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Abstract Free space detection is a primary task for car navarea is either detected based on color [1] or texture [2] seg-
igation. Unfortunately, classical approaches have ditiesi mentations, deduced from stereovision based obstacles de-
in adverse weather conditions, in particular in daytime fogtection [3] or is a combination of both approaches [4]. How-
In this paper, a solution is proposed thanks to a contrasver, all these methods have difficulties in foggy weather.
restoration approach on images grabbed by an in-vehiclkedeed, the contrast is reduced with the distance, which hin
camera. The proposed method improves the state of the aters classical segmentation techniques assuming thatltire ¢
in several ways. First, the segmentation of the fog regiomr the texture of the road is constant, or stereovision tech-
of interest is better segmented thanks to the computation efiques based on local correlation from working properly. To
shortest routes maps. Second, the fog density as well as telve this problem, one may restore the contrast of the im-
position of the horizon line are jointly computed. Then, theage. Classical free space detection techniques can then be
method restores the contrast of the road by only assumingpplied to the restored image.
that the road is flat and, at the same time, detects the Vlertica \ethods which restore the contrast of images grabbed
objects. Finally, a segmentation of the connected componegnboard a moving vehicle under bad weather conditions are
in front of the vehicle gives the free space area. An experihardly encountered in the literature. Indeed, some tectesiq
mental validation was carried out to foresee the effecé#gsn require prior information about the scene [5]. Others regjui
of the method. Different results are shown on sample imagegedicated hardware in order to estimate the weather con-
extracted from video sequences acquired from an in-vehiclgitions [6]. Some techniques rely on two images with dif-
camera. The proposed method is complementary to existingrent fog intensities and exploit the atmospheric scatter
free space area detection methods relying on color segmefiry to adequately restore the contrast [7]. Techniquesthase
tation and stereovision. on polarization can also be used to reduce haziness in the
image [8]. Unfortunately, these methods require two differ
ently filtered images of the same scene. Finally, Narasimhan
1 Introduction and Nayar [9] proposed to restore the contrast of more com-
plex scenes. However, the user must manually specify a lo-
Free space detection is a fundamental task for autonomougsation for sky region, vanishing point and an approxima-
or automated vehicles, since it provides the area where thn of distance distribution in the image. Recently, diffe
vehicle can navigate safely. In structured environmehts, t ent methods have been proposed which rely only on a single
free space area is mainly composed of the road surface. Thimage as input and might be used onboard a moving ve-
hicle. Hautiéere et al. [10] first estimate the weather condi-
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and surface shading are locally uncorrelated. These metho@g with the background will be perceived at distamceith
are computationally expensive: five to seven minutes with ¢he following contrast:

600x 400 image on a double Pentium 4 PC for Tan [11] and (Lo — Leo)
35 seconds with a 512512 image on a dual core processorC = Lief
for Fattal [12]. Based on the principle proposed in Tan [11],_ . . _ _

i.e. the inference of the atmospheric veil, He et al. [13] a;r_h's expres"smn servesasa k_)gsg_ to d_efme a Istar_1dard dimen-
well as Tarel and Hautiére [14] have proposed improved qiSion calleq meteorologlcal visibility Q|stancvm, ie. the
gorithms; the latter [14] is fast enough to be used in reakti greate_st d'Stfmce atwhicha b_lack objégi —1) of a sult- )
applications. The problem of these methods is that the depf'?'Ple dimension can be seen in the sky on the horizon, with
map produced by their atmospheric veil inference may béhe thrgshold contrast sgt to 5% [18]..It is thus a standar_d
erroneous due to the ambiguity between white objects anﬁ'm_e,n_Slon .that characten;es the opaglty of afog layes Thi
fog. A novel approach combining fog detection and contrasgefInltlon yields the following expression:

restoration is proposed in [15] which is applied to the en—Vmat _ 1 log(0.05) ~ 3 3)
hancement of driver assistance systems. Finally, a cantras B B

restoration method able to deal with the presence of hetero-

geneous fog is proposed in [16]. 3 Fog Detection and Characterization
To solely detect the free space area, we propose another

approach, taking advantage of fog presence. Following afy this section, a method to compute the extinction coeffi-

enhanced fog detection and characterization method, the C@jentf using a single camera behind the vehicle windshield
trast of the images is restored assuming a flat world. The; recalled from [19].

