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Abstract: Road accidents because of fog are relatively rare but their severity is greater and the risk of pile-up is higher. However,
processing the images grabbed by cameras embedded in the vehicles can restore some visibility. Tarel et al. (2012) proposed to
implement head up displays (HUD) to help drivers anticipate potential collisions by displaying dehazed images of the road scene.
In the present study, three experiments have been designed to quantify the expected gain of such a system in terms of the driver’s
reaction time (RT). The first experiment compares the RT with and without dehazing, giving quantitative evidence that such an
advanced driving assistance system (ADAS) may improve road safety. Then, based on a modified Piéron’s law, a quantitative
model is proposed, linking the RT to the target visibility (Vt), which can be computed from onboard camera images. Two
additional experiments have been conducted, giving evidence that the proposed RT model, computed from Vt, is robust with
respect to contextual cues, to contrast polarity and to population sample. The authors finally propose to use this predictive
model to switch on/off the proposed HUD-based ADAS.
1 Introduction

A large proportion of road accidents occur under reduced
visibility conditions, either because of rain, fog, night-time,
visual masking or other environmental factors. Accidents
because of fog are relatively rare but when they occur their
severity is greater and the risk of pile-up is higher. The fog
impairs driver visibility by reducing contrast exponentially
with distance.
Several experiments have been conducted to compare the

driver’s perception of distance and speed in clear weather
and in fog. Under such conditions, drivers are expected to
reduce their speed. However, several studies have shown
the opposite. Underestimating one’s speed leads to
overspeeding, and the denser the fog, the higher the speed
[1]. Distance overestimation in fog may also contribute to
the reduction of inter-vehicular distance: the distance
overestimation is found between 25 and 50% in dense fog
and around 6% in less dense fog [2]. More than half times
the speed adjustment in fog does not allow a safe braking
[3]. Drivers tend to follow too closely the front vehicle in
fog, to keep it in sight [4]; meanwhile, impaired side vision
may lead to line crossings [5].
The human factor is one of the main causes of road

accidents, for example, lack of attention, lack of cognitive
analysis or wrong manoeuvres [6]. The point of advanced
driver assistance systems (ADAS) is to overcome driver
failures and to improve safety and comfort by assisting the
driver and providing information about the vehicle’s
environment. New systems seek to anticipate better to
prevent accidents, using exteroceptive sensors allowing a
better perception of the environment. Optical sensors such
as cameras are becoming more prevalent because of their
low cost, their small size and the richness of information
provided. However, camera-based ADAS operate better
under favourable weather and their performance may
decrease drastically under reduced visibility conditions [7].
For instance, many image processing methods use
descriptors that depend on colour and contrast in the image
[8], which are degraded by atmospheric scattering in foggy
weather.
While it is under low visibility that the driver most needs

help, it is also then that the ADAS performance
deteriorates. Fortunately, under foggy conditions, it is
possible to detect and characterise fog by a vision
algorithm, then to restore the signal at the output of the
camera sensor, providing a better signal quality for the
ADAS [9]. Together with improving ADAS performance in
fog, the restored images with improved visibility may also
be displayed to the driver with a head up display (HUD) to
improve his perception of the road scene [10].
In the present paper, we evaluate the potential benefit of

such a HUD-based ADAS, displaying restored images to
the driver under foggy conditions. The gain of image
dehazing is estimated in terms of reaction time (RT) and
detection rate (DR) through psychophysical experiments,
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using computer graphics (CG) images as stimuli. Then, a
quantitative model is proposed to compute the expected RT
gain online, from the target visibility computed from
onboard camera images. Two more experiments assess the
robustness of this model, so that we can propose to switch
on/off the HUD depending on the expected RT gain, which
can be computed online. The RT gain refers to the
difference between the RT without and with image
dehazing (in seconds).
The remainder of this paper is presented as follows. Some

basic notions about fog and image dehazing are given in
Section 2, together with the concepts of Piéron’s law and of
target visibility computations. The experiments are
presented in Section 3, and the results in Section 4. These
results are then discussed in Section 5 with respect to
potential applications for a HUD-based ADAS.

