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Nighttime Visibility Analysis and Estimation
Method in the Presence of Dense Fog
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Abstract—Compared with daytime, a larger proportion of road
accidents happens during nighttime. The altered visibility for
drivers partially explains this situation. It becomes worse when
dense fog is present. In this paper, we first define a standard
night visibility index, which allows specifying the type of fog
that an advanced driver assistance system should recognize. A
methodology to detect the presence of night fog and characterize
its density in images grabbed by an in-vehicle camera is then
proposed. The detection method relies on the visual effects of
night fog. A first approach evaluates the presence of fog around
a vehicle due to the detection of the backscattered veil created
by the headlamps. In this aim, a correlation index is computed
between the current image and a reference image where the fog
density is known. It works when the vehicle is alone on a highway
without external light sources. A second approach evaluates the
presence of fog due to the detection of halos around light sources
ahead of the vehicle. It works with oncoming traffic and public
lighting. Both approaches are illustrated with actual images of fog.
Their complementarity makes it possible to envision a complete
night-fog detection system. If fog is detected, its characterization
is achieved by fitting the different correlation indexes with an
empirical model. Experimental results show the efficiency of the
proposed method. The main applications for such a system are,
for instance, automation or adaptation of vehicle lights, contextual
speed computation, and reliability improvement for camera-based
systems.

Index Terms—Advanced driver assistance systems (ADASs),
advanced lighting systems, camera, fog characterization, fog de-
tection, night fog, visibility.
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I. INTRODUCTION

WHILE night driving only represented 10% of total traf-
fic, it represented 47% of fatalities in 2011 in France.

Moreover, accident severity during nighttime increases by a
factor of 1.7 as compared with daytime [1]. Among the fac-
tors that explain these figures, drowsiness [2], speed [3], and
reduced visibility [4] are frequently cited. To address this issue,
emphasis is put on the development of smarter lighting strate-
gies for vehicles [5]. Advanced systems are being developed to
automate and adjust the operation of vehicle lights to maximize
visibility while preventing glare for oncoming drivers.

Among the embedded sensors that drive these systems, video
cameras are most promising since they have low cost and serve
different purposes. In particular, adverse weather conditions,
such as rain or fog, are major concerns. First, they directly
affect the safety of a driver by reducing his safety margin, i.e.,
low visibility distance or low friction. Second, they reduce the
reliability of camera-based systems by altering image quality.
For these two reasons, detecting, characterizing, and mitigating
the effects of adverse weather conditions, particularly fog, is a
challenge for camera-based advanced driver assistance systems
(ADASs). The automatic adaptation of the intensity of lights
in fog is still an open issue, although regulations allow it [6].
Fog is known for its effects on visibility, but the visual effects
of fog differ between night and day [7], which explains why
different camera-based detection methods are needed. Onboard
daytime fog detection was pioneered in [8] and further tackled
in [9] and [10]. The mitigation of daytime fog was addressed
by restoring the contrast of images reduced by fog [11]. The
case of heterogeneous daytime fog was also addressed in [12]
and [13].

In this paper, the problem of onboard night-fog detection
and characterization by camera is addressed. Contrary to day-
time, the visual appearance of a road scene in fog at night
strongly depends on the presence of artificial light sources in
the environment. If a vehicle is alone on the road and there
are no lighting fixtures, the fog is only noticeable through
the backscattering of light from the headlamps. If there are
oncoming vehicles or if there is a road lighting installation,
the backscattered veil is no longer noticeable, but the presence
of fog can be still noticed by the presence of halos around
the light sources. Based on these visual effects, a night-fog
detection method has been proposed in [14]. Using spectral
features and a simple linear classifier, a classification of images
in fog and fog-free scenes is proposed in [15]. Among the
existing ADASs, some systems use the blurring of the tail lamps
of a leading vehicle to determine the presence of fog, such as in
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patent JP 11-278182A. This only works when there is a vehicle
ahead of the equipped vehicle. The two patented camera-based
systems [16], [17] rely on the backscattered light from the
headlamps in order to detect the presence of fog. They both
proceed by analyzing the evolution of pixel intensities along a
vertical or horizontal line in the image. Those local methods are
impaired by the presence of obstacles or markings in the scene,
and because the backscattered luminous level is quite low,
their behavior is also impaired when there are multiple light
sources in the environment, such as streetlights or headlights
from oncoming traffic. For night-fog characterization, some
static camera-based systems rely on the temporal comparison
of images containing light sources [18]–[21]. These methods
cannot be adjusted to dynamic conditions.