intensity of all the objects which do not respect this assump

tion thus becomes null in the restored image, which leads to

a very efficient segmentation of the free space area. This seg-1 Flat World Hypothesis

mentation method is thus inspired from contrast restanatio ) N S )

technigues but does not constitute a real contrast reigtorat N the image plane, the position of a pixel is given by its

method. (u,v) coordinates. The coordinates of the optical center pro-
The following of this article is organized as follows. In J€ction in the image are designated hig, o). In Fig. 1,H

section 2, we recall a well-known model of daytime fog, denotes the height of the cameéathe angle between the

which is used to detect its presence in highway images anfgPtical axis of the camera and the horizontal, apdhe
to estimate its density. The method is described in section B0rizon line. The intrinsic parameters of the camera are its
and a sensitivity analysis is carried out which leads to profoc@l lengthfi, and the horizontal sizg, and vertical size

; ; f
pose improvements of the method in sections 4 and 5. Ikpv Of @ pixel. We have also made use hereimet= ﬁ and
section 6, we explain the principle of our contrast restoraqg, = tl and have typically considered; ~ ay = a. The

tion method and explain how it is used to properly detechypothesis of a flat road is adopted, which makes it possible

the free space area. Finally, experimental results arengiveo associate a distandewith each linev of the image:
in section 7 and discussed in section 8.

P — Coe P4 (2)

Ha
if , whereA = — 4
v—vhl vV > v, where, oS0 (4)

d=
2 Modeling Fog Effects in Images

2.1 Koschmieder's Law 3.2 Camera Response

The method proposed in this study is based on a physidset us denotef the camera response function, assumed to
law governing the attenuation of brightness contrast by th&e linear, which models the mapping from scene luminance
atmosphere. This law, derived by Koschmieder, is given byto image intensity by the imaging system, including optic as

well as electronic parts. In a foggy scene, the interisit/a
L=Loe P4t Lo(1—ePd) (1)  pixelis the result off applied to (1):

—Bd —Bd
It relates the apparent luminanteof an object located at I = f(li) d_ flloje ’ def(L“’)(l_e ’ )
distanced to the luminancdg measured close to this ob- = Re P +Ax(1-€ p ) 5)
ject at a time when the atmosphere has an extinction cawhereR is the intrinsic intensity of the pixel, i.e. the inten-
efficient 8. L. denotes the atmospheric luminance. On thesity corresponding to the intrinsic luminance value of the
basis of this equation, Duntley developed a contrast atenu corresponding scene point aAd is the background sky in-
tion law [17], stating that a nearby object exhibiting castr  tensity.
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Fig. 1 Modeling of the camera within its environment; it is locatgda height oH in the §X,Y,Z) coordinate system relative to the scene. Its
intrinsic parameters are its focal lengthand pixel size. 6 is the angle between the optical axis of the camera and ttizomal. Within the
image coordinate systemy,{) designates the position of a pixely(Vp) is the position of the optical cent€randwy, is the vertical position of the

horizon line.

3.3 Recovery of Fog Parameters

Following a variable change fromh to v based on (4), (5)
thus becomes:

| = Awt (R—Au)e P7m (6)

By twice taking the derivative of with respect tov, one
obtains the following:

0?1 A (B
v — PoWve h(v—vh_z) (")
whereg (v) = ’\(\(/F:S";,). The equatimf;—\z/'; = 0 has two solu-

tions. The solutior3 = 0 is of no interest. The only useful
solution is:
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Fig. 2 Method sensitivity with respect to the estimation erdobe-
tweenv; andv,. Used camera parametér:= 1000.

wherev; denotes the position of the inflection pointl@f).

Thus fromvs, the parameteB of Koschmieder’s law is ob-

tained. Finally, thanks t@1, v, and 8 values, the values of

the other parameters of (5) are deduced through ulgeaoid

% ., which are respectively the values of the functlon
lv=vy

and its derivative irv = vy

—I1 — (€2 — 1)M1zvn) a1
{Rll (€ - 1) ©)

ov|v=vy

An=l1+ —<"1§"“> %\v:vl
whereR is the intrinsic intensity of the road surface.