2 Background

2.1 Dehazing of road images

Fog is made of small water droplets floating in the air that
scatter the light. Before entering the driver’s eyes, the light
coming from a surface is scattered by this medium. During
daytime, Koschmieder’s model applies [11]

L = L0e
−kd + Ls(1− e−kd) (1)

where L is the luminance of an object as experienced by the
driver, L0 is its so-called intrinsic luminance (i.e. luminance
at close range), Ls is the sky luminance, d is the distance
between the object and the driver and k is the extinction
coefficient of the atmosphere. The model includes two
visual effects: the intrinsic luminance of an object decreases
exponentially with the distance to the observer and the fog
density, and the contribution of the atmospheric luminance
increases exponentially with the distance.
According to the International Commission on

Illumination, the meteorological visibility distance Vmet is
the distance at which the contrast of a black object is
attenuated by 95% [12]. It can be related to the extinction
coefficient k in (1) [7], leading to

Vmet = − ln (0.05)

k
≃ 3

k
(2)

Image dehazing needs to estimate L0 from L, that is, to guess
k, d and Ls in (1) [13–15, 10]. Assuming that the camera has a
linear response, one can invert (1), so that the restoration
formula is

L0 = Lekd + Ls(1− ekd) (3)

Equation (3) applies to the pixel’s intensity, assuming that
this intensity is proportional to L. In the following, image
dehazing is computed with a previously published method
[9], but other algorithms may apply as well [10].

2.2 Target visibility

Two distinct visibility concepts are considered in the
following. We have seen that the meteorological visibility
Vmet is a conventional description of the fog extinction
coefficient (see (2) and [12]). We will use it to design the
CG images in our Experiments (see Section 3). The other
2
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visibility concept is the target visibility Vt: it rates to what
extend a target is detected in a scene, when an observer
looks at it. It is relevant in many contexts, including
fog, dark, rain etc. Target visibility depends on human
vision parameters such as the contrast sensitivity of the
human eye.
A computational model of target visibility was proposed by

Adrian for a uniform target on a uniform background [16, 17].
This model was developed from psychophysical data under
various conditions [18], mainly for road lighting [19], and
has also been considered in automotive lighting design.
Unfortunately, this computational model is not suited for
road images, because both the background and the car
include texture, which makes it ambiguous to estimate the
car and background luminance values.
Instead, we used an image processing estimation of the

visibility [20], which was relevant for the target stimuli in
all three experiments. This target visibility model, based on
Barten’s model of the human contrast sensitivity function
[21], allowed computing the visibility from experimental
data with good results under simple conditions [22]. It
computes the visibility of the target’s edges in an image;
then, the visibility of a target is computed as the maximum
visibility across the target’s edges. A computed visibility of
V = 1 means that there is 50% chance that an observer will
see the target (if he looks at it). Note that Vt is not restricted
between 0 and 1: for a simple uniform target on a uniform
background, it is the ratio of the actual luminance contrast
over the contrast needed for 50% chance of target detection.

2.3 Reaction time

Piéron’s law is known to apply to any sensory channel (either
visual, auditive etc.) and expresses the RT as a function of the
stimulus intensity I

RT = bI−a + t0 (4)

The shape of this function introduces three parameters: t0
is the limit RT when the stimulus is obvious, α depends on
the sensory modality and β depends on the experimental
setup. If the stimulus is visible enough, the RT is close to a
physiological RT (in our case, around 0.5 s). When the
visibility decreased (as in fog), the RT is expected to increase.
However, Piéron’s original law refers to a uniform stimulus

on a uniform background [23, 24]. To cope with complex
visual stimuli (a car, a pedestrian) and complex images
(road environments), we were looking for a relation where
the RT depends on the target visibility Vt

RT = bV−a
t + t0 (5)

For instance, we have seen that in fog, a car’s contrast
decreases as the distance increases. These two factors
contribute to a lower visibility, which is expected to result
in an increased RT with the fog intensity, and thus in more
severe accidents.

