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Abstract Free space detection is a primary task for car nav-
igation. Unfortunately, classical approaches have difficulties
in adverse weather conditions, in particular in daytime fog.
In this paper, a solution is proposed thanks to a contrast
restoration approach on images grabbed by an in-vehicle
camera. The proposed method improves the state of the art
in several ways. First, the segmentation of the fog region
of interest is better segmented thanks to the computation of
shortest routes maps. Second, the fog density as well as the
position of the horizon line are jointly computed. Then, the
method restores the contrast of the road by only assuming
that the road is flat and, at the same time, detects the vertical
objects. Finally, a segmentation of the connected component
in front of the vehicle gives the free space area. An experi-
mental validation was carried out to foresee the effectiveness
of the method. Different results are shown on sample images
extracted from video sequences acquired from an in-vehicle
camera. The proposed method is complementary to existing
free space area detection methods relying on color segmen-
tation and stereovision.

1 Introduction

Free space detection is a fundamental task for autonomous
or automated vehicles, since it provides the area where the
vehicle can navigate safely. In structured environments, the
free space area is mainly composed of the road surface. This
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area is either detected based on color [1] or texture [2] seg-
mentations, deduced from stereovision based obstacles de-
tection [3] or is a combination of both approaches [4]. How-
ever, all these methods have difficulties in foggy weather.
Indeed, the contrast is reduced with the distance, which hin-
ders classical segmentation techniques assuming that the color
or the texture of the road is constant, or stereovision tech-
niques based on local correlation from working properly. To
solve this problem, one may restore the contrast of the im-
age. Classical free space detection techniques can then be
applied to the restored image.

Methods which restore the contrast of images grabbed
onboard a moving vehicle under bad weather conditions are
hardly encountered in the literature. Indeed, some techniques
require prior information about the scene [5]. Others require
dedicated hardware in order to estimate the weather con-
ditions [6]. Some techniques rely on two images with dif-
ferent fog intensities and exploit the atmospheric scatter-
ing to adequately restore the contrast [7]. Techniques based
on polarization can also be used to reduce haziness in the
image [8]. Unfortunately, these methods require two differ-
ently filtered images of the same scene. Finally, Narasimhan
and Nayar [9] proposed to restore the contrast of more com-
plex scenes. However, the user must manually specify a lo-
cation for sky region, vanishing point and an approxima-
tion of distance distribution in the image. Recently, differ-
ent methods have been proposed which rely only on a single
image as input and might be used onboard a moving ve-
hicle. Hautière et al. [10] first estimate the weather condi-
tions and approximate a 3D geometrical model of the scene,
which is inferred a priori and refined during the restoration
process. The method is dedicated to in-vehicle applications.
Tan [11] restores image contrasts by maximizing the con-
trasts of the direct transmission while assuming a smooth
layer of airlight. Fattal [12] estimates the transmission in
hazy scenes, relying on the assumption that the transmission
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and surface shading are locally uncorrelated. These methods
are computationally expensive: five to seven minutes with a
600×400 image on a double Pentium 4 PC for Tan [11] and
35 seconds with a 512×512 image on a dual core processor
for Fattal [12]. Based on the principle proposed in Tan [11],
i.e. the inference of the atmospheric veil, He et al. [13] as
well as Tarel and Hautière [14] have proposed improved al-
gorithms; the latter [14] is fast enough to be used in real-time
applications. The problem of these methods is that the depth
map produced by their atmospheric veil inference may be
erroneous due to the ambiguity between white objects and
fog. A novel approach combining fog detection and contrast
restoration is proposed in [15] which is applied to the en-
hancement of driver assistance systems. Finally, a contrast
restoration method able to deal with the presence of hetero-
geneous fog is proposed in [16].

To solely detect the free space area, we propose another
approach, taking advantage of fog presence. Following an
enhanced fog detection and characterization method, the con-
trast of the images is restored assuming a flat world. The
intensity of all the objects which do not respect this assump-
tion thus becomes null in the restored image, which leads to
a very efficient segmentation of the free space area. This seg-
mentation method is thus inspired from contrast restoration
techniques but does not constitute a real contrast restoration
method.