To implement this method, we measure the median in-
tensity on each line of a vertical band in the image. As this
band should only take into account a homogeneous area and
the sky, we identify a region within the image which dis-
plays minimal line-to-line gradient variation when cragse
from bottom to top using a recursive region growing algo-
rithm. A vertical band is then selected in the segmented area
Thus, we obtain the vertical variation of the intensity ie th
image, and dedug@ by computing the maximum of the first
derivative of this profile.

3.4 Method Discussion

The fog detection method presented in the previous para-
graph has two major limitations which are now discussed.

3.4.1 Segmentation of the Region of Interest

First, the method is sensitive to the presence of obstacles
such as a preceding vehicle which might prevent the region
growing algorithm to cross the image from bottom to top.

However, as long as a vertical path exists in the image, the



Fig. 3 Challenging images with which the original ROl segmentatitethod proposed in [19] gives poor results. The originaldes are shown
in the first row. The second and third row show the resultseetsgely obtained witt\s = 2 andAs = 3.

region growing is able to circumvent the obstacles, whichllustrate the difficulty to process scenes with very strong
makes it possible to detect fog presence. A temporal filtetransitions between road and sky. Finally, Figs. 3(d)@), i
can also be used if fog is temporary not detected. An exarrsued from the FRIDA database [16], illustrate the difficulty
ple of temporal filter dedicated to our problem is proposedo process scene with objects above the road surface (build-
in [20]. ings, trees, bridge).

Another limitation is related to the method of segmen-
tation of the region of interest (ROI). As said previously, 3.4.2 Pitch Angle Sensitivity
this method identifies a region within the image which dis-
plays minimal line-to-line gradient variation when cragse Second, the proposed measurement process is sensitive to
from bottom to top, using a region growing algorithm which variations of orientation of the vehicle with respect to the
aims at segmenting part of the road and the sky regions. Ifpad surface. It is not too much sensitive to variations of
particular, a hard threshold is used to set the maximum afoll angle thanks to the use of a measurement bandwidth,
lowed line-to-line gradient. This threshold is very diffiio ~ contrary to a change of pitch angle. Indeed, the estimation
set since it is a local parameter. Moreover, the method fail8f Vme is correct if the positiorv; of the inflection point as
in case of highly textured road surfaces. Then, in case of well as the positiow, of the horizon line are correct.
strong transition between the road and the sky, the region Let us study the influence of an estimation erdoon
growing is not able to segment the sky. Finally, the criterio the difference between these two positions. The eroe-
to stop the region growing algorithm is too strong. Indeedtween the estimated meteorological visibility distaVeg
the image must be crossed from bottom to top, which is no&nd the actual meteorological visibility distar¥gy is ex-
possible in case of road signs or a bridge above the road. Arressed with respect toby:
nally, the recursive implementation of the algorithm my beg _ Vigt — Vit

problematic for some hardware architectures. 3) 1
In Fig. 3, some challenging images are shown with re- — Vinet — 2 Vi—Vhto
sults obtained using the original ROl segmentation method 1
which gives poor results. The original images are shown in = Vima {1 W} (10)

the first row. The second and third row show the results re-
spectively obtained witll\s = 2 andAs = 3, whereAs de-  The curves in Fig. 2 show the error for valuesdofanging
notes the local gradient threshold. The difference of tesul from -4 to +4 pixels. One clear result is that underestingatin
with very close thresholds illustrate the sensitivity oisth & is more penalizing that overestimating it. To have stable
method with respect to this local threshold. Figs. 3(a)ltb) i measurements, we may chose to set the horizon line above
lustrate the difficulty to process textured road surfaces.3c) its theoretical position.