2.4 Evaluation of a HUD-based ADAS

Tarel et al. [10] proposed that a HUD might improve the
driver’s visibility in foggy weather, by displaying processed
images of the road scene, where fog is removed. They
suggested that Piéron’s law was relevant to estimate the
expected gain of such an ADAS in terms of the driver’s
IET Intell. Transp. Syst., pp. 1–7
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RT. In the present paper, we address some questions which
were left open in Tarel’s paper:

† Piéron’s law links the RT to the stimulus intensity.We argue
that in the context of road images, intensity is not a relevant
parameter, and we propose to use the target visibility instead
(Vt), which can be computed from the images.
† We propose a quantitative model of RT as a function of Vt, so
that RT can be computed online from road images (Section 4.2).
† This model is grounded on experimental data from a
psychovisual experiment with a panel of participants
(Section 4).
† This model may be useful in practical situation: we show
that in dense fog, the expected RT gain is above 0.5 s.
† We give evidence of the model’s robustness, in the sense
that it is quite independent of the scene context, contrast
polarity and, to some extent, observers panel (Section 4.3).
† From the above model, we propose that for a better
acceptability of the HUD application, it should be turned
off when the expected RT gain is below a given threshold.

3 Experiments

Three experiments have been conducted. The first one used
realistic CG images of a road (see Fig. 1), produced by a
dedicated software which could also simulate various fog
densities [25]. These images were displayed either directly
or after a dehazing image processing step [9]. The next two
experiments used simpler conditions, with uniform discs as
Fig. 1 Sample stimuli from Experiment 1 (CG images)

Top: without fog. Middle: with simulated fog. Bottom: after dehazing
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targets, and a uniform background. They were intended to
check the validity/robustness of the results of Experiment 1
under more general conditions, without contextual
information.
These experiments took place in a dark room with a

surrounding luminance of 2.5 cd/m2. A liquid crystal
display (LCD) device was situated at 3 m in front of the
participants. Its size was 60 × 44 cm2, with a resolution of
2560 × 1440 pixels and a field of view of 11.4°. The
displayed images were computed in luminance units (in cd/
m2) and displayed on the LCD thanks to a calibration
model obtained from luminance measurements on this
screen (Photometer Pritchard PR-880).
Each trial started with an auditive signal, followed by the

background stimulus, during 1–3 s (this period was
randomly chosen at each trial, to avoid a precise
expectation of the stimulus onset by the participant). Then,
the stimulus was displayed on the background, and the trial
ended 5.5 s after the auditive signal. The participants were
asked to report as soon as possible when they saw a target
appearing on the display. The participant’s responses were
recorded with a gamepad, using the Presentation software
[26] both to display the stimuli and record the responses.
The accuracy of the RT is lower than 1 ms, and RT longer

than 2.5 s were not considered as relevant. Moreover, RT only
makes sense when the target is detected, and some choice was
needed about how to cope with targets which were sometimes
detected, sometimes not. We decided not to use the RT data
when the DR was below 50%, because this would mean
that the available data is too sparse.
3
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Table 1 Simulated target distances d1–d5 for the stimuli in
Experiment 1, for three fog densities, together with the
associated meteorological visibility distances Vmet

Vmet d1 d2 d3 d4 d5

150 138 171 210 228 280
80 75 93 105 120 138
50 47 58 67 75 93

www.ietdl.org
3.1 Experiment 1: foggy road environment

Thirty participants were involved in Experiment 1. CG cars
were displayed on CG backgrounds, simulating road
environments (see Fig. 1). The CG software simulated fog
according to Koschmieder’s law, taking into account the
object’s distance from the virtual camera [25]. Stimulus
images were simulated for three fog densities, corresponding
to meteorological visibility distances Vmet set to 50, 80 and
150 m (see (2)). Two CG images were computed for each
stimulus, with and without the target car. Then, the dehazing
algorithm processed the resulting images.
For each fog density, the target cars were simulated at five

distances, above and below the visibility distance, to capture
the transition between visible and hidden targets (Table 1).
Five target distances were used, and six repetitions for each
fog condition: a baseline no-fog condition and three fog
densities, both with the original image and after dehazing
(i.e. seven fog conditions). For each stimulus, the detection
performance was recorded, as well as the RT (when the
target was detected). In all, each participant responded to
210 stimuli displayed in random order (5 distances × 6
repetitions × 7 fog conditions).
3.2 Experiment 2: simple dark target