The following of this article is organized as follows. In
section 2, we recall a well-known model of daytime fog,
which is used to detect its presence in highway images and
to estimate its density. The method is described in section 3
and a sensitivity analysis is carried out which leads to pro-
pose improvements of the method in sections 4 and 5. In
section 6, we explain the principle of our contrast restora-
tion method and explain how it is used to properly detect
the free space area. Finally, experimental results are given
in section 7 and discussed in section 8.

2 Modeling Fog Effects in Images

2.1 Koschmieder’s Law

The method proposed in this study is based on a physics
law governing the attenuation of brightness contrast by the
atmosphere. This law, derived by Koschmieder, is given by:

L = L0e−β d +L∞(1− e−β d) (1)

It relates the apparent luminanceL of an object located at
distanced to the luminanceL0 measured close to this ob-
ject at a time when the atmosphere has an extinction co-
efficient β . L∞ denotes the atmospheric luminance. On the
basis of this equation, Duntley developed a contrast attenua-
tion law [17], stating that a nearby object exhibiting contrast

C0 with the background will be perceived at distanced with
the following contrast:

C =
(L0−L∞)

L∞
e−β d =C0e−β d (2)

This expression serves as a base to define a standard dimen-
sion called "meteorological visibility distance"Vmet , i.e. the
greatest distance at which a black object (C0 =−1) of a suit-
able dimension can be seen in the sky on the horizon, with
the threshold contrast set to 5% [18]. It is thus a standard
dimension that characterizes the opacity of a fog layer. This
definition yields the following expression:

Vmet =− 1
β

log(0.05)≃ 3
β

(3)

3 Fog Detection and Characterization

In this section, a method to compute the extinction coeffi-
cientβ using a single camera behind the vehicle windshield
is recalled from [19].

3.1 Flat World Hypothesis

In the image plane, the position of a pixel is given by its
(u,v) coordinates. The coordinates of the optical center pro-
jection in the image are designated by (u0,v0). In Fig. 1,H
denotes the height of the camera,θ the angle between the
optical axis of the camera and the horizontal, andvh the
horizon line. The intrinsic parameters of the camera are its
focal length fl , and the horizontal sizetpu and vertical size
tpv of a pixel. We have also made use herein ofαu =

fl
tpu

and

αv =
fl

tpv
, and have typically considered:αu ≈ αv = α. The

hypothesis of a flat road is adopted, which makes it possible
to associate a distanced with each linev of the image:

d =
λ

v− vh
if v > vh, whereλ =

Hα
cosθ

(4)

3.2 Camera Response

Let us denotef the camera response function, assumed to
be linear, which models the mapping from scene luminance
to image intensity by the imaging system, including optic as
well as electronic parts. In a foggy scene, the intensityI of a
pixel is the result off applied to (1):

I = f (L) = f (L0)e
−β d + f (L∞)(1− e−β d)

= Re−β d +A∞(1− e−β d) (5)

whereR is the intrinsic intensity of the pixel, i.e. the inten-
sity corresponding to the intrinsic luminance value of the
corresponding scene point andA∞ is the background sky in-
tensity.
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Fig. 1 Modeling of the camera within its environment; it is locatedat a height ofH in the (S,X ,Y ,Z) coordinate system relative to the scene. Its
intrinsic parameters are its focal lengthf and pixel sizet. θ is the angle between the optical axis of the camera and the horizontal. Within the
image coordinate system, (u,v) designates the position of a pixel, (u0,v0) is the position of the optical centerC andvh is the vertical position of the
horizon line.

3.3 Recovery of Fog Parameters

Following a variable change fromd to v based on (4), (5)
thus becomes:

I = A∞ +(R−A∞)e
−β λ

v−vh (6)

By twice taking the derivative ofI with respect tov, one
obtains the following:

∂ 2I
∂v2 = β ϕ(v)e−β λ

v−vh

(

β λ
v− vh

−2

)

(7)

whereϕ(v) = λ (R−A∞)
(v−vh)

3 . The equation∂ 2I
∂v2 = 0 has two solu-

tions. The solutionβ = 0 is of no interest. The only useful
solution is:

β =
2(v1− vh)

λ
(8)
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Fig. 2 Method sensitivity with respect to the estimation errorδ be-
tweenv1 andvh. Used camera parameter:λ = 1000.