However, estimating the position of the horizon lineisa  The route algorithm using WDTOCS requires two dis-
difficult problem. It can be estimated by means of the pitchtance maps7; (x) and.% (x). The route endpoirs (respec-
ing of the vehicle when an inertial sensor is available, butively b) is the feature from which all distances are com-
is generally estimated by an additional image processinguuted. From the distance maps, a route distance image is
This type of processing seeks to intersect the vanishieglin computed by a simple addition:
in the image [21, 22]. However, under foggy weather, the

vanishing lines are only visible close to the vehicle. It isZR(X) = Fa (X) +F5(X) (1)

thus necessary to extrapolate the_pos_ition of the hor_imn li The valueZr() is the distance between the route endpoints
through the fog. Consequently, this kind of process is pronglong the shortest path passing through paionsequently,

to a significant standard deviation and, so far, using the g hoints with a minimal route distance value form the de-
priori sensor calibration was a better option. sired route:

In this section, two major limitations of the method pub-

lished in [19] have been highlighted. The novel proposals

described in the two next sections aim at solving these is#(a,b) = {x|Zr(x) = mxin@R(x)} (12)

sues.
This idea can be generalized for a general route between
sets. The route between sets is found by computing the dis-

4 Segmentation of Fog ROl based on Geodesic Maps  tance maps?;(x) and.#z(x), whereA andB are the point
sets between which we want to find an optimal route. The

In this section, a novel approach for the fog ROl segmentadistance map? (A, B) is deduced as well.

tion is presented to circumvent previous limitations threnk

to the use of geodesic maps.
4.2 Novel Fog ROI Segmentation Approach

The optimal route computation approach detailed in previ-
ous section may be adapted to segment fog region of inter-

Following the original idea that the fog ROI should dis- €St- The set# andB have to be correctly chosen. We thus
play a minimal line-to-line gradient [19], an analogy with
optimal path computation methods can be made. Assimilat-
ing an image with a graph, Dijkstra’s algorithm [23] allows
computing the shortest path but the complexity of the algo-
rithm O(n?) is problematic for large images. More efficient
approaches exist, making use of heuristics likeAhalgo-
rithm [24] but the complexity is stilD(nlogn) for comput-
ing one single source shortest path. In our case, it is prob-
lematic since the goal is to compute the shortest routes be-
tween sets of nodes. The Weighted Distance Transform On
Curved Space (WDTOCS) proposed in [25] aims at comput-
ing the shortest routes between sets on gray-level images.
The WDTOCS uses piecewise Euclidian local distance
computed with Pythagora’s theorem from the horizontal dis-
placement and the height difference. It is also referreti@as t
efficient geodesic distance transform [26] (see also [2{8]).
principle is presented in Fig. 4.

4.1 Optimal Path Computation in Gray-Level Images

2 2 P21 P1
C=Ly=1)+p3 + YV (x,) 0
Cay-D+fpi+ 1V’ [Py | Py P2
CE+Ly=1)+yfpd + 1V, (5, 2)
[P0
Clx=Ly)+4pi + vV (x,y)

|:|0 o7 | Kemel fwd pass Fig. 5 Fog ROI segmentation based on WDTOCS transform: (a) orig-
el inal image; (b) origin (A) and destination (B) set points) (€x(X)
distance map; (d¥§(x) distance map; (e¥(A, B) route map; (f) final
Fig. 4 Efficient geodesic distance transform [26]. Usuagtly= 1 and  segmented ROI overlaid in green. In the distance maps, ttandie is

02 =2. mapped linearly into gray levels.
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make two minimal assumptions. First, we assume that the a0 Sl

road is at the bottom of the image, i.e. in front of the dar.
is the lowest line in the image belonging to the road surface. ** j ]
Second, we assume that the sky area is among the brightest o} 1
pixels of the image above anpriori estimation of the hori- -
zon line.B is thus made of the brightest pixels of the image.
Once the route map is obtained, a segmentation of the min- 14| 1
imum routeZ(A, B) is performed starting from the bottom

50

of the image and stopping the highest possible in the image  *°c so 100 150 200 250 300 350 400
using a tolerance parameter applied to (12):

150 b

(b)

G(A.B) = (X Zr(X) < (1+T)MinZr(x)} (13) :