In this paper, we extend the night-fog detection algorithm
presented in [14] by adding a novel characterization step,
and we assess the method using actual video sequences and
reference sensors. This method is original since it is the first
method to attempt the characterization of the fog density in
night driving scenarios with an onboard camera. In addition,
unlike patent JP 11-278182A, the method does not require
other cars or obstacles to be in front of the equipped vehicle
in order to work. Unlike the patents in [16] and [17] that do
not work in strongly lit environments, the system is able to
deal with all sorts of lighting environments and does not use
a local or photometric approach but a global image analysis
process. To specify the class of the fog density that needs to
be characterized by our system, we propose to use a nighttime
visibility index that is based on the visibility level (VL) of a
small target [22].

This paper is organized as follows. A conventional scenario
to derive a standard nighttime visibility index is first proposed.
The detection of the backscattered veil is then described. The
detection of halos around light sources follows. Then, the fog
characterization step is presented. Finally, experimental results
are discussed, and perspectives for potential applications are
given.

II. DESIGN OF CONVENTIONAL SCENARIO FOR STANDARD

NIGHTTIME VISIBILITY INDEX

A. Adrian’s Model

The ability to detect an achromatic object in a traffic situ-
ation mainly depends on four parameters, i.e., object size and
luminance, background luminance, and adaptation luminance.
The luminance difference required to detect an object on its
background increases with the overall light level to which
a driver is adapted. The luminance difference threshold was
investigated by Blackwell in laboratory conditions [23]. He
later proposed to use the ratio between the actual contrast and
the threshold contrast as a visibility descriptor, and this so-
called VL was adopted by the International Commission on
Illumination (CIE) to evaluate a lighting design in terms of
visual performance as follows [24]:

VL =
C

Cth
=

(L− Lb)/Lb

(Lth − Lb)/Lb
=

ΔL

ΔLth
(1)

where C is the actual contrast, Cth is the threshold contrast,
L is the actual object luminance, Lth is the object luminance
at the threshold contrast, Lb is the background luminance, ΔL
is the actual luminance difference, and ΔLth is the threshold
luminance difference.

The most convenient method to calculate the threshold con-
trast is to use analytic functions fitted to Blackwell’s laboratory
data. One of the most popular among such empirical models
was proposed by Adrian as follows [25]:

ΔLth =

(
φ1/2

α
+ L1/2

)2

· Fp · Fc · Ft · Fa (2)

with the φ and L functions depending on the background
luminance given by Adrian, α as the angular size of the target
(in minutes of arc), and Fp depending on the detection rate
needed (1 for 50%, 2.6 for 99.9%). Fc, Ft, and Fa are correction
factors applied to take into account the contrast polarity, the
presentation time, and the age of the observer, respectively.
Adrian provided some threshold VL values accounting for field
conditions (as opposed to laboratory conditions) [26].

B. VL in Nighttime Driving Conditions

The luminance is needed to calculate the VL results from
the illuminance generated by the headlamps and from the re-
flective properties of the illuminated surface. Because contrast
determines visibility, two surfaces must be considered for the
purpose of evaluating the visibility distance, i.e., that of the
object to detect and that of the background. The illuminance
E that reaches a target at distance d given a pair of headlamps,
for which we know the left and right luminous intensities IL
and IR, respectively, emitted toward the target, is given by

E = EL + ER ≈ IL + IR
d2

=
I

d2
. (3)

Under headlamp illumination, the relevant parameter to char-
acterize the reflective properties of a vertical object (when its
surface is not specular or retroreflective) is the diffuse reflection
factor ρ as

L ≈ ρE

π
≈ ρ

π

I

d2
(4)

where L is the target luminance, E is the illuminance gen-
erated by the headlamps on the object, I is the intensity of
the headlamps in the direction of the object, and d is the
distance between the headlamps and the object. In headlamp
visibility studies, the targets are usually considered dark, with
reflection factor values between 5% and 10%, although values
up to 25% are sometimes considered [27]. Horizontal objects
(markings) and the pavement are characterized by means of the
retroreflected luminance coefficient for headlight illumination
RL(cd · m−2 · lx−1) as