wherev1 denotes the position of the inflection point ofI(v).
Thus fromv1, the parameterβ of Koschmieder’s law is ob-
tained. Finally, thanks tov1, vh andβ values, the values of
the other parameters of (5) are deduced through use ofI1 and
∂ I
∂v |v=v1

, which are respectively the values of the functionI

and its derivative inv = v1:

{

R =I1− (e2−1) (v1−vh)
2

∂ I
∂v |v=v1

A∞=I1+
(v1−vh)

2
∂ I
∂v |v=v1

(9)

whereR is the intrinsic intensity of the road surface.
To implement this method, we measure the median in-

tensity on each line of a vertical band in the image. As this
band should only take into account a homogeneous area and
the sky, we identify a region within the image which dis-
plays minimal line-to-line gradient variation when crossed
from bottom to top using a recursive region growing algo-
rithm. A vertical band is then selected in the segmented area.
Thus, we obtain the vertical variation of the intensity in the
image, and deduceβ by computing the maximum of the first
derivative of this profile.

3.4 Method Discussion

The fog detection method presented in the previous para-
graph has two major limitations which are now discussed.

3.4.1 Segmentation of the Region of Interest

First, the method is sensitive to the presence of obstacles
such as a preceding vehicle which might prevent the region
growing algorithm to cross the image from bottom to top.
However, as long as a vertical path exists in the image, the
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Fig. 3 Challenging images with which the original ROI segmentation method proposed in [19] gives poor results. The original images are shown
in the first row. The second and third row show the results respectively obtained with∆s = 2 and∆s = 3.

region growing is able to circumvent the obstacles, which
makes it possible to detect fog presence. A temporal filter
can also be used if fog is temporary not detected. An exam-
ple of temporal filter dedicated to our problem is proposed
in [20].

Another limitation is related to the method of segmen-
tation of the region of interest (ROI). As said previously,
this method identifies a region within the image which dis-
plays minimal line-to-line gradient variation when crossed
from bottom to top, using a region growing algorithm which
aims at segmenting part of the road and the sky regions. In
particular, a hard threshold is used to set the maximum al-
lowed line-to-line gradient. This threshold is very difficult to
set since it is a local parameter. Moreover, the method fails
in case of highly textured road surfaces. Then, in case of a
strong transition between the road and the sky, the region
growing is not able to segment the sky. Finally, the criterion
to stop the region growing algorithm is too strong. Indeed,
the image must be crossed from bottom to top, which is not
possible in case of road signs or a bridge above the road. Fi-
nally, the recursive implementation of the algorithm my be
problematic for some hardware architectures.

In Fig. 3, some challenging images are shown with re-
sults obtained using the original ROI segmentation method
which gives poor results. The original images are shown in
the first row. The second and third row show the results re-
spectively obtained with∆s = 2 and∆s = 3, where∆s de-
notes the local gradient threshold. The difference of results
with very close thresholds illustrate the sensitivity of this
method with respect to this local threshold. Figs. 3(a)(b) il-
lustrate the difficulty to process textured road surfaces. Fig. 3(c)

illustrate the difficulty to process scenes with very strong
transitions between road and sky. Finally, Figs. 3(d)(e), is-
sued from the FRIDA database [16], illustrate the difficulty
to process scene with objects above the road surface (build-
ings, trees, bridge).

3.4.2 Pitch Angle Sensitivity

Second, the proposed measurement process is sensitive to
variations of orientation of the vehicle with respect to the
road surface. It is not too much sensitive to variations of
roll angle thanks to the use of a measurement bandwidth,
contrary to a change of pitch angle. Indeed, the estimation
of Vmet is correct if the positionv1 of the inflection point as
well as the positionvh of the horizon line are correct.

