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Abstract–One source of accidents when driv-

ing a vehicle is the presence of fog. Fog fades the 

colors and reduces the contrasts in the scene with 

respect to their distances from the driver. Vari-

ous camera-based Advanced Driver Assistance 

Systems (ADAS) can be improved if efficient al-

gorithms are designed for visibility enhancement 

in road images. The visibility enhancement algo-

rithm proposed in  [1] is not optimized for road 

images. In this paper, we reformulate the problem 

as the inference of the local atmospheric veil from 

constraints. The algorithm in  [1] thus becomes 

a particular case. From this new derivation, we 

propose to better handle road images by introduc-

ing an extra constraint taking into account that 

a large part of the image can be assumed to be 

a planar road. The advantages of the proposed 

local algorithm are the speed, the possibility to 

handle both color and gray-level images, and the 

small number of parameters. A new scheme is 

proposed for rating visibility enhancement algo-

rithms based on the addition of several types of 

generated fog on synthetic and camera images. 

A comparative study and quantitative evaluation 

with other state-of-the-art algorithms is thus pro-

posed. This evaluation demonstrates that the new 

algorithm produces better results with homoge-

neous fog and that it is able to deal better with the 

presence of heterogeneous fog. Finally, we also 

propose a model allowing to evaluate the poten-

tial safety benefit of an ADAS based on the display 

of defogged images. 

I. Introduction
cause of vehicle accidents 

is reduced visibility due 

to bad weather condi-

tions such as fog. This 

suggests that an algorithm 

able to improve visibility and 

contrast in foggy images will 

be useful for various camera-

based Advanced Driver Assis-

tance Systems (ADAS). In [2], 

it is shown for several types 

of detection algorithms, that 

a visibility enhancement pre-

processing allows to improve 

detection performance in 

presence of fog. This is due to 

a better respect after pre-pro-

cessing of the assumption that 

objects to be detected have a 

minimal contrast which is set 

to be uniform over the whole 

image. Two kinds of ADAS can be considered. The first pos-

sibility is to display the image from a frontal camera after 

visibility enhancement. We call this kind of ADAS a Fog Vi-

sion Enhancement System (FVES). The second possibility 

is to combine visibility enhancement pre-processing with 

detection of stopped cars/moving cars/pedestrians/two-

wheeled vehicles, to deliver adequate warning. An example 

is a warning when the distance to the previous moving ve-

hicle is too short with respect to the driver’s speed. 

For ADAS based on the use of a single camera in the ve-

hicle, the contrast enhancement algorithm must be able to 

robustly process each image in a sequence in real time. The 

key problem is that, from a single foggy image, contrast en-

hancement is an ill-posed problem. Indeed, due to the phys-

ics of fog, visibility restoration requires to estimate both the 

scene luminance without fog and the scene depth-map. This 

implies estimating two unknown parameters per pixel from 

a single image. 

The first approach proposed to tackle the visibility res-

toration problem from a single image is described in [3]. 

The main idea is to provide 

interactively an approximate 

depth-map of the scene ge-

ometry allowing to deduce an 

approximate luminance map 

without fog. The drawback 

of this approach for camera-

based ADAS is clear: it is not 

easy to provide the approxi-

mate depth-map of the scene 

geometry from the point of 

view of the driver all along its 

road path. In [4], this idea of 

approximate depth-map was 

refined by proposing several 

simple parametric geomet-

ric models dedicated to road 

scenes seen in front of a ve-

hicle. For each type of model, 

the parameters are fit on each 

view by maximizing the scene 

depths globally without pro-

ducing black pixels in the enhanced image. The limit of 

this approach is the lack of flexibility of the proposed geo-

metric models. 

During the same period of time, another approach was 

proposed in [5] based on the use of color images with pix-

els having a hue different from gray. A difficulty with this 

approach, for the applications we focus on, is that a large 

part of the image corresponds to the road which is gray and 

white. Moreover, in many intelligent vehicle applications, 

only gray-level images are processed. 

More recently and for the first time in [1], [6], [7], three 

visibility enhancement algorithms were proposed work-

ing from a single gray-level or color image without using 

any other extra source of information. These three algo-

rithms rely on a local spatial regularization to solve the 

problem. Being local, these algorithms can cope with ho-

mogeneous and heterogeneous fog. The main drawback of 

the algorithms in [6] and [7] is their processing time: 5 to 

7  minutes and 10  to 20  seconds on a 600 400#  image, 

respectively. The algorithm proposed in [1] is much faster 

A
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with a processing time of 0.2  second on a Dual-Core PC on 

similar image size. A fast variant of [7] was very recently 

proposed in [8]. The disadvantage of these three visibility 

enhancement methods, and of the other variants or im-

proved algorithms more recently proposed, is that they are 

not dedicated to road images and thus the road part of the 

image which is gray may be over-enhanced. This is due to 

the ambiguity between light colored objects and the pres-

ence of fog, and leads to the apparition of unwelcome struc-

tures in the enhanced image, as it is illustrated on three 

images in Fig. 1. 

The important property of a road image is that a large 

part of the image corresponds to the road way which can 

reasonably be assumed to be planar. Visibility enhance-

ment dedicated to planar surface was first proposed in 

[9], but this algorithm is not able to correctly enhance vis-

ibility of objects out of the road plane. Recently, a visibility 

enhancement algorithm [2] dedicated to road images was 

proposed which was also able to enhance contrast for ob-

jects out of the road plane. This algorithm makes good use 

of the planar road assumption but relies on an homoge-

neous fog assumption. 

In this work, we formulate the restoration problem as 

the inference of the atmospheric veil from to three con-

straints. The first constraint relies on photometrical prop-

erties of the foggy scene. The second constraint, named 

the no-black-pixel constraint, was not used in [6], [7] and 

[1]. It involves filtering the image. 

The algorithm described in [1] cor-

responds to the particular case 

where two constraints are used 

with the median filter. To take into 

account that a large part of the im-

age is a planar road, as introduced 

first in [2], a third constraint based 

on the planar road assumption is 

added. The new algorithm can thus be seen as the exten-

sion of the local visibility enhancement algorithm [1] com-

bined with the road-specific enhancement algorithm [9]. 

