ac-
count in the proposed edge visibility estimation: visual
adaptation and contrast sensitivity. Although the HVS can-
not be described as a linear system [21, 7], it is linear in
some of its components. Under this assumption, the knowl-
edge of the systems’s response to sine wave gratings al-
lows one to predict the response to any input signal [5].
This allows to use the linear systems theory to compute the
location and amplitude (visibility) of edges in natural im-
ages, providing that we compensate for visual adaptation

(the main non-linear mechanism in the early steps of the
HVS), which is done with a gain feedback.

In the proposed framework, Weber’s law is used as a ref-
erence model for the non-linear part of the visual process-
ing. For the linear part of the model, the Contrast Sensitivity
Function (CSF) is taken as a reference vision model [2]. It
describes the visibility of gratings for the HVS.

The implementation uses a set of Difference of Gaus-
sians (DoG) operators in order to mimic the HVS. It pro-
duces outputs consistent with the CSF, when applied to the
visibility of gratings. The edge localization is computed as
zero-crossing of a sum of DoG, which is close to Marr and
Hildreth [20] but closer to the HVS [12, 21] than Marr’s
Laplacian of Gaussians. The edge visibility is derived from
the same sum of DoG, which results in a unified framework
for the edge localization and edge visibility computation
(see Fig. 1).

Figure 1. framework of the proposed unified model for edge de-
tection and edge visibility computation.

Unlike most edge detectors, the purpose of the operator
is to mimic the performance of the HVS, so that the usual
concepts of false and true edges are revisited: a true edge
is a change in intensity in the image which is detected by
a human observer, even if it may be classified as “noise” in
the sense that it does not separate two objects or two distinct
areas of an object. With respect to Canny’s idea to optimize
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edge detectors for a reference set of true and false edges,
we consider true edges as visible edges, with reference to
the vision science literature instead of using a priori noise
description as in [6, 15].

This operator led to accurate results both for the edge lo-
calization and edge visibility, with respect to the visibility
of gratings, and consequently with respect to the visibility
of edges in natural images, under the limits of the linear sys-
tem theory applied to human vision. When applied to sine
gratings, our operator gives the exact solution for the edge
localization and a good approximation of the edge visibility,
according to psychovisual reference data [2]. Application
to square gratings is also in good agreement with psycho-
visual data [5]. Evidence is also given that the operator’s
behaviour is consistent with Weber’s law and Ricco’s law
[21]. This last result is obtained without target segmenta-
tion.

Finally, practical applications of our concept are pro-
posed, including image quality, estimating the visibility
of targets in military applications, improving existing Ad-
vanced Driver Assistance Systems (ADAS), and low vision
simulation.

1. Previous work
The concept of edge detection is mainly considered as

a first step in a bottom-up approach of Computer Vision:
edges are detectable regions of objects, and their knowl-
edge helps both to find the objects in a scene and to localize
them. In this framework, edges are included in the primal
sketch of the images [20], which in turn contributes to the
computation of the geometric and photometric properties of
objects in the scene.

Given a smoothing filter, the edges at the selected scale
can be localized on the zero-crossing of its second deriva-
tive. Marr and Hildreth used the zero-crossings of the
Laplacian of Gaussian (∇2G) to find the edges in an image
I . They computed the amplitude ν of an edge from the slope
s of ∇2G(I) on the zero-crossings: ν = s/2πf , where f
is the frequency of the smoothing bandpass filter. However,
they do not adress the issue of combining edge amplitude
at various scales. It should be noted that unlike Marr’s pro-
posal, most operators derive the edge strength from the gra-
dient’s modulus on I .