Finally, the method has no local parameter anymore. In-
stead, we use two global parametergepresents the rel-
ative weight of the gradient with respect to the Euclidian
distance in the geodesic transform (cf. Fig. 4)andov-
erns the final extraction of the minimum route. Then, the
segmentation is successful if the segmentation region goes _, ‘ ‘ ‘ ‘ ‘ ‘ ‘
above the theoretical position of the horizon line position ¢ %0 N0 e 2 20 300 350 400
The process is illustrated in Fig. 5 on a challenging road
scene. Fig. 5(b) shows the origin and destination set points 0, : : : : :
Figs. 5(c)(d) show respectivel§x (x) and.#£(x) distance
maps. Fig. 5(e) shows the final route map. Figs. 5(f) shows
the segmented fog ROI in overlaid green.
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5 Horizon Line Position o0

In section 3.4.2, the sensitivity of the fog density estiorat T 50 100 150 200 250 300 350 400
algorithm to the horizon line position has been highlighted Y
In this section, a new estimation method is proposed. Fig. 6 Points of interest on (a) Koschmieder's law and its (b) fired a

(c) second derivative. The red point denotes the inflectioimtpy;.
The blue and the green points denote the inflection paintnd vs
respectively.

5.1 Joint Estimation of the Horizon Line Position

By taking the derivative of with respect tov one more time, For each inflection point of the derivative, we deduce an es-

we obtain the following: timation of B:

& A(R=Ax B=2E(v1—v2)

e = w (6V[v— (BA +2vh)] + ... { p— $ (V: —vi) 17)
...+ 6wy[BA +vh]+[32/\2)e*% (14)

Thus, the derivative of Koschmieder’s law owns two inflec-5.2 Accurate Estimate

tion points whose locations are denotedandvs:
Generally, the estimation of the position the most impdrtan
Vo=V, + BA(3g\/§) inflection point of a signal is made by looking for the lo-
V3) (15)  cation where the first derivative is maximum. Consequently,

Va=vp, + ALV
6 vy is obtained as the location where the first derivative of

Thanks to (8) and (15), the position of the horizon lipe ! 1S max.imum.vz is obtained by !ooking at the location of
can be computed for each inflection point of the derivative:the maximum of the second derivativeldbetween the top
of the image and. v is obtained by looking at the loca-

Vh=(1—V3)v1+ /32 16 tion of the maximum of the second derivative of between the
Vh=(1+v3)vs — v/3v3 (16) " pottom of the image and.
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Fig. 7 Derivative of the luminance cuniefor different smoothing lev-
els. The location of the inflection poirg is marked with a green dia-

mond. The displacement of its location with respect to theatfing iy g Diagram of the algorithm used to accurately estimate thé pos
level is obvious. tions of the inflection points.

We are thus able to estimate the extinction coefficient of
the atmosphere as soon as we are able to detect the inflectirB

!ooi_nt of the inte_nsity curve as we_II as the positiqn of one Ofiated thanks to the first step. Then, we apply a smoothing
Its inflection points, f|glured. out in Fig. 6,‘,'” this way, W€ of scalesy on the reconstructed profile and estimate, from
are able to skip the estimation of the position of the honzoqhe smoothed profile, the positions of the inflection poifts ~

!Ir}?' F-rom a.pral;:UcaI pomr: of \Il('ew’ the results usingthe andvs. The values/; andv, are then estimated, taking into
inflection point between the sky ang, are more accurate account the residual bias by adding the tefm — ), i — 1

since they are less sensitive to the texture of the roadeirfa or 2, wherer denotes a ratio inferior to 1, typically 0.8. This

However, both estimators might be combined by giving Qast step is iterated until the distance between/landvi is

lower weight to the measurement_s based:pn ) small enough. The algorithm is schematized on Fig.8.
However, whatever the technique used to estimate the

vertical intensity profild, the obtained profile is noisy. It

is thus necessary to smooth the profile before extracting the o0 Space Detection Method

positions of the different inflection points, v, andvs. Usu-

ally, the profile is over-sampled ten times so as to have g 1 Restoration Principle

sampling uncertainty smaller than one tenth of a pixel. The

problem is that the application of a smoothing filter (Gaus-n this section, we describe a simple method to restore scene
sian for instance) on the profile, even if it reduces the noisecontrast from a foggy image. Let us consider a pixel with
is likely to bias the position of the inflection points, as®#10  known depthd. Its intensityl is given by (5)(A«, B) charac-

for vy in Fig. 7. To have correct results, it is thus necessaryerizes the weather condition and are previously estimated
to correct this bias. This correction is performed in tw@ste  ConsequentlyR can be estimated directly for all scene points