The proposed algorithm is suitable for FVES since it is able 

to process gray-level as well as color images and runs close 

to real time. 

To compare the proposed algorithm to previously pre-

sented algorithms, we propose an evaluation scheme and 

we build up a set of synthetic and camera images with and 

without homogeneous and heterogeneous fog. The algo-

rithms are applied on foggy images and results are com-

pared with the images without fog. For FVES in which the 

image after visibility enhancement is displayed to the driv-

er, we also propose an accident scenario and a model of the 

probability of fatal injury as a function of the setting of the 

visibility enhancement algorithm. 

The article is structured as follows. Section II presents 

the fog model we use. In section III, the multiscale ret-

inex algorithm (MSR) [10] and the contrast-limited adap-

tive histogram equalization (CLAHE) are summarized. In 

section IV, different approaches of visibility enhancement 

are described: based on the planar assumption (PA) [9], on 

a free-space segmentation (FSS) [2], on our new derivation 

using the no-black-pixel constraint (NBPC) [1], on Dark 

Chanel Prior (DCP) [7], and finally the new combined al-

gorithm named NBPC+PA is proposed. In section V, a com-

parison is provided between MSR, CLAHE, DCP, FSS, NBPC 

(a) (b) (c) (d) (e) (f) (g) (h)

FIG 1 (a) The original image with fog, the images enhanced using algorithms : (b) multiscale retinex (MSR), (c) contrast-limited adaptive histogram 
equalization (CLAHE), (d) planar assumption with clipping (PA), (e) dark channel prior (DCP), (f) free-space segmentation (FFS), (g) no-black-pixel 
constraint (NBPC), and (h) no-black-pixel constraint combined with planar assumption (NBPC+PA).

Due to the physics of fog, visibility restoration requires to 
estimate both the scene luminance without fog and the scene 
depth-map.



IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  9  •  SUMMER 2012

and NBPC+PA algorithms based on a quantitative evalua-

tion on two sets of 66 4#  and 10 4#  foggy images, illus-

trating the properties of each algorithm. Finally, in section 

VI an accident scenario is proposed with a model allowing 

to estimate potential safety benefits of FVES. 

II. Effects of Fog
Assuming an object of intrinsic luminance ( , )L u v0 , its ap-

parent luminance ( , )L u v  in presence of a fog of extinction 

coefficient k  is modeled by Koschmieder’s law [11]: 

 ( , ) ( , ) ( ),L u v L u v e L e1( , ) ( , )kd u v
s

kd u v
0= + -- -  (1)

where ( , )d u v  is the distance of the object at pixel ( , )u v  

and Ls  is the luminance of the sky. As described by (1), fog 

has two effects: first an exponential decay e ( , )kd u v-  of the in-

trinsic luminance ( , )L u v0 , and second the addition of the 

luminance of the atmospheric veil ( )L e1 ( , )
s

kd u v- -  which is 

an increasing function of the object distance ( , )d u v . These 

two effects can be seen on the same scene in Fig. 2 for dif-

ferent values of k . The meteorological visibility distance is 

defined as ( ( . ))/( )lnd k0 05m =- , see [11]. 

From now on, we assume that the camera response is 

linear, and thus image intensity I  is substituted to lumi-

nance L . 

III. Color and Contrast Enhancement
We now recall the Multiscale Retinex (MSR) and Contrast-

limited adaptive histogram equalization (CLAHE) algorithms. 

These two algorithms are not based on Koschmieder’s law 

(1) and thus are only able to remove a fog of constant thick-

ness on an image. They are not visibility enhancement algo-

rithms. However, we found it interesting to include these two 

algorithms in our comparison in order to verify that visibility 

enhancement algorithms achieve better results. 

A. Multiscale Retinex (MSR)
The multiscale retinex (MSR) is a non-linear image en-

hancement algorithm proposed by [10]. The overall impact 

is to brighten up areas of poor contrast/brightness but not 

at the expense of saturating areas of good contrast/bright-

ness. The MSR output is simply the weighted sum of the 

outputs of several single scale retinex (SSR) at different 

scales. 

Each color component being processed independently, 

the basic form of the SSR for on input image ( , )I u v  is: 

 ( , ) ( , ) [ ( , ) ( , )],log logR u v I u v F u v I u vk k= - *  (2)

where ( , )R u vk  is the SSR output, Fk  represents the kth  

surround function, and ) is the convolution operator. The 

surround functions, Fk  are given as normalized Gaussians: 

 ( , ) ,F u v e ( )/
k k

u v k
2 2 2

l= v- +  (3)

where kv  is the scale controlling the extent of the sur-

round and kl  is for unit normalization. Finally the MSR 

output is: 

 ( , ) ( , ),R u v W R u vk k
k

k K

1
=

=

=

/  (4)

where Wk  is the weight associated to Fk . 

The number of scales used for the MSR is, of course, 

application dependent. We have tested different sets of 

parameters, and we did not find a better parametrization 

than the one proposed by [10]. It consists of three scales 

representing narrow, medium, and wide surrounds that 

are sufficient to provide both dynamic range compression 

and tonal rendition: K 3= , 151v = , 802v = , 2503v = , 

and /W 1 3k =  for , ,k 1 2 3= . 

Results obtained using the multiple retinex on three 

foggy images are presented in column two of Fig. 1. 

B. Contrast-Limited Adaptive Histogram 
Equalization (CLAHE)
Contrast-limited adaptive histogram equalization (CLA-

HE) locally enhances the image contrast. As proposed 

in [12], CLAHE operates on 8 8#  regions in the image, 

called tiles, rather than the entire image. Each tile’s 

contrast is enhanced, so that the histogram of the out-

put region approximately matches a f lat histogram. The 

neighboring tiles are then combined using bilinear in-

terpolation to eliminate artificially induced boundaries. 

The enhanced contrast, especially in homogeneous ar-

eas, is limited to avoid amplifying noise or unwelcome 

structures, such as object textures, that might be present 

in the image. The parameter controlling this limitation 

was optimized on 40  images, varying both the scene and 

the fog properties. 