Several classical challenges are to be addressed by any
edge detector: among them, the multi-scale issue, the sen-
sitivity to noise, and the edge strength estimation. The
multi-scale problem comes with filtering. Filtering an im-
age, most of the time, needs an implicit spatial scale, i.e. a
bandwidth. Then, a multispectral edge detection is needed
in order to find edges at all scales, and the multi-scale is-
sue is to select, either the right local scale [17], or the right
strategy to combine scales, fine-to-coarse [4], coarse to fine
[6] or with other techniques, such as feature-based classifi-

cation [22].
The sensitivity-to-noise issue looks very simple, after

Canny’s optimisation proposal [6]. The basic reason why
false edges are detected is that an edge detector finds inten-
sity changes in images, rather than edges of objects in the
scene. Thus, some intensity changes should not be classi-
fied as object edges (for instance, it may be due to surface
texture, to the sensor noise, etc.). Canny proposed an op-
timization approach of edge detection [6, 9, 15]: from an
analytic model of false edges (stationnary additive Gaus-
sian noise), he derived an optimal operator in a classifica-
tion sense: it is the best one for the classification of true
and false edges. Although limited to a specific model of
true and false edges, the white noise paradigm has become
a standard in the edge detection literature.

The background for this approach is that edge detectors
shoud find edges in objects, in the scene, rather than inten-
sity variations in images. In her literature review [3], Basu’s
point of view is closer to human vision: she states that the
purpose of an edge detector is to mimic the HVS to find
edges. She defines edges as intensity transitions in the im-
ages, instead of transitions between objects, in the scene
[23]. Our paper follows Marr and Basu in their HVS simu-
lation approach.

Edge strength estimation is often under-estimated in the
edge detection literature, because it is not an issue in most
applications of edge detection, where the challenge is to
find the object’s edges with the best possible accuracy. Still,
most operators use two steps: the first one selects edge can-
didates, and the second one labels the candidates as false
and true edge, based on some notion of the edge ampli-
tude (e.g. the gradient modulus, see above) [23]. If one
only wishes to detect and localize objects, the key issue is
to separate “True” from “False” edges. Edge amplitude is
seen, then, as a criterion for this classification. For instance,
Canny proposed to improve edge detection with a hystere-
sis threshold on the gradient modulus, instead of a simple
threshold. In some applications, however, such as visibil-
ity estimation [8, 14] and Computer Graphics [11, 1], the
estimation of the edge amplitude (also called strength, in-
tensity, visibility) becomes an issue in itself, while the “false
edges” issue becomes less important (in Computer Graphics
applications, the object’s localization in known a priori).

Our contribution addresses edge detection as a simula-
tion of human performance, rather than a first step in a
bottom-up approach. Thus, the sensitivity-to-noise has a
different meaning here, compared to the mainstream edge
detection literature: it addresses the ability to mimic the
HVS in its edge detection performance. The multiscale is-
sue is addressed with a single, biologically inspired opera-
tor, the output of which is the sum of separated bandpass
channels. Thus, the selection of the relevant scale is com-
puted inside the operator, and no ambiguity is left to post-
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processing.

2. Model
We have merged two classical approaches from edge de-

tection and vision science literature. First, we use a modi-
fied version of Marr and Hildreth’s edge detector [20]. This
new operator is closer to the HVS behaviour than Marr’s
operator, because it uses Difference of Gaussian operators
instead of Laplacian of Gaussian. Second and more impor-
tant, the edge amplitude estimates the edge visibility, in the
sense of the Contrast Sensitivity Function (CSF) of the HVS
[19, 2]. Both edge localization and edge visibility are com-
puted from a unique, biologically-inspired operator, namely
a sum of Difference of Gaussian (DoG), SDoG in the fol-
lowing.

2.1. True and False edges

In most approaches, an edge detector includes 3 com-
ponents: a smoothing, a derivative, and a labelling steps
[23]. The derivative step being sensitive to noise, it was
found sensible to remove this noise to some extend with a
smoothing operator before the derivation, at the cost of lost
information and spatial uncertainty. Edge detection, then,
has become an art of tradeoff between these two constraints.
Regularization techniques have been proposed to choose the
best compromize, providing some analytical model of the
false edges properties.