Let us study the influence of an estimation errorδ on
the difference between these two positions. The errorS be-
tween the estimated meteorological visibility distanceṼmet

and the actual meteorological visibility distanceVmet is ex-
pressed with respect toδ by:

S = Vmet − Ṽmet

= Vmet −
3λ
2

1
v1− vh + δ

= Vmet

[

1− 1

1+ 2δVmet
3λ

]

(10)

The curves in Fig. 2 show the error for values ofδ ranging
from -4 to +4 pixels. One clear result is that underestimating
δ is more penalizing that overestimating it. To have stable
measurements, we may chose to set the horizon line above
its theoretical position.
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However, estimating the position of the horizon line is a
difficult problem. It can be estimated by means of the pitch-
ing of the vehicle when an inertial sensor is available, but
is generally estimated by an additional image processing.
This type of processing seeks to intersect the vanishing lines
in the image [21, 22]. However, under foggy weather, the
vanishing lines are only visible close to the vehicle. It is
thus necessary to extrapolate the position of the horizon line
through the fog. Consequently, this kind of process is prone
to a significant standard deviation and, so far, using the a
priori sensor calibration was a better option.

In this section, two major limitations of the method pub-
lished in [19] have been highlighted. The novel proposals
described in the two next sections aim at solving these is-
sues.

4 Segmentation of Fog ROI based on Geodesic Maps

In this section, a novel approach for the fog ROI segmenta-
tion is presented to circumvent previous limitations thanks
to the use of geodesic maps.

4.1 Optimal Path Computation in Gray-Level Images

Following the original idea that the fog ROI should dis-
play a minimal line-to-line gradient [19], an analogy with
optimal path computation methods can be made. Assimilat-
ing an image with a graph, Dijkstra’s algorithm [23] allows
computing the shortest path but the complexity of the algo-
rithm O(n2) is problematic for large images. More efficient
approaches exist, making use of heuristics like theA∗ algo-
rithm [24] but the complexity is stillO(n logn) for comput-
ing one single source shortest path. In our case, it is prob-
lematic since the goal is to compute the shortest routes be-
tween sets of nodes. The Weighted Distance Transform On
Curved Space (WDTOCS) proposed in [25] aims at comput-
ing the shortest routes between sets on gray-level images.

The WDTOCS uses piecewise Euclidian local distance
computed with Pythagora’s theorem from the horizontal dis-
placement and the height difference. It is also referred as the
efficient geodesic distance transform [26] (see also [27]).Its
principle is presented in Fig. 4.
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Fig. 4 Efficient geodesic distance transform [26]. Usually,ρ1 = 1 and
ρ2 =

√
2.

The route algorithm using WDTOCS requires two dis-
tance mapsF ∗

a (x) andF ∗
b (x). The route endpointa (respec-

tively b) is the feature from which all distances are com-
puted. From the distance maps, a route distance image is
computed by a simple addition:

DR(x) = F
∗
a (x)+F

∗
b (x) (11)

The valueDR(x) is the distance between the route endpoints
along the shortest path passing through pointx. Consequently,
the points with a minimal route distance value form the de-
sired route:

R(a,b) = {x|DR(x) = min
x

DR(x)} (12)

This idea can be generalized for a general route between
sets. The route between sets is found by computing the dis-
tance mapsF ∗

A(x) andF ∗
B(x), whereA andB are the point

sets between which we want to find an optimal route. The
distance mapR(A,B) is deduced as well.

4.2 Novel Fog ROI Segmentation Approach

The optimal route computation approach detailed in previ-
ous section may be adapted to segment fog region of inter-
est. The setsA andB have to be correctly chosen. We thus

B

A

B

(a) (b)

(c) (d)

(e) (f)

Fig. 5 Fog ROI segmentation based on WDTOCS transform: (a) orig-
inal image; (b) origin (A) and destination (B) set points; (c) F ∗

A(x)
distance map; (d)F ∗

B(x) distance map; (e)R(A,B) route map; (f) final
segmented ROI overlaid in green. In the distance maps, the distance is
mapped linearly into gray levels.
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make two minimal assumptions. First, we assume that the
road is at the bottom of the image, i.e. in front of the car.A
is the lowest line in the image belonging to the road surface.
Second, we assume that the sky area is among the brightest
pixels of the image above ana priori estimation of the hori-
zon line.B is thus made of the brightest pixels of the image.
Once the route map is obtained, a segmentation of the min-
imum routeR̃(A,B) is performed starting from the bottom
of the image and stopping the highest possible in the image
using a toleranceτ parameter applied to (12):

R̃(A,B) = {x|DR(x)≤ (1+ τ)min
x

DR(x)} (13)

Finally, the method has no local parameter anymore. In-
stead, we use two global parameters:γ represents the rel-
ative weight of the gradient with respect to the Euclidian
distance in the geodesic transform (cf. Fig. 4)andτ gov-
erns the final extraction of the minimum route. Then, the
segmentation is successful if the segmentation region goes
above the theoretical position of the horizon line position.
The process is illustrated in Fig. 5 on a challenging road
scene. Fig. 5(b) shows the origin and destination set points.
Figs. 5(c)(d) show respectivelyF ∗

A(x) andF ∗
A(x) distance

maps. Fig. 5(e) shows the final route map. Figs. 5(f) shows
the segmented fog ROI in overlaid green.