Results obtained using the CLAHE algorithm are pre-

sented in column three of Fig. 1. 

(a) (b)

(c) (d)

FIG 2 Contrast fading on the same scene due to various values of the 
extinction coefficient k.
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IV. Enhancement Based on Koschmieder’s Law
Four visibility enhancement algorithms are now presented: 

enhancement assuming a planar scene assumption (PA), 

enhancement with free-space segmentation (FSS), enhance-

ment with the no-black-pixel constraint (NBPC) and enhance-

ment with the dark channel prior (DCP). The advantages and 

limits of these algorithms are discussed. A new algorithm, 

named NBPC+PA, which combines the advantages of PA and 

NBPC algorithms, is proposed. The results obtained by the 

five algorithms are presented in Fig. 1 on three images. 

A. With the Planar Assumption (PA)
Dedicated to in-vehicle applications, the algorithm proposed 

in [13], [11] is able to detect the presence of fog and to esti-

mate the visibility distance which is directly related to the k  

in Koschmieder’s law (1). This algorithm, also known as the 

inflection point algorithm, mainly relies on three assump-

tions: fog is homogeneous, the main part of the image dis-

plays the road surface which is assumed to be planar and 

homogeneous surface. From the estimated fog parameters, 

the contrast in the road part of the image can be restored as 

explained in [9]. 

Using the planar road surface assumption and know-

ing the approximate camera calibration with respect to the 

road, it is possible to associate a distance d  with each line  

v  of the image: 

 ifd
v v

v v
h

h2m=
-

, (5)

where vh  is the vertical position of the horizon line in the 

image and m  depends on intrinsic and extrinsic param-

eters of the camera, see [11] for details. 

Using the assumption of a road with homogeneous pho-

tometric properties ( I0  is constant), fog can be detected 

and the extinction coefficient of the atmosphere k  can be 

estimated using Koschmieder’s law (1). After substitution 

of d  given by (5), (1) becomes: 

 ( )I v I e I e1k
s

k
0 v vh v v= + -- -m m

- - h^ h. (6)

By taking twice the derivative of I with respect to v , the 

following is obtained: 

 ( )
( )

( )

dv
d I v k

v v
I I e

v v
k 2

h

s k

h
2

2

3
0

v v
m m=

-

-
-

-- m
- h c m. (7)

The equation ( )/( )d I dv 02 2 =  has two solutions. The so-

lution k 0=  is of no interest. The only useful solution 

is given by ,m( ( ))/k v v2 i h= -  where vi  denotes the po-

sition of the inflection point of ( )I v . An illustration of 

this method is presented in Figure 3(b). The value of Is  

is obtained as the intensity of the sky. Most of the time, 

it corresponds to the maximum intensity in the image. 

Having estimated the value of k  and Is , the pixels on the 

road plane can be restored as ( , )R u v  by reversing Kos-

chmieder’s law [9]: 

 ( , ) ( , ) ( )R u v I u v e I e1k
s

kv v v v= + -
m m

- -h h . (8)

As in [4], the introduction of a clipping plane in equation 

(5) allows to apply the reverse of Koschmieder’s law in the 

whole image. More precisely, the used geometrical model 

consists in the road plane (5) in the bottom part of the im-

age, and in a vertical plane in front of the camera in the 

top part of the image. The height of the line which sepa-

rates the road model and the clipping plane is denoted c . 

As a consequence only large distances are clipped. In sum-

mary, the geometrical model ( , )d u vc  of a pixel at position 

( , )u v  is expressed as: 

 ( , )
( )

( )

d u v v v

c v

v c

v c

if

if
c

h

h

2

#

m

m=
-

-

Z

[

\

]]

]]
. (9)

Results obtained with the previous model where the clip-

ping plane is set at the meteorological visibility distance 

dm  are shown on three foggy images in column four of 

Fig.|1. From these results, it appears that only the road part 

of the image is correctly restored. 

B. With Free-Space Segmentation (FSS)
To be able to enhance the visibility in the rest of the scene, 

an estimate of the depth ( , )d u v  of each pixel is needed. In 

[4], a parameterized 3D model of the road scene was pro-

posed with a reduced number of geometric parameters. 

(a) (b) (c) (d) (e)

FIG 3 Steps of visibility enhancement with the FSS algorithm: (a) original image, (b) fog detection using the vertical inflection point, (c) segmentation of 
vertical objects (in red) and free-space region (in green), (d) rough estimate of the scene depthmap, and (e) obtained visibility enhancement.
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Even if these models are relevant 

for most road scenes and even if the 

parameters of the selected model 

are optimized to achieve best en-

hancement without black pixel in 

the resulting image, the proposed 

model is not generic enough to 

handle all traffic configurations. 

In [2], a different scheme is 

proposed. Once again, the road is assumed to be planar 

with a clipping plane, see (9). When a geometric model (9) 

is assumed, the contrast of objects belonging to the road 

plane is correctly restored, as seen in previous section. 

Conversely, the contrast of vertical objects of the scene 

(vehicles, trees,...) is incorrectly restored since their 

depth in the scene is largely overestimated. Consequent-

ly, their restored intensity using (8) are negative and thus 

set to zero in the enhanced image. These are named black 

pixels. The set of all black pixels gives a segmentation of 

the image in two regions, one inside the road plane in 

3D and the other outside. This allows to deduce the free-

space region, as illustrated in green and red in Fig. 3, see 

[14] for details. 

For each pixel in the free-space region, the road plane 

model (5) is correct. For pixels out of the road plane (red 

region in third image of Fig. 3), it is proposed in [2] to use 

the geometric model (9) and, for each pixel, to search for 

the smallest value of c  which leads to a positive intensity 

in the restored image. The obtained values are denoted 

( , ) .c u vmin  Indeed, when c  is close to the vh , the clipping 

plane is far from the camera and the visibility is only 

slightly enhanced. The larger the value of c , the closer the 

clipping plane is to the camera, and thus the stronger the 

enhancement. The enhancement in (8) can be so strong 

that enhanced intensity becomes negative. 