The second step consists in reconstructing the intensity
fbfile based on the values of, V2, B, Vh, A» andR esti-

on the intensity profile. from (5):
The first step consists in smoothing the signal with two
filters having different scales, typicaly, = 15 pixels and  R= 16’9+ A,(1— &%) (19)

sv = 30 pixels. We denote , andv; v the estimated posi- _ . _ - .
tion of one of the inflection pointi & 1 or 2). The extrap- 1 hiS equation means that an object exhibiting a conGast

olated position of the inflection point at zero scale is giverthe original image will have the following contrat with

by: respect to the background sky in the restored image:
SM X Vim— Sm X Vi m (R-Ax) (I =Ax) g d
_ : M 18 = — efd — céP 20
! S —Sm 18  G="p A (20)

The values of3, v,,, A» andR are deduced according to the We thus have a method which restores the contrast exponen-
previous equations. tially with respect to the depth. Unfortunately/js negative



whereN x M denotes the size of the imageserves to set
the maximum distance for the contrast restoration. It makes
sense to set the position of this clipping plane at the meteo-
rological visibility distance. Indeed, no pixel has a castr
above 5% beyon¥ . Consequently, the structure of the
scene is unknown beyond this distance. Using (3) and (8),

Restored
intensity
7]
o

100 we thus set:
% _ (2vit+wn)
i ="y (23)

a0 By using (22) in (21), the contrast of objects belonging to
the road plane is correctly restored.

100

. 0
Distance [m] 0 Original intensity

Fig. 9 3D plot of the corrected contrast restoration function (i) 6.3 Free Space Segmentation

B = 0.05 andA. = 255. The object intensity may become null after )
contrast restoration. Conversely, as soon as they are darker than the skl «e.

A, the contrast of vertical objects of the scene (other ve-
hicles, trees, etc.) is falsely restored since their degtan

the scene is largely overestimated. Consequently, acgprdi
to (21), their intensity becomes null in the restored image
thanks to the exponential formula, like in Fig. 10(b). This i
an inconvenient of this method, which was mitigated in [28]

. . . by underestimating the value of the horizon line. However,
This function was plotted for a certain range bfd) values . . .
. this inconvenient can be turned into our advantage. Thus,

in Fig. 9. To properly restore the scene contrast, the remai . . . e
9 broperly rE)y detecting the pixels whose intensity is null after cositra

ing problem is to estimate the depfat each pixel. restoration, we easily segment the vertical objects and the
segment the free space area accordingly by looking for the
biggest connected component in front of the vehicle. To im-
prove the results of this last step, a morphological opening
a%f/ the connected component may be performed.

for some values ofl( d). In such cases, we clip these values
to 0. The restoration equation becomes finally:

R=max|0,1€%9 + A, (1— %) (21)

6.2 Flat World Restoration

Based on (21), a 3D model of the road scene is necess
to restore the contrast accurately. As a first step, we pepos
to use a quite opposite scheme, which only assumes that tr}e
road is flat. The distance of a pixel in the image is thus as-
sumed given by (4). Large distances are clipped using a p
rameterc. The distancel; of a pixelP(i,j) is thus expressed

by:

Experimental Validation

i the previous sections, three contributions have been pre
sented: a fog ROl segmentation method, a process to jointly
estimate the horizon line and the fog density and a method

A ifM>j>c to segment the free space navigation area. In this section,
de(i € [O,N[,j € [O,M[) = { 2% o< i< (22)  experimental results are presented to illustrate the aeley
oy 1YVs1sC of each of these contributions.