5 Horizon Line Position

In section 3.4.2, the sensitivity of the fog density estimation
algorithm to the horizon line position has been highlighted.
In this section, a new estimation method is proposed.

5.1 Joint Estimation of the Horizon Line Position

By taking the derivative ofI with respect tov one more time,
we obtain the following:

∂ 3I
∂v3 (v) =

β λ (R−A∞)

(v− vh)6

(

6v[v− (β λ +2vh)]+ . . .

. . .+6vh[β λ + vh]+β 2λ 2)e
− βλ

v−vh (14)

Thus, the derivative of Koschmieder’s law owns two inflec-
tion points whose locations are denotedv2 andv3:

{

v2=vh +
β λ (3−

√
3)

6

v3=vh +
β λ (3+

√
3)

6

(15)

Thanks to (8) and (15), the position of the horizon linevh

can be computed for each inflection point of the derivative:

{

vh=(1−
√

3)v1+
√

3v2

vh=(1+
√

3)v1−
√

3v3
(16)
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Fig. 6 Points of interest on (a) Koschmieder’s law and its (b) first and
(c) second derivative. The red point denotes the inflection point v1.
The blue and the green points denote the inflection pointsv2 and v3
respectively.

For each inflection point of the derivative, we deduce an es-
timation ofβ :
{

β=2
√

3
λ (v1− v2)

β=2
√

3
λ (v3− v1)

(17)

5.2 Accurate Estimate

Generally, the estimation of the position the most important
inflection point of a signal is made by looking for the lo-
cation where the first derivative is maximum. Consequently,
v1 is obtained as the location where the first derivative of
I is maximum.v2 is obtained by looking at the location of
the maximum of the second derivative ofI between the top
of the image andv1. v3 is obtained by looking at the loca-
tion of the maximum of the second derivative of between the
bottom of the image andv1.
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Fig. 7 Derivative of the luminance curveI for different smoothing lev-
els. The location of the inflection pointv1 is marked with a green dia-
mond. The displacement of its location with respect to the smoothing
level is obvious.

We are thus able to estimate the extinction coefficient of
the atmosphere as soon as we are able to detect the inflection
point of the intensity curve as well as the position of one of
its inflection points, figured out in Fig. 6. In this way, we
are able to skip the estimation of the position of the horizon
line. From a practical point of view, the results usingv2, the
inflection point between the sky andv1, are more accurate
since they are less sensitive to the texture of the road surface.
However, both estimators might be combined by giving a
lower weight to the measurements based onv3.

However, whatever the technique used to estimate the
vertical intensity profileI, the obtained profile is noisy. It
is thus necessary to smooth the profile before extracting the
positions of the different inflection pointsv1, v2 andv3. Usu-
ally, the profile is over-sampled ten times so as to have a
sampling uncertainty smaller than one tenth of a pixel. The
problem is that the application of a smoothing filter (Gaus-
sian for instance) on the profile, even if it reduces the noise,
is likely to bias the position of the inflection points, as shown
for v1 in Fig. 7. To have correct results, it is thus necessary
to correct this bias. This correction is performed in two steps
on the intensity profile.

The first step consists in smoothing the signal with two
filters having different scales, typicallysm = 15 pixels and
sM = 30 pixels. We denotevi,m andvi,M the estimated posi-
tion of one of the inflection point (i = 1 or 2). The extrap-
olated position of the inflection point at zero scale is given
by:

vi =
sM × vi,m − sm × vi,M

sM − sm
. (18)

The values ofβ , vh, A∞ andR are deduced according to the
previous equations.