L = RLE⊥ ≈ RL · I

d2
(5)

where E⊥ is the illuminance generated by the headlamps on a
surface perpendicular to the lighting direction at the position of
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Fig. 1. Different effects of fog on light propagation in a driving scene.

the target. The RL of the pavement depends on the illumination
and the observation geometry, but it has been shown to be
independent of the distance beyond a few tens of meters, with
values ranging between 5 and 30 mcd · m−2 · lx−1 for dry
pavements [28]. With the previous information, it is possible to
calculate the luminance of a small target on the road illuminated
by headlamps, as well as the luminance of the pavement at
the base of the target, which serves for both the background
luminance and the adaptation luminance [29]. For the headlamp
evaluation, the exposure interval is set to 200 ms, and a young
driver is considered (age 25). These settings are used to assess
the photometric visibility distance as a function of the pavement
reflectivity and the headlamp beam pattern [22].

C. Impact of Fog on Apparent Luminance

The effects of fog on light propagation at night are illustrated
in Fig. 1. Two major effects should be accounted for when
the only source of illumination is the front-lighting system
of the observer’s vehicle, i.e., attenuation and backscattering.
We estimate the attenuation of light along its path from the
headlamps to the target and back to the driver using classical
models of light scattering in disperse media. Then, we estimate
the luminance of the backscattered veil with an empirical model
based on Monte Carlo simulations.

1) Scattering of Light Depending on Distance: Fog is
known for its effects on visibility. The droplets composing the
fog scatter light in all directions with proportions depending
on the size and number of particles per unit volume. Simpler
models describe the effects of fog on perceived luminance
solely based on the extinction coefficient k of the Beer–Lambert
exponential attenuation law, whereas more complex models
take into account the distribution of droplet sizes [30]. The
Beer–Lambert law describes the amount of luminous energy
transmitted through a slab of fog of depth d and extinction
coefficient k such that

L = L0e
−kd (6)

where L0 denotes the intrinsic luminance of the considered ob-
ject. Considering the visibility of a black object against the sky,
the CIE has related extinction coefficient k to meteorological
visibility distance Vmet, i.e.,

Vmet =
3
k
. (7)

Knowing the contrast threshold necessary for the detection of
a target with Adrian’s model and the attenuation of contrast by
fog with a given extinction coefficient, we are able to compute
the distance at which this minimal contrast is still perceived
and, thus, the photometric visibility distance in fog. Fog induces

Fig. 2. Headlight backscattered veil luminance as a function of the meteoro-
logical visibility distance for two types of fog (radiation and advection).

a double attenuation of light for night driving conditions: The
Beer–Lambert law first applies on the path from the headlamps
to a surface in the scene and, then, back to the driver’s eyes.
We compose (4) and (5) with (6) in order to model this
phenomenon as

L ≈
(
R · I
d2

e−kd

)
· e−kd =

R · I
d2

e−2kd (8)

with reflectance R being equal to RL or ρ/π, depending if we
consider the pavement or the target.

2) Backscattered Veil From Headlamps: Another phe-
nomenon that contributes to the loss of contrast in the scene
is linked to backscattering. Although most of the energy is scat-
tered forward, some is scattered backward toward the driver,
generating a permanent veiling effect in front of the car. The
luminance of the backscattered veil Lv has been studied with
Monte Carlo light-tracing software [31]. It has been shown to
depend on both the fog type (radiation or advection [30]) and
the meteorological visibility distance, and to follow this model
(see Fig. 2):

Lv =
1

aVmet + b
. (9)

Parameters (a, b) depend on the fog type, i.e., (0.0089,
0.1241) for radiation fog and (0.0288, 0.2591) for advection
fog. This luminance is overimposed on the driving scene,
setting the driver’s visual adaptation and increasing the apparent
luminance of all surfaces; thus, (8) becomes

L =
R · I
d2

e−2kd + Lv. (10)