The previous experiment used a specific road environment and
a car as the target. We deemed that it was interesting to
understand if the results from this experiment were
dependent on this specific context, and on priors associated
with a road environment. This is why we conducted a
second experiment (Experiment 2) where all semantic
information was removed, while luminance and contrast were
the same as in Experiment 1. The same 30 participants as in
Experiment 1 were involved in Experiment 2.
Instead of cars, the stimuli were discs, which are common

psychophysics stimuli. We describe these discs as shapes seen
through fog, at a distance, so that the visual performance in
Experiment 2 could be associated to the driving situations
in Experiment 1. Therefore the size and contrast of the
discs were chosen to simulate objects with roughly the size
of a car (2 m in width), set at a distance where one would
usually see a car on the road, and with a colour consistent
Fig. 2 Samples of the stimuli displayed in Experiment 2, simulating a ca
150 m (right)
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with the contrast attenuation in fog at this distance,
according to Koschmieder’s law (1). Fig. 2 shows three
such stimuli corresponding to these disc-shaped objects in a
foggy medium at 50, 80 and 150 m. The background
luminance was set to Lb = 150 cd/m2, whereas the intrinsic
target luminance without fog was set to L0 = 0 cd/m2.
Owing to the lack of texture and other environmental cues,

the task was slightly more difficult in Experiment 2 than in
Experiment 1. Thus, the simulated target distances were
chosen shorter in Experiment 2 (compare Table 2 with Table 1).
Stimulus images were simulated for three fog densities,

corresponding to visibility distances Vmet set to 50, 80 and
150 m, as in Experiment 1. For each fog density, the target
was simulated at six distances, three above and three below
the visibility distance, to capture the transition between
visible and hidden targets (the disc sizes ranged from 0.25°
to 2° of radius). The contrasts were negative, that is to say
that the targets were darker than the background, just as
cars in the fog. Each participant responded to 144 stimuli (3
fog densities, 6 target distances and 8 repetitions) displayed
in random order.
3.3 Experiment 3: simple light target

The third experiment was a bit more challenging, in two
respects. First, it is not straightforward that positive and
negative contrasts are perceived equally well [16, 27], so
we have recorded RTs with positive contrast targets, that is,
targets which are lighter than their background. Second,
people have idiosyncratic patterns for most aspects of their
behaviour, which we have challenged by using a different
panel of participants. They were aged from 18 to 59 years
(mean = 32.8, SD = 8.9), with 7 women and 23 men. They
were presented two disc sizes: 0.1° and 0.5° radius, with a
uniform background luminance of 48.4 cd/m2. For each
disc, eight contrasts were used from 0.007 to 0.50, and each
contrast was repeated eight times, so that each participant
responded to 128 stimuli, presented in random order.
4 Results

4.1 Experiment 1: RT gain

Fig. 3 shows the mean RT as a function of the car distance.
The left curves refer to a visibility distance when Vmet =
50 m, the middle ones to Vmet = 80 m and the right ones to
Vmet = 150 m. Each point is tagged with the associated DR.
Dashed lines refer to foggy images, whereas continuous
lines refer to dehazed images. The benefits of image
dehazing also appears if we consider the RT gain, that is,
the difference between RT without and with dehazing. It is
clear that after dehazing, the RT is very close to what it
r-sized disc in a foggy medium, seen from 50 (left), 80 (middle) and

IET Intell. Transp. Syst., pp. 1–7
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Table 2 Simulated target distances d1–d6 for the stimuli in
Experiment 2, for three meteorological visibility distances Vmet

Vmet d1 d2 d3 d4 d5 d6

150 75 105 138 171 210 228
80 42 57 75 93 105 120
50 28 37 47 58 67 75
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would have been without fog (lower than 500 ms), showing
that the gain under these conditions is close to optimal.
It was possible to describe our results in terms of target

distance, which is a relevant parameter on the road. As an
example, Table 3 shows the RT gain in moderate fog (Vmet

= 150 m), for various car distances. Considering a car
around 200 m ahead on the road, we found that the RT gain
with a HUD could be above 1 sec, which makes sense in
terms of road safety.
Similarly, a RT gain around 1 sec was found for a car more

than 100 m ahead in dense fog (Vmet = 50 and 80 m).
It is also interesting to note that dehazing the images not

only improves the RT, but also improves the DRs. Fig. 3
shows that the target DR can be quite low in fog (in Fig. 3,
down to 9, 15 and 22% depending on the fog density),
whereas the same DR is almost 100% after dehazing. This
does not mean that the targets would not be detected at all
without dehazing, but that they would be detected at shorter
distances.