@ (2]

7.1 Fog ROI Segmentation

The fog ROI segmentation has been tested on actual fog im-
ages as well as on syntheticimages from the FRIDA database
[16]. From a qualitative viewpoint, the proposed method ap-
pears to be very effective. The sensitivity to the interreal p
rameters of the method is limited. The limitations of the
original segmentation which were outlined in section 3.4
Fig. 10 Sample result of flat world restoration. The intensity oftiver were circumvented. The local gradient parameter was re-

cal objects becomes null in the restored image: (a) originage; (b) ~ Placed by they internal parameter of the geodesic image
result. transform. Consequently, the texture of the road does not




Fig. 11 Sample results of fog ROl segmentations obtained with tivelnmethod on challenging images including the ones usedgin3- The
parameters of the methgd= 10 andt = 5%. The original images are shown in the first and third rovesURs are shown in the third and fourth
row.

block the method anymore. The criteria to stop the segmerates Koschmieder’s law. The vertical blue profile denotes th
tation is not so constraining. The abrupt transition betweereconstructed profile. The horizontal black line denotes th
the road and the surface is not problematic anymore, thanksstimated position of the horizon line. The horizontal peirp
to a rough segmentation of the sky area. Finally, the comline denotes the estimated meteorological visibility aliste.
plexity of the algorithm is much reduced and is quasi-linearOn synthetic images such as Fig. 12(a), the accuracy is good
No recursive scheme is used anymore which may ease tlier low visibilities (<150 m). For higher visibilities, thac-
implementation of the algorithm on hardware architecturescuracy might be smaller, because of the angular size of the
To show qualitatively the effectiveness of our method,pixels and of the presence of objects in front of the back-
different experimental results obtained with the samerpara ground sky. Indeed, based on standard automotive camera
eters (= 10 andr = 5%) are shown in Fig. 11. The images resolution, the road surface represented by a single fgxel i
from Fig. 3, where the original method was inoperative, arehyperbolic with respect to the distance [19]. Consequently
used as well as other challenging scenes that the originéthe accuracy of the estimation is necessarily reduced when
method was already able to cope with. As one can see, thHbe visibility increases. On sensor images such as Fig),12(b
segmented ROIs meet the constraints of Koschmieder's lawe can only comment that the location of the different lines
and allow the computation of the fog density as well as ofseems adequate, since the ground truth is not available.
the actual position of the horizon line.

7.3 Free Space Detection
7.2 Joint Fog Density and Horizon Line Estimation

A way to assess the joint fog density and horizon line es-
Sample results of the joint meteorological visibility diste  timation process is to assess its ability to segment the free
and horizon line position estimation are shown in Fig. 12space area. Using the proposed method, we obtain the re-
on synthetic images as well as on an real images. In thesmilts shown in Fig. 14. The segmented vertical objects are
pictures, the blue layer denotes the limits of the fog ROl.overlaid in red and the segmented free space region is over-
The vertical red profile denotes the median gray level profildaid in green. From a qualitative point of view, we get good
measured on each line of the fog ROI. This profile instantitesults, even if some minor improvements could be made
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Fig. 13 ROC curve of the free space detection obtained on a 15 im-
ages database. The True Positive Rate (TPR) is plottedss/grsiralse

Positive Rate (FPR) for different values of the correctivefficientp

Fig. 12 Sample results of joint meteorological visibility distanand applied to the meteorological visibility distantge;

horizon line position estimation on a (a) synthetic imadggs«(= 91.6

m andv, = 257): V& = 92 m andvf® = 260; (b) an actual image: 5 . _—
V& = 87 m andve® = 145. The vertical red profile denotes the me- evolve? We chose the most restrictive definition of the free

dian gray level profile measured on each line of the fog RO& Wérti-  SPace, i.e. the road surface only. The parameters found by
cal blue profile denotes the reconstructed profile. The boté black  the automatic procesp (= 1) lead to a TPR close to 1 and
line denotes the estimated position of the horizon line. fitkézontal 5 EPR close to 0.4. It means that there are some false detec-
purple line denotes the estimated meteorological visjbilistance. tion. This is especially the case on the sidewalks and curbs
which are detected as a part of the free space area by the

on the segmentation of curbs, sidewalks and very bright Oba_llgorithm (see Fig. 14(c) for example), which was expected