New fog

image

Positions vi extrapolated at

zero scale on the input profile

β, A∞,v1,v2 estimated using

Koschmieder’s Law

Positions      estimated on the 

smoothed estimated profile
i
vɶ

i i
v v ε− <ɶ

( )i i i i
v v r v v= + −ɶ

Yes

No

Fig. 8 Diagram of the algorithm used to accurately estimate the posi-
tions of the inflection points.

The second step consists in reconstructing the intensity
profile based on the values ofv1, v2, β , vh, A∞ andR esti-
mated thanks to the first step. Then, we apply a smoothing
of scalesM on the reconstructed profile and estimate, from
the smoothed profile, the positions of the inflection points ˜v1

and ˜v2. The valuesv1 andv2 are then estimated, taking into
account the residual bias by adding the termr(vi − ṽi), i = 1
or 2, wherer denotes a ratio inferior to 1, typically 0.8. This
last step is iterated until the distance between thevi and ˜vi is
small enough. The algorithm is schematized on Fig.8.

6 Free Space Detection Method

6.1 Restoration Principle

In this section, we describe a simple method to restore scene
contrast from a foggy image. Let us consider a pixel with
known depthd. Its intensityI is given by (5).(A∞,β ) charac-
terizes the weather condition and are previously estimated.
Consequently,R can be estimated directly for all scene points
from (5):

R = Ieβ d +A∞(1− eβ d) (19)

This equation means that an object exhibiting a contrastC in
the original image will have the following contrastCr with
respect to the background sky in the restored image:

Cr =
(R−A∞)

A∞
=

(I −A∞)

A∞
eβ d =Ceβ d (20)

We thus have a method which restores the contrast exponen-
tially with respect to the depth. Unfortunately,R is negative
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Fig. 9 3D plot of the corrected contrast restoration function (21)for
β = 0.05 andA∞ = 255. The object intensity may become null after
contrast restoration.

for some values of (I, d). In such cases, we clip these values
to 0. The restoration equation becomes finally:

R = max
[

0, Ieβ d +A∞(1− eβ d)
]

(21)

This function was plotted for a certain range of (I, d) values
in Fig. 9. To properly restore the scene contrast, the remain-
ing problem is to estimate the depthd at each pixel.

6.2 Flat World Restoration

Based on (21), a 3D model of the road scene is necessary
to restore the contrast accurately. As a first step, we propose
to use a quite opposite scheme, which only assumes that the
road is flat. The distance of a pixel in the image is thus as-
sumed given by (4). Large distances are clipped using a pa-
rameterc. The distancedc of a pixelP(i, j) is thus expressed
by:

dc
(

i ∈ [0,N[, j ∈ [0,M[
)

=

{

λ
j−vh

if M > j > c
λ

c−vh
if 0 ≤ j ≤ c

(22)

Fig. 10 Sample result of flat world restoration. The intensity of verti-
cal objects becomes null in the restored image: (a) originalimage; (b)
result.

whereN ×M denotes the size of the image.c serves to set
the maximum distance for the contrast restoration. It makes
sense to set the position of this clipping plane at the meteo-
rological visibility distance. Indeed, no pixel has a contrast
above 5% beyondVmet . Consequently, the structure of the
scene is unknown beyond this distance. Using (3) and (8),
we thus set:

c =
(2v1+ vh)

3
(23)

By using (22) in (21), the contrast of objects belonging to
the road plane is correctly restored.

6.3 Free Space Segmentation

Conversely, as soon as they are darker than the sky i.e.I <
A∞, the contrast of vertical objects of the scene (other ve-
hicles, trees, etc.) is falsely restored since their distance in
the scene is largely overestimated. Consequently, according
to (21), their intensity becomes null in the restored image
thanks to the exponential formula, like in Fig. 10(b). This is
an inconvenient of this method, which was mitigated in [28]
by underestimating the value of the horizon line. However,
this inconvenient can be turned into our advantage. Thus,
by detecting the pixels whose intensity is null after contrast
restoration, we easily segment the vertical objects and then
segment the free space area accordingly by looking for the
biggest connected component in front of the vehicle. To im-
prove the results of this last step, a morphological opening
of the connected component may be performed.

7 Experimental Validation

In the previous sections, three contributions have been pre-
sented: a fog ROI segmentation method, a process to jointly
estimate the horizon line and the fog density and a method
to segment the free space navigation area. In this section,
experimental results are presented to illustrate the relevance
of each of these contributions.