D. VL Computation

We propose to implement a photometric nighttime visibility
metering tool proposed earlier [22], which we adapt for fog.
The idea is to predict the VL of a small object on the road-
way at any point along the road under headlight illumination
based on the beam pattern, pavement retroreflectivity, and fog
parameters. All geometric and photometric parameters are set
conventionally: The eyes of the driver are 1.5 m above the
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TABLE I
CLASSES OF FOG THAT NEED TO BE DETECTED BY THE

DESIGNED IN-VEHICLE CAMERA SYSTEM

ground, the headlamps’ mounting height is 0.65 m, the small
target is a gray 0.18-m side square with a reflection factor of
8%, the headlamps’ beam pattern is the average European high
beam from the University of Michigan Transportation Research
Institute [32], and the pavement RL is set between 10 and
15 cd · m−2 · lx−1. The VL of the target is calculated using
Adrian’s model, as detailed in Section II-A. Since Adrian’s
model cannot be inverted to compute a distance from a VL
value, visibility distance V is iteratively obtained by setting the
target closer and closer to the headlamps starting at 150 m, until
the VL reaches 7, which is the adopted threshold value.

E. User Needs and Systems Requirements

In order to define the range of the meteorological visibility
distance that needs to be considered by the designed system,
we define three different classes of fog.

The first class is the most critical class and happens when the
nighttime visibility distance using high beams Vhigh is lower
than the nighttime visibility distance using low beams Vlow in
the presence of fog. Based on our standard scenario, we are able
to compute the corresponding Vmet threshold as

Vmet|Vhigh|fog=Vlow|fog
≈ 100 m. (11)

The second class happens when the nighttime visibility distance
using high beams with fog becomes lower than the nighttime
visibility distance using low beams without fog. Based on our
standard scenario, we are able to compute the corresponding
Vmet threshold as

Vmet|Vhigh|fog=Vlow|nofog
≈ 300 m. (12)

We deduce the three classes of fog, which are detailed in
Table I. These classes are relevant with regard to the classes
proposed in [15]. Our in-vehicle system mainly addresses fog
classes 2 and 3, which correspond to the most dangerous
situations.

These thresholds are critical for driver assistance and deci-
sion making in terms of lighting automation. They link physical
quantities (Vmet) to practical user needs. For instance, below
Vmet = 100 m, it is recommended to switch from high beams to
low beams, bearing in mind that the visibility is much reduced
as compared with clear weather. Between 100 and 300 m,
high beams are still preferable, but the visibility distance is
inferior to that in clear weather with low beams. When Vmet

is above 300 m, high beams are preferred, although their range
is lowered as compared with clear weather.

Fig. 3. Backscattered veil. (a) Actual image grabbed in the Clermont-Ferrand
fog chamber [33]. (b) Simulated image using semi-Monte Carlo ray-tracing
software [31].

III. DETECTION OF FOG AND ESTIMATION OF

METEOROLOGICAL VISIBILITY INDEX

Based on two visual effects of night fog, a system composed
of two detection algorithms has been developed. The first
algorithm detects the presence of a backscattered veil. The
second algorithm detects the presence of halos around artificial
light sources in the environment.

A. Detection of Backscattered Veil

The first system is based on the fact that the light emitted
from the headlamps of a vehicle is scattered backward toward
the driver in the presence of fog. The idea that is investigated to
detect it is to compare different reference images with the input
images grabbed by the camera using a correlation index.

The reference image represents the front of the vehicle with
lighting on, as can be seen in fog on a dark road. It is either a
real image taken with the same camera in real or artificial fog
[see Fig. 3(a)], or a synthetic image. The process allowing to
generate such an image can be of any type. In our case, it relies
on a Monte Carlo method allowing the synthesis of images
in fog in 3-D scenes [see Fig. 3(b)] [31]. When generating a
reference image, the photometry and position of the headlamps,
the position of the camera inside the car (including its relative
angle as compared with the axis of the car), the focal length,
and the image resolution of the camera should be all known in
order to generate an image as close as possible to a real image
acquired with the camera. The synthetic images are luminance
maps. Conversion into 8-bit images is done by normalizing the
luminance data between 0 and 255. A γ function is also applied
to the synthetic images in order to match the γ of the camera.
Six reference images are produced in this way for different
meteorological visibility distances (see samples in Fig. 4).