Every ( , )c u vmin  value can be associated with a distance 

( , )d u vmin  using (9). The resulting depthmap on the foggy 

image is displayed in Fig. 3. Then, a rough estimate of the 

depthmap ( , )d u v  is obtained as a fixed percentage p of 

depth map ( , )d u vmin . Percentage p specifies the strength 

of the enhancement and is usually set to %95  for this meth-

od. The depthmap is used to enhance the contrast on the 

whole image using the reversed Koschmieder’s law as il-

lustrated in the fourth image of Fig. 3. The algorithm is 

detailed in [2], [14] and more results are shown in the sixth 

column of Fig. 1. 

C. With No-Black-Pixel Constraint (NBPC)
In [1], an algorithm which relies on a local regulariza-

tion is proposed. The distance ( , )d u v  being unknown, 

the goal of the visibility enhancement in a single image 

can be set as inferring the intensity of the atmospheric veil 

( , ) ( )V u v I e1 ( , )
s

kd u v= - - . Most of the time, the intensity of 

the sky Is  corresponds to the maximum intensity in the 

image, and thus Is  can be set to one without loss of gener-

ality, assuming the input image is normalized. After sub-

stitution of V  in (1) and with I 1s = , Koschmieder’s law is 

rewritten as: 

 ( , ) ( , ) ( ( , )) ( , )I u v I u v V u v V u v10= - + . (10)

The foggy image ( , )I u v  is enhanced as R , the estimate 

of I0 , simply by the reversing of (10): 

 ( , )
( , )

( , ) ( , )R u v
V u v

I u v V u v
1

=
-

-
. (11)

The enhancement equation provided by Koschmieder’s 

law is a linear transformation. Interestingly, it gives the ex-

act link between its intercept and its slope. 

The atmospheric veil ( , )V u v  being unknown, let us 

enumerate the constraints which apply to ( , )V u v . ( , )V u v
must be higher or equal to zero and ( , )V u v  is lower than 

( , )I u v : 

 ( , ) ( , )V u v I u v0 # # . (12)

These are the photometric constraints as named in [6]. 

We now introduce a new constraint, not used in [1], 

which focuses on the reduction of the number of black pix-

els in the enhanced image R . This constraint is named 

no-black-pixel constraint and states that the local standard 

deviation of the enhanced pixels around a given pixel posi-

tion must be lower than its local average: 

 ( )f R Rstd # r , (13)

where f  is a factor usually set to 1. In case of a Gaussian 

distribution of the intensities and f 1= , this criterion im-

plies . %15 8  of the intensities becoming black. Using f 2=  

leads to a stronger criterion where only . %2 2  of the inten-

sities become black. 

The difficulty with this last constraint is that it is set as a 

function of the unknown result R . Thanks to the linearity of 

(11), the no-black-pixel constraint can be turned into a con-

straint involving V  and I  only. For this purpose, we now en-

force local spatial regularization by assuming that locally 

around pixel position ( , )u v , the scene depth is constant and 

the fog is homogeneous, i.e., equivalently, the atmospheric 

veil locally equals ( , )V u v  at the central position. Under 

The set of all black pixels gives a segmentation of the image 
in two regions, one inside the road plane in 3D and the 
other outside.
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this assumption, we derive using (11) that the local aver-

ages Ir  and Rr  are related by ( , ))/( ( , )R I V u v V u v1= - -r r^ h
and that the standard deviations ( )Istd  and ( )Rstd  are re-

lated by ( ) ( ))/( ( , )R I V u v1std std= -^ h. We therefore ob-

tain, after substitution of the two previous results in (13), 

the no-black-pixel constraint rewritten as a function of 

( , )V u v  and I: 

 ( , ) ( )V u v I f Istd# -r . (14)

The atmospheric veil ( , )V u v  is set as a percentage p of 

the minimum over the two previous upper bounds (12) and 

(14): 

 ( , ) ( ( , ), ( ))minV u v p I u v I f Istd= -r . (15) 

Percentage p  specifies the strength of the enhancement 

and is usually set to %95  for this method. The enhanced 

image is obtained by applying (11) using the previous .V  

V  may be thresholded to zero in case of negative val-

ues. The algorithm derived from the photometric and 

no-black-pixel constraints turns out to be the one de-

scribed in [1] where Ir  is obtained as the median of the 

local intensities in a window of size sv  and the standard 

deviation as the median of the absolute differences be-

tween the intensities and Ir  using same window size. 

Other edge-preserving filters can be also used, such as 

the median of median along lines [1] or bilateral filter-

ing. Due to edge smoothing of complex borders, small 

artifacts are produced in the restored image around 

complex depth discontinuities such as tree silhouettes. 

A post-processing with the cross/joint bilateral filter on 

V using I  as a guide can be used to clean these artifacts 

as proposed in [15]. 

This enhancement algorithm is presented with a gray-

level input image but can be extended easily to color im-

ages ( ( , ), ( , ), ( , ))r u v g u v b u v  by applying the photometric 

constraint to substitute I  in the previous equation by 

the|gray-level image ( , ) ( ( , ), ( , ), ( , ))minI u v r u v g u v b u v=

after adequate white balance. The obtained V  gives the 

amount of white that must be subtracted to the three color 

channels. The algorithm is available1 in Matlab TM . 

Fig. 1 shows the visibility enhancement obtained by 

the NBPC algorithm in the seventh column. One can no-

tice that the contrast on the texture of the road part of 

the resulting image is over-enhanced. This is due to the 

fact that the atmospheric veil ( , )V u v  in the road part of 

the image is over-estimated. This is a consequence of the 

locality property of the NBPC algorithm. As detailed in 

[1], a final gamma mapping can be used to attenuate this 

problem. 