7.1 Fog ROI Segmentation

The fog ROI segmentation has been tested on actual fog im-
ages as well as on synthetic images from the FRIDA database
[16]. From a qualitative viewpoint, the proposed method ap-
pears to be very effective. The sensitivity to the internal pa-
rameters of the method is limited. The limitations of the
original segmentation which were outlined in section 3.4
were circumvented. The local gradient parameter was re-
placed by theγ internal parameter of the geodesic image
transform. Consequently, the texture of the road does not
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Fig. 11 Sample results of fog ROI segmentations obtained with the novel method on challenging images including the ones used in Fig. 3. The
parameters of the methodγ = 10 andτ = 5%. The original images are shown in the first and third rows. Results are shown in the third and fourth
row.

block the method anymore. The criteria to stop the segmen-
tation is not so constraining. The abrupt transition between
the road and the surface is not problematic anymore, thanks
to a rough segmentation of the sky area. Finally, the com-
plexity of the algorithm is much reduced and is quasi-linear.
No recursive scheme is used anymore which may ease the
implementation of the algorithm on hardware architectures.

To show qualitatively the effectiveness of our method,
different experimental results obtained with the same param-
eters (γ = 10 andτ = 5%) are shown in Fig. 11. The images
from Fig. 3, where the original method was inoperative, are
used as well as other challenging scenes that the original
method was already able to cope with. As one can see, the
segmented ROIs meet the constraints of Koschmieder’s law
and allow the computation of the fog density as well as of
the actual position of the horizon line.

7.2 Joint Fog Density and Horizon Line Estimation

Sample results of the joint meteorological visibility distance
and horizon line position estimation are shown in Fig. 12
on synthetic images as well as on an real images. In these
pictures, the blue layer denotes the limits of the fog ROI.
The vertical red profile denotes the median gray level profile
measured on each line of the fog ROI. This profile instanti-

ates Koschmieder’s law. The vertical blue profile denotes the
reconstructed profile. The horizontal black line denotes the
estimated position of the horizon line. The horizontal purple
line denotes the estimated meteorological visibility distance.
On synthetic images such as Fig. 12(a), the accuracy is good
for low visibilities (<150 m). For higher visibilities, theac-
curacy might be smaller, because of the angular size of the
pixels and of the presence of objects in front of the back-
ground sky. Indeed, based on standard automotive camera
resolution, the road surface represented by a single pixel is
hyperbolic with respect to the distance [19]. Consequently,
the accuracy of the estimation is necessarily reduced when
the visibility increases. On sensor images such as Fig. 12(b),
we can only comment that the location of the different lines
seems adequate, since the ground truth is not available.

7.3 Free Space Detection

A way to assess the joint fog density and horizon line es-
timation process is to assess its ability to segment the free
space area. Using the proposed method, we obtain the re-
sults shown in Fig. 14. The segmented vertical objects are
overlaid in red and the segmented free space region is over-
laid in green. From a qualitative point of view, we get good
results, even if some minor improvements could be made
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Fig. 12 Sample results of joint meteorological visibility distance and
horizon line position estimation on a (a) synthetic image (Vmet = 91.6
m andvh = 257): V est

met = 92 m andvest
h = 260; (b) an actual image:

V est
met = 87 m andvest

h = 145. The vertical red profile denotes the me-
dian gray level profile measured on each line of the fog ROI. The verti-
cal blue profile denotes the reconstructed profile. The horizontal black
line denotes the estimated position of the horizon line. Thehorizontal
purple line denotes the estimated meteorological visibility distance.

on the segmentation of curbs, sidewalks and very bright ob-
jects. The quality of these results seems comparable to color
based or stereovision approaches.