Due to the temporal stability of the backscattered veil with
time, the input image is a composition of n successive images
grabbed by the in-vehicle camera. The composition is computed
by taking the mean of successive pixel values or by applying a
rank filter such as the median (see Fig. 5). As one can see, the
backscattered veil remains in the image, whereas other objects
such as lane markings mostly disappear.

The input image is then compared with the six reference
images using an image correlation index. Since the exposure
settings of the camera are unknown, the synthetic and real
images have different dynamics. Among available correlation
distances, zero-mean normalized cross correlation (ZNCC) has
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Fig. 4. Database of simulated images with different meteorological visibility
distances. Color scale goes from blue to red in order to bring out luminance
variations. From these luminance maps, a mask matching the shape of the
backscattered veil is extracted.

Fig. 5. Video sequence grabbed in actual fog during a test drive. (a) Sample
frame. (b) Mean of successive frames. The objects in the scene are suppressed,
whereas the backscattered veil remains due to its temporal stability.

invariant properties regarding the mean and scale of the illu-
mination level. For these reasons the ZNCC has been used.
Since both images are dark outside of the backscattering veil, it
adds a bias in the ZNCC score and decreases its discrimination
power (see Fig. 4). To overcome this problem, a mask image
matching the shape of the backscattered veil in the reference
image is computed using Otsu’s binarization method [34]. The
ZNCC score is only computed inside this mask. By applying
a threshold on the correlation score, the presence of fog is
assessed. When using the six reference images, six ZNCC
scores with the input image are obtained; the highest score
among them is selected for fog detection.

B. Detection of Halos Around Light Sources

When light sources appear in the road environment, the
backscattered veil is no longer noticeable because of the limited
dynamic range of the camera. However, fog induces the pres-
ence of halos around light sources. A halo is the consequence
of light scattering produced by water droplets. In the image, it
appears as a luminous shape around light sources, the intensity
of which slowly decreases away from the source center. Its
expanse and its intensity decrease mainly depend on the fog
density and droplet sizes. The algorithm aiming at detecting and
characterizing halos is decomposed into the following steps.

1) Light source detection. It is based on an image thresh-
olding at a high intensity level, which is close to the
maximum value of image pixels. Each connected com-
ponent is extracted, and several geometrical parameters
are evaluated, i.e., the position of the center of gravity
(CoG), the surface, the compactness, the elongation. Re-
lying on these parameters, connected components that
do not correspond to isolated sources are discarded.
For instance, lane markings are excluded based on their
shape; some sources that are agglomerated due to their
proximity in the image are discarded based on their large
surface or their complex shape. The remaining connected
components are called “potential sources.” As illustrated
in Fig. 6, we start building a tree, in which the leaves
are the potential sources associated with their geometrical
parameters.

2) Halo segmentation. Progressively decreasing the thresh-
old results in the connected components encompassing
larger parts of each source halo in addition to the source
itself. At each threshold decrement, the connected com-
ponents are extracted using the potential sources as seeds.
A new node is added to the tree, under the corresponding
potential source’s leaf, containing the same geometrical
parameters. When two or more potential sources belong
to the same connected component, their branches are
merged into a single node. We continue decrementing the
threshold until all the potential sources merge. Notice that
we do not add new leaves to the tree during this process.

3) Halo selection. Based on the geometrical parameters
calculated at each step, we exclude the branches for which
the following are true.
a) The size growth between successive decrements is

large, typically more than five times; it corresponds to
the fusion of the potential source with a bright object
present in the scene.

b) The gravity center drastically evolves between suc-
cessive decrements without a preferred direction; it
generally does not correspond to light sources.

c) Determination of halo direction. Each branch of the
tree is independently studied, and the CoG of the
segmented shapes is computed for each node. A linear
regression on the successive positions of the CoG
along a branch gives the direction of the halo. When a
source is isotropic (all CoGs are merged), a direction
is chosen arbitrarily.

d) Halo intensity profile extraction. The intensity pro-
file is extracted along the direction estimated in the
previous step, beginning at the CoG of the source
segmented during Step 1 (Light source detection).
Fig. 7 illustrates how crucial the direction choice is:
For directional light sources, the halo is only present in
the lighting direction (the green direction in this case).

e) Characterization of the intensity profile of the halo.
In the presence of fog, the decrease in intensity along
a source direction is smoother than in the absence of
fog. This feature enables to detect fog presence. The
choice of the curve characteristic is crucial. A large
set of characteristics was explored and statistically
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Fig. 6. Detection of light sources and associated halos. (Left) Original image. (Middle) Segmented images with decreasing thresholds and associated connected
components. (Right) Tree of potential sources built using the segmented images.