Most edge detector evaluations have focused so far on
the detection of false edges, and after Canny’s reference pa-
per, most edge detectors used a priori knowledge of true and
false edge, either to assess the detector’s performance, or to
build an optimal detector for a given ground truth. What
is a false edge? As stated by Forsyth and Ponse (p. 166),
noise is “anything we don’t wish to use” [13]. Thus, we
propose a new definition of false and true edges, relevant
for the HVS: a false edge is an edge which is not detected
by an observer in the image. We don’t want to detect invis-
ible edges. This is different from most approaches where
false edges are due to the thermal noise in cameras, which
is estimated with Gaussian noise.

2.2. Visual Adaptation

One of the first breakthrough in psychophysics history
was the notion of sensorial adaptation: perception is mainly
sensitive to relative variations, rather than to absolute vari-
ation. The names of Weber and Fechner are attached to this
law: the ratio of the input signal to the mean signal is nearly
constant, for a given sensory channel, at detection thresh-
old. Visual adaptation can be roughly separated from other
visual processing of the HVS, in order to separate linear
from non-linear processing [21].

From a luminance image input, we simulate the visual
adaptation with a Gain feedback, set to the inverse of the

Figure 2. Simulation of the visual adaptation with a Gain feedback.
A non-linear preprocessing is computed before edge detection.

adaptation luminance (see Fig. 2), that is, the inverse of the
mean luminance. This pre-processing simulates Weber’s
law, in the sense that two edges with the same luminance
contrast are set to the same intensity value after preprocess-
ing. Thus, their computed visibility will be the same (see
Fig. 1 and section 2.5).

Working with luminance images, this preliminary step is
necessary; with a camera sensor and automatic gain control,
it is less important. Indeed, the Gain feedback simulates vi-
sual adaptation, which happens both in biological and opti-
cal sensors.

2.3. Contrast Sensitivity

The Contrast Sensitivity Function (CSF) describes the
visibility of sine gratings for a human observer. It is an
interesting tool in the framework of linear systems, as any
image may be split into gratings by Fourier decomposition.
What is more, the visual system roughly behave as a lin-
ear system once the luminance adaptation is set. Thus, for
instance, the sensitivity to square gratings can be predicted
from the sensitivity to sine gratings [5].

In the late 70’, Mannos and Sakrisson proposed a pop-
ular analytical model of the CSF to the field of Computer
Science [19]. Then, Barten combined available psychovi-
sual data to propose the most complete model of CSF to
date [2]. In the following, we use Barten’s CSF:

CSF (f) = afe−bf
√
1 + cebf (1)

where f is the frequency in cycle per degree (cpd), c =
0.06, b = 0.3(1 + 100/L)0.15, and:

a =
540(1 + 0.7/L)−0.2

1 + 12
w (1 + f/3)−2

(2)

where w is the stimulus size (10◦ in the following), and
L the mean luminance. Unlike [19], this CSF depends
on L, so that the separation between adaptation and con-
trast sensitivity is a rough approximation of the HVS be-
haviour. Hopefully, this approximation is fair enough above
30 cd/m2, which includes all daylight applications.
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Another differences between the CSF proposed by Man-
nos and Sakrisson and Barten’s model is the normalization
of the CSF. In [19], the CSF is normalized, and the in-
put image is assumed to be a sensor output, not luminance
values in cd/m2. If the optical sensor uses a gain modu-
lation, just as biological sensors do, it is a clever way to
address the adaptation non-linearity (section 2.2). Still, in
the following, we used Barten’s CSF, which is more accu-
rate and makes it easier to compare the edge visibility to
psychophysical data.

2.4. Edge Detection

Difference of Gaussians (DoG) was proposed in vision
science as an analytic model of the receptive fields of X-
cells in the Lateral Geniculate Nucleus (LGN) in the thala-
mus [12, 21]. We have implemented the CSF as a weighted
sum of DoG (or SDoG), which are bandpass filters in the
frequency domain. Thus, each of these DoG simulates both
a bandwidth of the CSF (considering the visual system as a
multiscale analyzer [5]), and ON/OFF cells with receptive
fields of a given size [12].