D. Dark Channel Prior (DCP)
An algorithm for local visibility enhancement named Dark 

Channel Prior was proposed in [7]. For gray level images, 

the DCP algorithm consists first in applying a morphologi-

cal erosion or opening with a structuring element of size 

,sv  which removes all white objects with a size smaller 

than sv . Then, the atmospheric veil ( , )V u v  is set as a per-

centage p of the opening result. This first step can thus 

be seen as a particular case of the NBPC algorithm using a 

morphological operator as filter and with f 0= . Similarly 

to what was explained in the previous section, an erosion 

or an opening does not preserve accurate complex borders 

along depth discontinuities. In [7], a matting algorithm is 

used to restore complex borders in .V  A faster alternative 

consists in using iterations of the guided-filter, as proposed 

in [8]. The cross/joint bilateral filter is another alternative. 

The implementation used in our experiments is based on 

the guided filter. The enhanced image is obtained by ap-

plying the inverse of Koschmieder’s law (11) using the pre-

vious .V  Fig. 1 shows the visibility enhancement obtained 

by the DCP algorithm in the fifth column. A final fixed 

gamma mapping is used to attenuate the darkening of the 

road region. 

As in the NBPC algorithm, color images are handled by 

using ( , ) ( ( , ), ( , ), ( , ))minI u v r u v g u v b u v=  as the input 

gray-level image. 

E. Combining the No-Black-Pixel Constraint 
and the Planar Assumption (NBPC +PA)
On the one hand, the visibility enhancement with FSS, as 

explained in section IV-B, performs a segmentation to split 

the image into three regions: the sky, the objects out of the 

road plane, and the free-space in the road plane. Various 

enhancement processes are performed depending on the 

region. The difficulty with an approach based on segmen-

tation is to manage correctly the transition between re-

gions. On the other hand, the visibility enhancement with 

NBPC and DCP are local methods which are not dedicated 

to road images and which are in difficulties in presence of 

a large uniform gray region such as a road, as underlined 

in [16]. Indeed, the atmospheric veil in the bottom part of 

the image is over-estimated. 

To combine the advantages of the two approaches, we in-

troduce in the NBPC a third constraint, during the inference 

of the atmospheric veil ( , )V u v , which prevents over-estima-

tion in the bottom part of the image by taking into account 

the reduced distance between the camera and the road. 

In practice, it is very rare to observe fog with a meteo-

rological visibility distance dm  lower than m60 . Assuming 

that the minimum meteorological visibility distance is six-

ty meters, i.e., d 60m $ , we deduce ( . ))/( .lnk 0 05 60#-^ h  

We also assume that the road is a plane up to a certain dis-

tance, and that the camera calibration is known with re-

spect to the road, so that m  and vh  are known. Thus, using 1perso.lcpc.fr/tarel.jean-philippe/visibility/
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(a) (b) (c) (d) (e) (f)

FIG 4 Synthetic road images database. (a) Original synthetic image, (b) depth map, and (c)–(f) original image with different types of synthetic fog added, 
from left to right: uniform fog, heterogeneous k fog, heterogeneous Ls fog, and heterogeneous k and Ls fog. 

the last term of equation (6), the atmospheric veil is subject 

to the following third constraint: 

 d( , ) ( )V u v I e1s
( . )

min
ln

h

0 05

# -
m

( )v v- , (16)

where dmin  can be set for instance to the minimum dis-

tance m60 . We named (16) the planar assumption con-

straint. As in the NBPC algorithm, the atmospheric veil 

( , )V u v  is set to a percentage p of the minimum over the 

three upper bounds: 

  ( , ) ( , ), ( ),minV u v p I u v I f std I= -^ (1 )I es ( )

( . )ln
d v v

0 05
min-

m
- h h. (17)

The enhanced image results of the application of (11). We 

named it visibility enhancement with NBPC+PA. 

In the presence of fog with a meteorological visibil-

ity distance lower than 60d mmin = , this third constraint 

limits the possibilities of enhancement which will be par-

tial at short distances even with %p 100= . An interesting 

consequence of introducing the third constraint is that the 

final gamma mapping used in NBPC and DCP algorithms 

is no longer needed to attenuate the image darkening, as 

illustrated in the eighth column of Fig. 1. 

Rather than fixing 60d mmin = , an alternate approach, 

not tested here, would be to run a fog detection algorithm 

with the k  estimation as explained in section IV-A and to 

use the estimated k  in (16) instead of ( . ))/(ln 0 05 60-^ h. 

This estimation of k  assumes an homogeneous fog. 

Therefore, this refinement should lead to more accurate 

results compared to the NBPC+PA when the fog is uniform, 

but may lead to a bias when the fog is not homogeneous. 

V. Experiments
To evaluate visibility enhancement algorithms, we need 

images of the same scene with and without fog. Howev-

er, obtaining such pairs of images is extremely difficult 

in practice since it requires to check that the illumination 

conditions are the same into the scene with and without 

fog. As a consequence, for the evaluation of the proposed 

visibility enhancement algorithm and its comparison with 

existing algorithms, we build up two sets of images with-

out fog and with synthetic fog, from 66  synthetic and 10
camera scenes. 

A. Synthetic Fog
We generated 66 synthetic images using the SiVIC TM

software which allows to build physically-based road en-

vironments, to generate a moving vehicle with a physi-

cally-driven model of dynamic behavior [17], and virtual 

embedded sensors. From three realistic and complex mod-

els (urban, highway and mounts), we produced images 

from a virtual camera inboard a simulated vehicle moving 

on a road path. We have computed 66 images without fog 

from various viewpoints trying to sample as many scene 

aspects as possible. Each image is of size 640 480# . A sub-

set of 4 images is shown in the first column of Fig. 4. For 
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each point of view, the true depthmap is also computed, as 

shown in the second column of Fig. 4. Indeed, the depth-

map is required to add fog in the images. 

Synthetic images were computed from the image data-

base, using 4 different types of fog: 

 ■ Uniform fog: Koschmieder’s law (1) is applied with a 

meteorological visibility distance of m80 . 

 ■ Heterogeneous k  fog: as fog is not always homogeneous, 

we introduced a variability in Koschmieder’s law by 

weighting k  differently with respect to the pixel position. 