To assess quantitatively this free space segmentation, we
have used a Receiver Operating Characteristic (ROC) curve.
The larger the area under the ROC curve, the better the ex-
tractor. In our case, this curve is obtained by plotting the
True Positive Rate (TPR) versus the False Positive Rate (FPR)
for different values of a corrective coefficientρ applied to
the meteorological visibility distanceVmet found automati-
cally by the algorithm. We do not change the other param-
eters of the algorithm, in particular the position of the hori-
zon line. In this aim, we have extracted manually the free
space region (ground truth) on different images from a small
database of 15 images. The TPR is the rate of pixels which
belong to the free space region and are detected as part of
this region by the algorithm. The FPR is the rate of pix-
els which do not belong to the free space region and are
detected as part of this region by the algorithm. The ROC
curve is plotted in Fig. 13. When segmenting the ground
truth, an ambiguity was found in the definition of the free
space area. Is it the road surface only or does it also include
other flat areas like the sideswalks where vehicles can also
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Fig. 13 ROC curve of the free space detection obtained on a 15 im-
ages database. The True Positive Rate (TPR) is plotted versus the False
Positive Rate (FPR) for different values of the corrective coefficientρ
applied to the meteorological visibility distanceVmet .

evolve? We chose the most restrictive definition of the free
space, i.e. the road surface only. The parameters found by
the automatic process (ρ = 1) lead to a TPR close to 1 and
a FPR close to 0.4. It means that there are some false detec-
tion. This is especially the case on the sidewalks and curbs
which are detected as a part of the free space area by the
algorithm (see Fig. 14(c) for example), which was expected
due to the definition chosen for the free space area. A cor-
rective coefficient (ρ < 1) reduces the FPR. Indeed, by re-
ducing the estimated meteorological visibility distance,the
contrast restoration is stronger, so that objects like curbs and
sidewalks are also detected as obstacles.ρ = 0.6 leads to
TPR=95% and FPR=10% on our database. As one can see,
the algorithm is able to perform a quite accurate segmenta-
tion.

7.4 Discussion

The proposed method allows to obtain good results, even if
minor improvements could be made on the segmentation of
sidewalks and very bright objects, i.e. the objects whose in-
tensity is higher than the sky intensityA∞. The quality of
these results seems comparable with color based or stereo-
vision approaches. The good point in our method is that we
only use one gray level image. However, it only works in
daytime foggy weather. The classical methods and the pro-
posed one are thus complementary. Of course, the proposed
method has the limitations of all monocular methods, i.e. it
is restricted to flat world scenes. On the one hand, the fog
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Fig. 14 Free space detection of the road scene. First and third columns: original images. Second and fourth columns: results of vertical objects
segmentation in overlaid red and free space area in overlaidgreen. The figure at the bottom-right shows a test using a rainy weather image (in this
case,β is set manually).

detection method is able to estimate both the fog density
and the position of the horizon line. Even if the novel fog
ROI segmentation improves drastically the original method,
the method is still sensitive to the presence of big objects in
front of the vehicle (see [19] for more details). On the other
hand, the segmentation method is not too sensitive to the
inhomogeneity of fog and can be applied to other weather
conditions such as rainy weather. A sample of rainy weather
image is shown in Fig. 14(f).

From a hardware point of view, the computation of the
fog density alone takes less than 40 ms in C++ using a 2.4
GHz Intel Core 2 Duo PC on 1/4 PAL images. On the same
hardware platform, the free space detection takes less than
20 ms. However, the joint estimation process of the meteo-
rological visibility and the horizon line is iterative. Itscom-
putation time depends on the number of iterations. Each it-
eration takes 20 ms. Usually, we limit the algorithm to a
maximum of 10 iterations, i.e. a maximum of 260 ms, be-
fore skipping the image in case of no convergence and to
process a new one. The algorithm has still to be optimized
to be operated at frame rate.

8 Conclusion

A solution was proposed to detect the free space area in
foggy road scenes thanks to a contrast restoration approach.

First, the method estimates simultaneously the density of fog
and the position of the horizon line in the image, which im-
proves drastically the state of the art in this area. A highly
effective fog ROI segmentation method based on geodesic
maps computation is proposed as well as a novel joint fog
density and horizon line estimation process. Thanks to a
simple contrast restoration method, the proposed method is
then able to restore the contrast of the road and at the same
time to segment the vertical objects. Indeed, these objects
are falsely restored and in this way easily segmented. An
experimental validation allows figuring out the potential of
the method. Results on sample images extracted from video
sequences acquired from an in-vehicle camera are shown
and discussed. In the future, we would like to integrate these
works in prototypes and test intensively the method, so as to
identify some eventual new problems which could appear.
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