jects. The quality of these results seems comparable to colgue_to the dgf_lnltlon chosen for the free space area. A cor-
based or stereovision approaches rective coefficientf < 1) reduces the FPR. Indeed, by re-

o ] ) ducing the estimated meteorological visibility distantte

To assess qua_ntltatlvely th's free space _se_gmentatlon, Y¥ontrast restoration is stronger, so that objects likesart
have used a Receiver Operating Characteristic (ROC) CUNVEqewalks are also detected as obstagbes 0.6 leads to
The larger the area under the ROC curve, the better the %PR=95% and FPR=10% on our database. As one can see

tractor. In our case, this curve is obtained by plotting theyo 5 40rithm is able to perform a quite accurate segmenta-
True Positive Rate (TPR) versus the False Positive Rate)(FF{Bn

for different values of a corrective coefficieptapplied to

the meteorological visibility distancéye found automati-

cally by the algorithm. We do not change the other param7.4 Discussion

eters of the algorithm, in particular the position of theihor

zon line. In this aim, we have extracted manually the freeThe proposed method allows to obtain good results, even if
space region (ground truth) on differentimages from a smalinor improvements could be made on the segmentation of
database of 15 images. The TPR is the rate of pixels whickidewalks and very bright objects, i.e. the objects whose in
belong to the free space region and are detected as part teihsity is higher than the sky intensi#y,. The quality of

this region by the algorithm. The FPR is the rate of pix-these results seems comparable with color based or stereo-
els which do not belong to the free space region and areision approaches. The good point in our method is that we
detected as part of this region by the algorithm. The ROQ@nly use one gray level image. However, it only works in
curve is plotted in Fig. 13. When segmenting the groundlaytime foggy weather. The classical methods and the pro-
truth, an ambiguity was found in the definition of the free posed one are thus complementary. Of course, the proposed
space area. Is it the road surface only or does it also includaethod has the limitations of all monocular methods, i.e. it
other flat areas like the sideswalks where vehicles can alge restricted to flat world scenes. On the one hand, the fog
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Fig. 14 Free space detection of the road scene. First and third osluaniginal images. Second and fourth columns: resultsedical objects
segmentation in overlaid red and free space area in ovagtaih. The figure at the bottom-right shows a test using & ve@ather image (in this
case S is set manually).

detection method is able to estimate both the fog densit¥irst, the method estimates simultaneously the densiygf f
and the position of the horizon line. Even if the novel fogand the position of the horizon line in the image, which im-
ROI segmentation improves drastically the original methodproves drastically the state of the art in this area. A highly
the method is still sensitive to the presence of big objetts i effective fog ROl segmentation method based on geodesic
front of the vehicle (see [19] for more details). On the othemaps computation is proposed as well as a novel joint fog
hand, the segmentation method is not too sensitive to théensity and horizon line estimation process. Thanks to a
inhomogeneity of fog and can be applied to other weathesimple contrast restoration method, the proposed method is
conditions such as rainy weather. A sample of rainy weathethen able to restore the contrast of the road and at the same
image is shown in Fig. 14(f). time to segment the vertical objects. Indeed, these objects
From a hardware point of view, the computation of theare falsely restored and in this way easily segmented. An
fog density alone takes less than 40 ms in C++ using a 2.dxperimental validation allows figuring out the potentitl o
GHz Intel Core 2 Duo PC on 1/4 PAL images. On the samehe method. Results on sample images extracted from video
hardware platform, the free space detection takes less thaequences acquired from an in-vehicle camera are shown
20 ms. However, the joint estimation process of the metecand discussed. In the future, we would like to integrateghes
rological visibility and the horizon line is iterative. Itdm-  works in prototypes and test intensively the method, so as to
putation time depends on the number of iterations. Each itdentify some eventual new problems which could appear.
eration takes 20 ms. Usually, we limit the algorithm to a
maximum of 10 iterations, i.e. a maximum of 260 ms, be-
fore skipping the image in case of no convergence and thcknowledgements
process a new one. The algorithm has still to be optimize

to be operated at frame rate. Cll'hls work is partly funded by the ANR (French National Re-

search Agency) within the ICADAC project (6866C0210).
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