These spatial weights are obtained by means of a Perlin’s 

noise between 0  and 1, i.e., a noise spatially correlated at 

different scales ( , ,2 4 8, up to the size of the image in pix-

els) [18]. Perlin’s noise is obtained as a linear combination 

over the spatially correlated noise generated at different 

scales with weight ( )log s2
2  for scale s. The average me-

teorological visibility distance is set to m80 . 

 ■ Heterogeneous Ls  fog: rather than having k  heteroge-

neous and Ls  constant, we also tested the case where 

Ls  is heterogeneous thanks again to Perlin’s noise and 

where k  is constant. The meteorological visibility dis-

tance corresponding to k  is m80 . This method produc-

es fog with a cloudy sky. 

 ■ Heterogeneous k  and Ls  fog: in order to challenge the 

algorithms, we also generated a fog based on Koschmie-

der’s law (1) where k  and Ls  are both heterogeneous 

thanks to two independent Perlin’s noises. The average 

k  is set to enforce an m80  visibility distance.

Finally the synthetic image database contains 4  sets 

of 66  foggy images, i.e., a total of 264  foggy images, as-

sociated with the 66  original images. Examples of foggy 

images are displayed in the last four columns of Fig. 4. 

Notice the differences in aspect between the different 

types of generated fog. The set of 330  synthetic images 

and 66  depthmaps used for the ground truth is avail-

able2 for research purpose and in particular to allow 

other researchers to rate their own visibility enhance-

ment algorithms. 

We applied the same process to add the 4 types of fog to 

10  camera images. The 10  camera images were selected as 

the left image of stereo sequences from Karlsruhe dataset3. 

The point in using these images is that the disparity maps 

obtained using the stereo reconstruction algorithm Libelas 

[19] are also available from Karlsruhe dataset. These dispar-

ity maps being of sufficient quality, we performed a cross/

joint bilateral filtering to fill in the remaining holes using the 

original image as an interpolation guide [20]. The depthmaps 

are then deduced from the disparity maps using the cameras 

calibration. Finally the camera image database contains 4 

sets of 10  foggy images associated with the 10  original im-

ages, i.e., a total of 40  foggy images. Examples of original 

and foggy images with a uniform fog are displayed in the first 

two columns of Fig. 5. 

B. Comparison on Synthetic Images
We apply each algorithm on the 4 types of fog. The tested 

algorithms are: multiscale retinex (MSR), adaptive histo-

gram equalization (CLAHE), dark channel prior (DCP), 

enhancement with free-space segmentation (FSS), en-

hancement with no-black-pixel constraint (NBPC) and en-

hancement with no-black-pixel constraint combined with 

planar scene assumption (NBPC+PA). The results on 11 im-

ages with uniform and hetereogeneous fog are presented 

in Figure 6. Notice the contrast increase for the farther ob-

jects: some objects which were barely visible in foggy image 

appear clearly in enhanced images. A first visual analysis 

confirms that: first, MSR and CLAHE are not suited for fog-

gy images; second, far away objects are more foggy after 

(b)(a) (c) (d) (e) (f) (g) (h)

FIG 5 Visibility enhancement results on camera images. (a) The original camera image without fog, (b) the image with a uniform fog added, the images 
enhanced using (c) multiscale retinex, (d) adaptive histogram equalization, (e) dark channel prior, (f) free-space segmentation, (g) no-black-pixel 
constraint, and (h) no-black-pixel constraint combined with planar scene assumption.

2www.lcpc.fr/english/products/image-databases/article/frida-foggy-
road-image-database 3http://www.rainsoft.de/software/datasets.html
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DCP than after NBPC+PA; third, vertical objects appear too 

dark with FSS; fourth, the roadway looks over-corrected by 

NBPC; fifth, NBPC+PA comes as a nice trade-off. 

The same quantitative comparison consists in comput-

ing the absolute difference between the image without fog 

and the image obtained after enhancement. The results, 

averaged over the 66  images, the number of image pixels 

and the number of image color components, are shown in 

Table 1. In this average, pixels in the sky, in the original 

image, are discarded not to bias results. Indeed, the sky 

intensity cannot be restored as constant white when Ls  is 

heterogeneous. By computing the average enhancement on 

the whole image, the proposed metric is global and is not 

very sensitive to errors around edges. We think that this 

(b)(a) (c) (d) (e) (f) (g) (h)

FIG 6 Visibility enhancement results on synthetic images. (a) The original synthetic image without fog, (b) the image with fog, the images enhanced 
using (c) multiscale retinex, (d) adaptive histogram equalization, (e) dark channel prior, (f) free-space segmentation, (g) no-black-pixel constraint, and 
(h) no-black-pixel constraint combined with planar scene assumption.
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metric is appropriate for intelligent vehicle applications 

but it is probably not in other domains such as computa-

tional photography. 

In order to easily rate the improvement brought by the 

tested algorithms, the average absolute difference between 

the foggy image and the image without fog is also computed 

and shown in row two of the table. One can notice that the 

proposed algorithms are able, in the best case, to divide the 

average difference by a factor slightly higher than two. 

The multiscale retinex (MSR) is not a visibility en-

hancement algorithm dedicated to scene with various 

object depths. The average difference is decreased for the 

uniform fog and for fog with heterogeneous ,Ls  compared 

to doing nothing. Interestingly, when k  is heterogeneous, 

the multiscale retinex is worse than doing nothing. This 

is due to the fact that MSR increases some contrasts cor-

responding to fog and not to the scene. 

Compared to doing nothing, the average difference 

is always improved when using the adaptive histogram 

equalization. Nevertheless, it is not a visibility en-

hancement algorithm based on Koschmieder’s law (1) 

and thus the improvement is small. As an illustration, 

CLAHE obtains worse results than the mul-

tiscale retinex for uniform fog and for fog 

with heterogeneous .Ls  

The dark channel prior (DCP) and no-black-

pixel constraint (NBPC) algorithms achieve 

similar performance in average on the whole 

database. Nevertheless, we notice that with the 

NBPC algorithm the visibility improvement is 

slightly superior at long range distances. 