4.2 Experiment 1: model

The data were found consistent with a Piéron-like model (5),
using the target visibility Vt estimated with a computer vision
algorithm [20]. This is not an obvious result, because we have
introduced the target visibility as the relevant intensity index,
and we have proposed to use a computational account of this
visibility, based on the human’s contrast sensitivity function.
Based on (5), the data were fitted and the optimal values

were found to be α = 1.29, β = 290 and t0 = 0.455 s [mean
absolute error (MAE) = 77.5 ms], so that

RT = 0.455+ 290V−1.29
t (6)

is the best fit consistent with a Piéron-like model.

4.3 Experiments 2 and 3

The purpose of Experiments 2 and 3 was to control how
sensitive the model was with respect to the CG images, to
the target contrast polarity and to the sample population.
Fig. 4 shows the relation between mean RT and target
distance, for the three fog densities in Experiment 2. When
the RT is considered as a function of the target visibility Vt,
it is possible to estimate the corresponding parameters for
Piéron’s law. The same fitting as in Experiment 1 led to
α = 1.39 and to β = 770 (MAE =101 ms). From Experiment 3,
the best fit for a Pieron-like curve was found with α = 1.33,
β = 330 and t0 = 0.492 s. The MAE was 17.2 ms, showing a
very good consistency of the fitting. Note that the baseline
Table 3 Expected RT gain using the HUD, as a function of the
target distance, in medium-range fog (Vmet = 150 m)

target distance, m 138 171 210 228
expected RT gain, s 0.057 0.069 0.754 1.366
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RT is slightly different in Experiment 3 compared with
Experiments 1 and 2, because these experiments did not
share the same population sample. Gathering data from
Experiments 2 and 3, the parameters which best matched
the data in all conditions were α = 1.20 and β = 510, leading to

RT = 0.455+ 510× V−1.2
t (7)

with a MAE of 93.9 ms, which is satisfactory. Then, from (7),
it was possible to look back at our data from Experiment 1,
leading to a MAE = 213 ms, which is not so bad (compared
with MAE = 77.5 ms using the model fitted to the data from
Experiment 1 alone, see above).

5 Discussion

5.1 Main results

It was proposed that an image processing dehazing algorithm
can be combined with a HUD system, and improve the RT of
drivers in fog [10]. One benefit of such a system is that it is
complementary to other onboard applications, and thus can
be considered as a low cost application, depending on the
available systems (onboard camera, image processing
algorithms, HUD).
Three experiments were designed to rate the expected

benefit from such a HUD application under foggy
conditions, and to test whether a quantitative model would
allow predicting this gain for foggy images. Our results
give some evidence that a dehazing system has a strong
potential impact in terms of road safety, thanks to the
improved driver’s RT (and DR) for the size targets of a car.
Specifically, the main experiment (Experiment 1) allowed
estimating the gain in RT using a HUD system in fog. We
give evidence that the target visibility is a relevant
parameter to estimate the RT from an image.
Considering an onboard application, the proposed system

needs both the dehazing and the visibility computation to
be performed in real time. Then, the RT gain can be
computed online, for a given target. From this gain, an
estimation of the road safety benefits (accident rate and
severity) may be available, for instance from stopping
distance models [28]. An onboard Intelligent Transportation
System may decide to switch on or off the HUD.
The next two experiments consistently showed that the RT

in front of simple images can be estimated with the same
family of Piéron-like curves (5), and a quantitative model
was proposed from these psychovisual experiments (7).
Coming back to the first experiment, using CG stimuli close
to those expected on the road, the proposed model appeared
to be robust in terms of contextual priors, contrast polarity
and observers panel.