In the following, a weighted sum of DoG will refer to:

SDoG(I) =
∑
k

ωk[Gσ+
k
−Gσ−

k
](I) (3)

where I is the input image (in luminance units), Gσ is the
normalized Gaussian operator with Standard Deviation σ,
σ+ and σ− are the SD of the positive and negative parts of
a DoG (σ− = λσ+), and ω is its weight.

A DoG is not, strictly speaking, a second derivative.
However, the edge detection is achieved by a DoG with the
same quality as with ∇2G in terms of localization, provided
that the coefficients of the positive and negative weights are
the same (as in Eq. 3): the response to a step edge is null at
the edge. Marr and Hildreth noticed that a ∇2G is close to
a DoG when σ+ is close to σ−. Unfortunately, it is not the
case in the available data: in [12], physiological measure-
ments ranges λ between 2.4 and 23.

2.5. Edge Visibility

From the zero-crossings, most authors use the gradient
modulus as an index of the edge amplitude. This index,
computed on the original image I , may lead to good results
in order to select the true edge from an over-segmented edge
detection. Some problems emerge however if one uses it for
edge visibility estimation. An analytic approach helps here.
Suppose a 1D sine wave grating with spatial frequency f :

If (x) = A sin (2πfx) (4)

The gradient modulus, taken at zero-crossings, is equal
to 2πfA, while the visibility of the gratings is

V = A× CSF (f) (5)

The gradient modulus is clearly a very bad estimation, as
the CSF is far from linear with f .

Marr and Hildreth proposed that the edge strength should
be proportional to the slope s of the output signal ∇2G(I)
divided by f . We have followed this proposal on the SDoG,
which leads to good results. Fig. 3 shows the final compu-
tational framework: the DoG contribute both to edge local-
ization and edge visibility computation.

Figure 3. Framework for the edge detection and edge visibility
computation, based on a CSF model.

Let’s see now how to compute the set of DoG which sim-
ulates a given CSF. Using the same 1D example, the convo-
lution of If by a Gaussian function Gσ is:

Gσ ⋆ If = Ife
−f2σ2/2 (6)

Thus, the convolution with a DoG is:

[Gσ −Gλσ] ⋆ If = If [e
−f2σ2/2 − e−f2λ2σ2/2] (7)

The modulus of the gradient (s for slope) on the zero-
crossings may be computed from:

∂

∂x
([Gσ −Gλσ] ⋆ If ) = 2πfKIf (8)

with K = e−f2σ2/2 − e−f2λ2σ2/2, that is, s = 2πAfK.
Let’s consider now the gradient modulus as a function of f .
It is maximum when ∂s

∂f = 0, which leads to

σ =
2

f

√
λ2 − 1

lnλ
(9)

This relation between f and σ gives way to the compu-
tation of the SDoG from the CSF. The first DoG is tuned to
the mode of the CSF, that is, σ1 is computed from Eq. 9
where f corresponds to the maximum of the CSF. Then, the
weight ω is set to

ω =
CSF (f)

e−f2σ2/2 − e−f2λ2σ2/2
(10)

This procedure is repeated iteratively on each residu, for
N DoG (N = 6 in the following). Based on [12], we used
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DoG1 DoG2 DoG3 DoG4 DoG5 DoG6

f 0.2 0.5 1.4 2.0 4.0 10.6
σ+ 3.706 1.482 0.529 0.371 0.185 0.069
ω 11.1 67.1 202.0 35.5 620.1 266.1

Table 1. Weigths and SD of the SDoG model (λ = 3), for Barten’s
CSF with L=100 cd/m2. f and σ are in cpd.

λ = 3. Tab. 1 shows the computed values for σ and ω, from
Barten’s CSF [2] with L = 100.