With uniform fog, enhancement with 

free-space segmentation (FSS) and with no-

black-pixel constraint combined with pla-

nar scene assumption (NBPC+PA) gives the 

best results. A second group of algorithms 

with similar performance for uniform fog 

images contains: dark channel prior (DCP), 

no-black-pixel constraint (NBPC) and multiscale ret-

inex (MSR). These last three algorithms are less effi-

cient than the first two due to the difficulty to restore 

the correct average intensity on the road part of the im-

age. NBPC+PA brings the performance of NBPC at long 

range distances without contrast distortions on the road 

part of the image thanks to the combination with the 

planar assumption. 

For the three types of heterogeneous fog, enhancement 

with NBPC+PA leads to better results compared to FSS. 

This can be explained by the fact that the FSS enhance-

ment algorithm relies strongly on the assumption that k
and Ls  are constant over the whole image while NBPC+PA 

algorithm does not. Indeed, the NBPC+PA algorithm only 

assumes that k  and Ls  are locally constant in the image 

and thus, most of the time, it performs better with hetero-

geneous fog compared to others. 

C. Comparison on Camera Images
We applied the same algorithms as in the previous sec-

tion on the 10 images of the Karlsruhe database with the 4 

types of fog. The results on 5 images with a uniform fog are 

presented in Figure 5. Notice how the con-

trast is restored for the farther objects. The 

quantitative comparison is shown in Table 2. 

The results are quite consistent with previ-

ous results despite the fact that images are in 

gray levels and not in colors. The two visibility 

enhancement algorithms which perform best 

are NBPC+PA and FSS. 

VI. Driver Assistance in Fog

A. Principle
In [2], it is shown that applying a visibility en-

hancement pre-processing improves detec-

tion performances for sign and road markings, 

by restoring the uniformity of the detection 

Algorithm Uniform Variable k Variable Ls Variable k&Ls All Types 

Nothing 73.1 !  8.9 71.4 !  10.1 61.8 !  8.0 60.4 !  8.5 66.6 !  10.5

MSR 47.5 !  8.8 74.5 !  21.7 47.6 !  14.0 72.2 !  20.4 60.5 !  22.0

CLAHE 53.4 !  8.8 55.8 !  9.4 47.1 !  7.6 49.6 !  7.8 51.5 !  9.1

DCP 32.8 !  14.1 36.2 !  10.2 34.9 !  14.2 36.9 !  11.5 35.1 !  12.7

FSS 38.2 !  7.3 34.7 !  8.1 32.4 !  6.5 30.1 !  5.9 33.9 !  7.6

NBPC 41.8 !  6.7 43.0 !  6.4 35.8 !  5.3 36.5 !  4.8 39.3 !  6.7

NBPC+PA 29.8 !  5.9 31.5 !  6.8 27.3 !  5.7 29.6 !  6.7 28.8 !  6.6

Table 2. Average absolute difference between enhanced images 
and camera images without fog, for the 6 compared algorithms, on the 
4 types of synthetic fog (10 images for each type) and for the whole 
database (40 images) in the last column.

Algorithm Uniform Variable k Variable Ls Variable k&Ls All Types 

Nothing 81.6 !  12.3 78.7 !  12.3 69.0 !  10.9 66.4 !10.8 73.9 !  13.2

MSR 46.7 !  16.3 86.4 !  24.7 44.8 !  17.1 83.7 !  24.9 65.4 !  28.9

CLAHE 66.9 !  10.7 64.5 !  9.7 54.5 !  8.5 54.6 !  7.8 60.1 !  10.9

DCP 46.3 !  15.6 46.9 !  17.0 43.7 !  16.2 44.1 !  17.5 45.2 !  16.7

FSS 34.9 !  15.1 40.9 !  13.5 32.5 !  11.4 36.5 !  10.3 36.3 !  13.1

NBPC 50.8 !  11.5 50.5 !  11.5 38.5 !  9.0 38.0 !  8.7 44.5 !12.1

NBPC+PA 31.1 !  10.2 36.0 !  10.3 26.7 !  5.1 28.4 !  5.9 30.6 !  8.9

Table 1. Average absolute difference between enhanced images 
and target images without fog, for the 6 compared algorithms, on the 
4 types of synthetic fog (66 images for each type) and for the whole 
database (264 images) in the last column.
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processing over the whole image, 

this assumption not being possible 

in case of fog. This is a key point 

of the deployment since it allows 

to extend the field of application of 

many camera based ADAS to foggy 

weather. According to accident 

surveys, fog accidents are few, but 

they are more severe and often in-

volve several vehicles. Indeed, dramatic pile-ups often oc-

cur due to hard braking implied by reduced visibility in 

fog. In particular, elderly people are likely to have more 

accidents in fog than young people due, among other fac-

tors, to reduced contrast perception [21]. One ADAS par-

tially dedicated to fog consists in adapting the speed of the 

vehicle with respect to the prevailing weather conditions 

as proposed in [22] so as to increase the safety margin of 

the driver. We believe that visibility enhancement algo-

rithms may also be used to develop what we call a Fog 

Vision Enhancement System (FVES), as it is already the 

case for night driving assistance (NVES). The principle of 

a NVES is to display warm objects, like pedestrians, using 

NIR or FIR cameras and to warn the driver in case of dan-

ger [23]. NVES are shown in [24] to have positive effects 

on safety and are thus being introduced into vehicles. In 

the future, they will benefit from the use of Head-Up Dis-

plays (HUD). It is thus a good opportunity to propose a 

new use of the HUD. Following the principles described in 

[25], images with restored contrast of the road scene can 

be shown to drivers on the HUD, see for instance Fig. 7. 

B. Safety Benefits
To illustrate the potential safety benefits of a FVES system, 

we introduce a scenario of accident in fog. A car is stopped on 

the road in presence of fog. Another car is moving in the di-

rection of the stopped car and the driver performs an emer-

gency braking when he detects, at time t 0= , the brake or 

fog lights of the stopped car. During an emergency braking, 

the speed of the car w.r.t the vehicle position x  is expressed 

as the following model, which is sufficient in our case: 
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where tR  denotes the perception-reaction time of the 

driver, s0  the initial speed of the vehicle, g  the standard 

gravity, n  and o  the friction and the slope of the road and 

( )/( ( )x s t s g2s R0 0
2 n o= + +^ h the stopping distance of the 

vehicle. 