Fig. 7. Intensity profile across the halo of a directional light source. The successive positions of the CoG (in red) and the linear regression in the direction of
lighting (in green) and in the opposite direction (in purple).

compared in order to select the most relevant char-
acteristic for distinguishing between the presence and
absence of fog. As illustrated in Fig. 7, the following
curve characteristic is chosen: Br50 = H50/Wr50,
with H50 as half the height of the decrease, and Wr50
as the width between the end of the sensor saturation
and the curve point corresponding to the half of the
height. Br50 decreases in the presence of fog.

f) Br50 combination. Each frame of a video sequence
contains several potential light sources. For each
frame, the Br50 characteristics of the different halos
are averaged to compute their mean value Br50.

Finally, if Br50 is smaller than a given threshold, fog is
detected. Otherwise, no fog is detected. The optimal threshold
on Br50 in our database was estimated to be 9. The detection
process is illustrated in Fig. 8.

Fig. 8. Illustration of source halos’ detection. (Left) Without fog.
(Right) With fog. Expanding blue boxes represent the bounding boxes of the
connected components at each step.

C. Combination of Both Approaches

As detailed previously, fog creates two main visual effects
during nighttime. First, the headlamps produce a backscattered
veil in the driver’s field of view. Second, the external light
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Fig. 9. Scheme of the method for combining both algorithms. The light source
detection algorithm triggers the halo detection algorithm and, ultimately, the
backscattered veil detection algorithm.

sources, such as public lighting or other vehicles’ lights, gener-
ate a halo effect. Moreover, the backscattered veil becomes in-
visible when external light sources illuminate the scene, which
is due to automatic camera settings and the reduced dynamic
range of the camera. Two detection algorithms were presented
in the previous section. The first algorithm aims at detecting the
presence of a backscattered veil. The second algorithm aims at
detecting the presence of halos around artificial light sources
in the environment. Their combination is achieved by running
them alternatively. Halo detection is run first. It starts with the
detection of light sources in the field of view. If at least one
source is detected, the halo detection algorithm carries on to
evaluate the presence of fog based on the shape of the halo
around the source(s). If no source is detected, the halo detection
algorithm is interrupted, and a signal is sent to the backscattered
veil detection algorithm. Without any external light source in
the environment, the veil is detectable, and the correlation with
reference images is relevant for evaluating the fog presence.
Fig. 9 presents a scheme that summarizes this approach.

D. Fog Characterization Through Backscattered Veil

Both the halo and backscattered veil detection algorithms
may be used to characterize the fog density and to estimate the
meteorological visibility. Since the halos around light sources
depend on the distance from the camera (which is unknown)
and on the type and density of fog, Br50 does not suffice to
accurately characterize fog and, thus, to estimate the meteo-
rological visibility: It is an ill-posed problem. On the other
hand, the algorithm to detect fog through the backscattered
veil is based on the comparison between the current camera
image and a set of reference images, which were produced
under different fog densities. The correlation score serves to
evaluate the fog presence. We propose to implement it to
characterize the fog density. The initial fog characterization
comes from the reference image with the strongest correlation
score. The fog density corresponding to this reference image
gives a first approximation of the actual fog density. However,
this characterization is quite unstable, particularly when the
density is between two reference images. It does not take into
account all available information. When using several reference
images, we get several comparison scores with the initial image.
Combining all the scores produces a more accurate estimate of
the observed fog density. For the combination, we fit the curve
of the correlation score Sc versus meteorological visibility
distance Vmet with the following function:

Sc = eaV
2
met+bVmet+c (13)

where a, b, and c are the fitting parameters. Relying on the
previous equation, it is possible to estimate the current visibility
distance using

Ṽmet =
−b

2a
. (14)

Since (14) does not depend on the c fitting parameter, the
proposed method allows detecting and characterizing the fog
density without any hard threshold on the ZNCC score. Indeed,
the ZNCC score depends on the type of input image and
reference image; thus, we consider its variation instead of its
actual value.