What is the visibility of a sine wave grating If with this
model? If the DoG is tuned to f (thanks to Eq. 9), the slope
taken on the zero crossings is:

s = 2πfωA[e−f2σ2/2 − e−f2λ2σ2/2] (11)

so that
V =

s

2πf
= A× CSF (f) (12)

which is the expected value. Starting from an unknown fre-
quency f , the visibility is estimated by the SDoG (see Fig.
3) with:

V = A
N∑
1

ωk[e
−f2

kσ
2
k/2 − e−f2

kλ
2σ2

k/2] (13)

where N is the number of DoG in the SDoG approximation,
and fk is the frequency associated with DoG k (see Eq. 9).

3. Results
The model was tested in several reference situations, in

order to compare its predictions to those of well known vi-
sion models. These predictions concern the two aspects of
the models: edge localization and edge visibility.

3.1. Edge localization

Figure 4. Left: Pattern of flat surfaces. Right: Visible edges (V ≥
1) in red, invisible edges (0 < V < 1) in grey levels (darker when
V is closer to 1).

Edge localization, in the case of linear step edges, is ac-
curate as a consequence of the DoG structure. All DoG find
a linear step edge with a correct localization, so do their

sum. Some localization error occur at corners and junc-
tions, as in most low level edge detectors (see Fig. 4).
The main problem concerns junctions, where artifacts are
created; hopefully, the visibility of these artifacts is much
lower than the visibility of the “true” edges. Due to the new
definition of true and false edges (section 2.1), the artifacts
are classified as False edges in Fig. 4.

3.2. Edge Visibility

Weber’s law is implicit in the model, due to the pre-
processing step. Consider If,C,M a sine wave grating, taken
as input stimulus, with frequency f (in cpd), contrast C and
mean luminance value M (in cd/m2). After pre-processing,
I becomes I⋆f,C,1, so that the visibility of the grating is not
sensitive to M , but to C.

Figure 5. Dark Blue: Barten’s CSF (L = 100). Blue: Visibility
Vsine of sine wave gratings (M = 100, Ct = 1). Green: Visibil-
ity Vsquare of square gratings. Red: 4/πVsquare.

The visibility of gratings If,1,M was compared to the
CSF , with a good agreement, in Fig. 5. Moreover, accord-
ing to [5], the visibility of sine wave and square gratings are
proportional downto the CSF maximum value. This predic-
tion was also found, and with the same ratio r = 4/π (this
factor results from the decomposition of the square grating
into harmonics, see [5])).

Another effective result is that the proposed model is
consistent with Ricco’s law, which states that the visibility
of a small target follows:

log10(Cs) = K − log10(A) (14)

where Cs is the visibility threshold of a disc with an area A.
To check this, the edge visibility of discs of various sizes
were computed (M = 100 cd/m2 and C = 0.01 for all
targets). If V (r) is the visibility of a disc with radius r, its
contrast level at the visibility threshold can be set to Cs =
0.01/V (r), because the visibility is linear with C. Thus, it
was possible to plot Eq. 14 in Fig. 6 (A = πr2). The first
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part of the curve follows Ricco’s law (linear, with slope -1),
then it tends to a constant for larger targets, which is the
expected behaviour.

Figure 6. Estimation of Ricco’s law with the proposed model: con-
trast threshold Cs of discs of various angular size as a function of
their area (Log-Log representation).

4. Conclusion
We propose a unified framework, based on a simulation

of the HVS, in order to compute both the localization and
visibility of edges in an image. Future work includes more
intensive validation of the model against psychophysical vi-
sion models, such as contrast masking [16]. One promis-
ing improvement could be to combine zero-crossings of the
SDoG, which fails to detect junctions, with local extrema,
which are well known scale-invariant keypoints [10, 18].

A number of applications may benefit of this work, be-
cause it can be seen as a true human vision simulator ap-
plied to edge detection, which addresses several military
concerns. Also, changing from Barten’s CSF to a patho-
logical CSF (low vision) may simulate the edge detection
task for a given population. Improving existing Advanced
Driver Assistance Systems (ADAS) is another possible ap-
plication of our operator, as the knowledge of the driver’s
visibility in the scene may be used to regulate these sys-
tems.
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