Our point is that the FVES allows the driver to reduce 

his or her reaction time by acquiring a stronger confidence 

in the presence of a vehicle ahead. This is explained by 

Piéron’s law [26] which relates the reaction time to the vi-

sual stimulus intensity. This law is expressed as: 

 t t IR 0 a= + b- , (19)

where t0 , a  and b  are positive parameters. t0  is the 

so-called “irreducible” reaction time, I  is the intensity 

of the visual stimulus and a  and b  are related with the 

object setup and with the involved subject. Whatever 

the setup and whoever the person, the reaction time 

varies as an hyperbola w.r.t the stimulus intensity, as 

shown in Fig. 8. 

In our case, the stimulus intensity I  is the intensity of 

the brake or fog lights of the stopped vehicle. With the FVES, 

these lights are seen in the HUD with a restored intensity 

/( )I V1 -  using enhancement factor in (11), assuming a 

proper ergonomic design. Also assuming that the enhance-

ment algorithm does its best, we have ( ( ))expV p kd1= - -  

where d  is the distance to the stopped vehicle and k  is 

always the fog extinction coefficient. Consequently, the 

restored intensity is close to /( )I p1 -  for just noticeable 

brake or fog lights. Therefore, using the FVES, the reaction 

time of the driver is reduced by tRD  given by: 

 ( )t I p1 1R aD = - -b b- ^ h. (20)

FIG 7 Principle of a Fog Vision Enhancement System (FVES): the 
restored image is displayed to the driver by means of a HUD which 
allows the driver to better see potential obstacles and thus decreases his 
reaction time.

Our point is that the FVES allows the driver to reduce his 
or her reaction time by acquiring a stronger confidence 
in the presence of a vehicle ahead.
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When Piéron’s law is applied in the visual domain, the ex-

ponent parameter b  is generally between 0.30 and 0.35. In 

our scenario, two parameters cannot be set without extra 

experiments with drivers: the a  of Piéron’s law and the “ir-

reducible” reaction time t0 . Indeed, they depend strongly 

on the driver, in particular on age and attention which 

can affect the reaction time by a factor of 2. As an illus-

tration, in Figure 9, tRD  in seconds is shown for ,3a =  

/1 3b = , [ . , . ]p 0 84 0 98!  and [50,400]I cd! . The small-

est gain in reaction time is 0.2t sRO =  and the largest gain 

is 0.6t sRD = , for these values. 

From (19) and (18), the vehicle speed at collision using 

or not the FVES can be computed. As proposed in [22], the 

speed at collision can be related to the probability of fatal 

injury. Thus, from the vehicle speeds at collision, the safety 

benefit of the FVES can be estimated in term of the ratio of 

probabilities of fatal injury. 

To illustrate the proposed scenario, we show in Fig.|10 

the speeds and the corresponding probabilities of  fatal 

injury for two reaction times with a difference of 0.2 s. 

The blue curve is when the FVES is used, and the pink 

one is without the system. To obtain these curves, we set 

36 ,s m.s0
1= -  . ,0 7n =  0o = , 3a = , /1 3b = , . ,p 0 95=  

100I cd=  and 0.5t s0 = . Without the system, the colli-

sion would occur at a speed of 15.2 m.s 1-  for 120d m.=  

With the system, the collision would occur at a reduced 

speed of 11.0 m.s .1-  Even if 0.2t sRD =  is small, this nev-

ertheless induces a probability of fatal injury divided by 

more than two. This illustrates how non-linear the rela-

tion is between the reaction time and the probability of 

fatal injury. 

By introducing an obstacle detection algorithm in the 

FVES, a bounding box can be added around detected obsta-

cles. Displaying this bounding box would certainly draw the 

driver’s attention. Therefore, when this obstacle detection is 

performed early enough, the use of obstacle  detection in the 

FVES may lead to an important reduction of the time where 

emergency brake is initiated by the driver. 
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FIG 10 Safety benefit of a decrease of 0.2s of the perception-reaction 
time: speed of the vehicle versus the distance to obstacle detection 
position and then decrease of the probability of fatal injury with respect to 
distance.
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VII. Conclusion
Thanks to the new derivation of the local visibility enhance-

ment algorithm [1] in terms of two constraints on the infer-

ence of the atmospheric veil, we introduce a third constraint 

to take into account the fact that road images contain a large 

part of planar roadway, assuming a minimum meteorologi-

cal visibility distance. The obtained visibility enhancement 

algorithm performs better than the original algorithm on 

road images as demonstrated on a set of 66 synthetic im-

ages and on a set of 10  camera images, where a uniform 

fog is added following Koschmieder’s law. We also gener-

ated three different types of heterogeneous fog, a situation 

never considered previously in our domain. The proposed 

algorithm also demonstrates its ability to improve visibility 

in such difficult heterogeneous situations. Our results are 

successfully compared to state-of-the-art algorithms: free-

space segmentation (FSS) [2], Dark Channel Prior [7], [8] and 

no-black-pixel constraint (NBPC) [1]. 

Finally, potential safety benefits of a Fog Vision En-

hancement System, based on the proposed visibility en-

hancement algorithm, are evaluated on a scenario of 

accident in fog using Piéron’s law. 

From this work, several improvements are possible. 

First, new constraints can be added easily as a function of 

our prior knowledge about the vehicle environment or com-

ing from other sensors such as a lidar. Second, the metric 

used to compute the dis tance between the restored image 

and the image without fog can be refined by focusing only 

on the roadway and on the objects on the road, i.e., the im-

portant objects for intelligent vehicles appl ications [27], or 

by using a model of human vision as proposed in [28]. Third, 

the image rendering as well as the visibility enhancement 

algorithms presented are all based on Koschmieder’s law. 

As explained in [29], stray light and shadowing effect ca n 

be introduced to improve the fog model at the cost of an 

increased number of parameters. This opens new perspec-

tives of research. 
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