IV. EXPERIMENTAL EVALUATION

A. Materials

Weather centers are unable to forecast fog presence, which
makes it very difficult to obtain experimental data. Never-
theless, different kinds of materials have been progressively
collected between 2008 and 2012 to assess the performance
of the presented methods. For qualitative evaluation, different
short videos were acquired with an experimental vehicle in the
area of Versailles (France) during successive winters; in one of
these videos, a prototype LIDAR was used to provide a rough
estimate of the meteorological visibility distance. For quanti-
tative evaluation, two video sequences were produced in the
fog chamber of Clermont-Ferrand (France), which is equipped
with reference transmissometers [33]; however, due to fog
inhomogeneity inside the chamber, these measurements cannot
be considered absolute ground truth data. The whole process
from fog detection to fog characterization is performed in real
time using a video of resolution 1280 × 800 at 10 frames/s.
The hardware used for the experiments is an Intel Core i7 at
3 GHz. The program runs on the Intempora RT-Maps plat-
form and is compiled with the Microsoft Visual C++ 2005
framework.

B. Night-Fog Detection

First, we illustrate the results obtained using the halo de-
tection algorithm. We remind that a value Br50 lower than 9
corresponds to the presence of fog. To assess the ability of the
halo detection algorithm to detect foggy weather, four video
sequences were produced using an embedded camera on the
same location at night, i.e., two of them during clear nights and
the other two during foggy nights. They present 2130 images
that contain an average of ten light sources per image. Fig. 8
illustrates the source and halo detection process on two images
extracted from the database. Considering each frame indepen-
dently, the proposed algorithm produced a fog detection rate of
98.4%. By producing a sliding average of the characteristic of
the halo profile on 1 s of video (25 images), the fog detection
rate reached 99.86%. In Fig. 10, the halo detection algorithm is
further illustrated on other different driving scenarios. In the
top-left image, a single source is detected. The propagation
direction, which is plotted in green, corresponds to the direction
of the halo. A value smaller than 9 indicates the presence of fog.
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Fig. 10. Illustration of the results obtained using the halo detection algorithm.
In each image, the value of the Br50 criterion averaged over 50 sources is
presented in red in the top-left corner. A value smaller than 9 corresponds to the
presence of fog. For each detected source, the halo direction is plotted in green,
the Br50 criterion is written in pink, and the intensity profile is plotted in violet.
(a) Br50 = 4.473. (b) Br50 = 3.889. (c) Br50 = 6.859. (d) Br50 = 5.599.

Notice that the road sign, which could have been detected as a
source, is discarded due to the source filtering process. In the
top-right image, the detection of multiple sources is illustrated.
The propagation directions are different for each source, but
the Br50 values are close (3.57, 3.91, and 4.05). In the bottom-
left image, the headlamps of an oncoming vehicle are detected.
The lane separation disturbs the detection, but the Br50 value
is stable enough and is relevant to confirm the presence of fog
whenever detection is possible. In the bottom-right image, no
external light source is detected, but the backscattered veil is
strongly present. To illustrate the halo detection algorithm, a
video of the same street with and without fog is attached in this
paper.

To validate the backscattered veil algorithm, we have used a
recorded video in the Clermont-Ferrand (France) fog chamber.
Sample results are given in Fig. 11. A high correlation score
(greater than 0.6) is obtained when the measured and reference
images correspond to dense fog (see Table I). In the presence of
fog, this score becomes smaller (around 0.4). In the presence of
light fog, it becomes very small (less than 0.2). Consequently,
the confidence in fog detection based on the backscattered
veil increased with the fog density. In Fig. 12, the results
of the backscattered veil algorithm are presented on open-
road fog images. The signal-to-noise ratio is strongly increased
by averaging successive frames. The highest correlation score
corresponds to the reference image having a visibility of 500 m,
which is quite consistent with the output of the dedicated
LIDAR of 368 m. However, using all correlation scores will
improve the fog characterization.