5.2 RT, fog density and target distance

Provided that the target distance is available from some sensor
(e.g. a lidar), it may be useful to combine Piéron’s law and
Koschmieder’s law to estimate the RT as a function of a
target distance. Some reasonable assumptions would be
needed, concerning the target size and reference luminance
L0 to roughly simulate a dark car. However, Koschmieder’s
law (along with Adrian’s target visibility model) deals with
luminances and contrasts, which are not relevant variables
for complex objects such as cars (which include internal
contrast and texture), nor for complex backgrounds, such as
5
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Fig. 3 Mean RT as a function of the simulated target distance, for three simulated fog densities

Left: Vmet = 50 m, middle: Vmet = 80 m and right: Vmet = 150 m. Each point is tagged with the associated DR. Dashed lines refer to raw images, whereas continuous
lines refer to images after dehazing

www.ietdl.org
what is found on a road where the car’s background is partly
the road itself, and partly the landscape. This is not to suggest
that contrast is not the relevant factor in terms of visual
mechanisms, only that a practical definition of contrast is
not available in the case of complex objects/backgrounds.
Arguably, some of the complexity is removed in foggy

situations, with high spatial frequency information filtered
out, making a car look like a target on a near-uniform
Fig. 4 Mean RT as a function of the simulated target distance, for
the three simulated fog densities in Experiment 2

Left: Vmet = 50 m; middle: Vmet = 80 m; right: Vmet = 150 m. Each point is
tagged with the associated DR
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foggy background, but this is expected to be very
situation-dependent. We have tried, instead, to express the
RT as a function of the target distance and fog density in
Experiment 1, using our Piéron-like model. To do so, we
estimated the target visibility Vt as a function of the
distance for each of the three fog densities. Fortunately, a
simple function appeared to roughly match the data

Vt ≃ A(k)e−Bd (8)

where A(k) is a parameter which depends on the fog
extinction coefficient k, B = 0.035 and d is the target
distance. Table 4 gives estimated values of A, showing a
good agreement with the data.
With this new function, it is possible to combine (5) and

(8), leading to

RT = b[A(k)e−0.035d]−a + t0 (9)

and considering (6), we have

RT = 290[A(k)e−0.035d]−1.29 + 0.455 (10)

We have only considered, in this study, three fog densities, so
that we cannot propose a complete model of RT as a function
of d. However, our results suggest that such a model would be
useful and seems feasible, providing that more data are
available: this way, an analytical model for A(k) would
replace the sample values given in Table 4.
IET Intell. Transp. Syst., pp. 1–7
doi: 10.1049/iet-its.2014.0101



Table 4 A values in (8), depending on the fog extinction
coefficient k, and MAE

k 0.0600 0.0375 0.0200
A(k) 17 56 500
MAE 0.27 0.52 0.28

www.ietdl.org
5.3 Limitations and future work

We are not at the end of the story, however, and a series of
limitations apply to these results. For instance, the dehazing
process which was used here was optimal, in the sense that
the CG images did not include noise as in usual onboard road
images (because of the sensor itself, the environment
complexity, dust on the windshield etc.). Thus, the expected
performance of a HUD may not reach the RT gain expected
here. Using sensor images instead of CG images may
contribute to estimate the true benefit of the proposed system,
and further experiments on the road are also needed in the
future to rate the level of visibility restored using such image
processing on foggy images. One can expect that using road
images, the RT gain will be shorter than what we found, and
this gain should also depend on the dehazing algorithm itself.
It would be interesting, in the future, to rate these algorithms
in terms of target visibility restoration, in the sense of
Joulan’s algorithm [20].
Moreover, showing road images to a panel of observers

instead of driving on the road leads to well-known biases
[29]. Thus, our proposal should also be tested onboard a
vehicle, using both a real-time dehazing algorithm, and a
real-time computational model of target visibility, to
compute (under foggy conditions) the RT gain of
displaying detected targets with a HUD. An interesting test
would be to implement such a system on a vehicles fleet, as
suggested by Ward and Parkes [30], and to ask the drivers
some complementary actions (including measuring their
RT) to rate or to tune the algorithm and the decision model
(whether or not to display the target vehicle with the HUD).
Camera limitations are also to be taken seriously. In the

proposed HUD application, the RT can only be improved if
the onboard camera actually sees something, for in dense
fog it may happen that an object at a distance would not
appear at all in the sensor image. In this case, the dehazing
tool cannot see something which is not in the image raw
data. One may suggest at this point that estimating the fog
density [31] would help knowing the confidence range of
the assistance system.
We did not address in this paper the HUD design, which

may be critical to get the higher possible gain in terms of
RT. This system is expected to make the relevant
information easily available, without disturbing the driving
task. Still, HUD is one among many ways to improve the
visibility of targets on the road. For instance, a smartphone
or tablet application may also give a visual feedback to the
driver.
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