C. Night-Fog Characterization

To validate the night-fog characterization process, we have
used a video from the Clermont-Ferrand (France) fog chamber

Fig. 11. ZNCC correlation score of different reference images with fog
images grabbed as fog dissipates in the Clermont-Ferrand fog chamber.

Fig. 12. Illustration of results obtained using the backscattered veil detection
algorithm. (Top left) Current image. (Top right) Mean of successive images (the
background image). (Bottom) Value of the ZNCC correlation scores between
the background image and the six simulated reference images (15, 50, 100,
200, 500 m, and ∞). The meteorological visibility distance measured by the
dedicated LIDAR is 368 m.

[33]. First, we have selected six frames as reference images;
they correspond to the following measured visibility distances:
12.6, 51.4, 91.8, 167.8, 415.6, and 2000 m. Then, we have
computed the correlation of the 50 frames sampled from the
video with the six reference frames; for each of these test
frames, we have used the six correlation scores to fit the curve
based on (13), and we have used that curve to estimate the
meteorological visibility distance. The results for three test
frames are presented in Fig. 13 with the fitted curve in green.
For comparison purposes, we have also computed the correla-
tion scores of these three test frames with the other 50 frames
sampled from the video; the resulting curves are plotted in blue
in Fig. 13. The similarity between both curves is satisfactory,
meaning that the choice of the model and of the six reference
frames to fit the curve is adapted to the problem while limiting
the computing load. Moreover, as shown in the title of each
graph in Fig. 13, the estimated visibility is rather close to the
reference visibility. Finally, the estimated visibility distance is



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GALLEN et al.: NIGHTTIME VISIBILITY ANALYSIS AND ESTIMATION METHOD IN THE PRESENCE OF DENSE FOG 9

Fig. 13. Correlation scores versus the visibility distance for three different
frames (a), (b), and (c) of the video acquired in the fog chamber of Clermont-
Ferrand. The plot of the correlation score between each test frame and the 50
other frames is in blue. The fitting of the curve only using six points of the curve
(reference frames) is in green.

Fig. 14. Measured and estimated visibility distances obtained on a video
sequence acquired in the fog chamber of Clermont-Ferrand. (a) Curve for the
whole range of meteorological distances. (b) Zoom of the red square for the low
meteorological visibility distances.

presented in Fig. 14 as a function of the reference visibility
distance for each frame sampled from the video. The accuracy
of the estimation is as follows:

• about 10 m of accuracy when Vmet < 50 m;
• about 20 m of accuracy when Vmet < 100 m;
• about 40 m of accuracy when Vmet < 200 m;
• Less than 100 m of accuracy when Vmet > 200 m.
Notice that this method is clearly better than choosing the

best correlation score to infer the visibility distance. However,
the accuracy is not high enough to be used directly. Neverthe-
less, according to these results, the designed process meets the
requirements expressed in Section II-E and is able to classify
the fog density in the proposed categories.

V. CONCLUSION AND PERSPECTIVES

In this paper, the problem of night visibility in the presence
of fog has been tackled. An original approach allows us to
propose a standard night visibility index inspired by literature
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on public lighting. Based on this index, three classes of fog
density directly related to user needs are presented, two of
which concern the safety of drivers and should be required in
the safety systems that will equip vehicles in the future. To
this aim, we propose a methodology to detect the presence of
night fog and to estimate the resulting meteorological visibility
distance. The detection is carried out by detecting the presence
of a backscattered veil or halos around external light sources.
The characterization is obtained by fitting an empirical model
with the correlation scores computed between the current image
and the reference images with known meteorological visibility
distance. The experimental results, which are both qualitative
and quantitative, demonstrate the capacity of the proposed
method to meet the proposed requirements in terms of accuracy.
In the future, night-fog characterization will be done using halo
characteristics. In this aim, we plan to collect a larger database
of fog images with the associated meteorological visibility. The
proposed methodology has been patented [35] and will poten-
tially allow the development of different applications. First, it
enables novel intelligent speed adaptation strategies, which are
able to take into account a reduction of the visibility distance,
e.g., see [3]. Second, it allows developing new adaptation
strategies for vehicle front-lighting and signaling systems [36].
Finally, such a method may be used to detect and characterize
fog from a fixed roadway camera [37].
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