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Abstract

In this paper, we propose a tone mapping operator based on a multi-
scale representation pattern and on thresholds of detection contrast
computed for local adaptation luminances. The vision model, com-
bined to a display model, compresses the luminance range of the
image to fit the dynamic range of the display device. Our goal is
to match our perceptions of the scene at detection threshold levels.
This operator has been evaluated as regards its capacity to main-
tain visual performances, by means of a psychophysical experiment
which involves a Landolt ring on a non uniform background image.
The luminance histogram is that of a daytime road scene and all
semantic clues have been removed. The experiment shows that our
algorithm gives good results, especially for contrasts close to the
threshold value. Those results prove that computer graphics images
can be used for road visibility experiment in driving simulators or
in psychovisual experiments.

Keywords: Tone Mapping, Visual performance, Psychophysical
experiment, Road visibility studies

1 Introduction

Road visibility studies can take strong benefit from the use of com-
puter graphics images, through driving simulation and psychovisual
experiments. Unfortunately, the visual environment of the driver is
far more complex than any display device is able to render (lumi-
nance dynamic range, luminance values, color gamut, color values).

The purpose of tone mapping algorithms is to cope with the lumi-
nance limitations of display devices. In this paper, we propose a
tone mapping algorithm designed for road visibility psychovisual
studies (it should be extended to any visibility studies). This algo-
rithm is validated through a psychometric experiment. We compare
the visual performances of a panel of subjects measured first with
a high luminance scene and then with this scene tone mapped to
fit the low luminance dynamic of a specific display device. The
test is a detection task, using a Landolt ring. Therefore, the visual
performances involve contrast sensitivity and visual acuity.

Road visibility studies usually focus on low visibility situations
such as rainy or foggy weather, or nighttime. In this paper, we
choose a daytime fog situation to test our tone mapping algorithm.
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We aim to validite the use of synthetic images for road visibility
studies.

2 Algorithm

The algorithm is based on the operator of Pattanaik et al. [Pattanaik
et al. 1998] which is the most complete as concerns vision models.
That operator uses a pyramidal decomposition of the image and
models the behavior of the human visual system (at least at the low
levels of vision), then inverses the vision model according to the
specific characteristics of the display device, see figure 1.

Hence, the tone mapping algorithm dramatically depends, in its re-
sults, on the display device. The algorithm and the display cannot
be evaluated separatly (see section 3).

Our Algorithm differs from Pattanaik et al. in two ways. First, as
the main issue in road visibility is contrast sensitivity, we restrict
the algorithm to luminance mapping whereas Pattanaik et al. con-
sider other phenomena such as color and glare. Secondly, as we are
mainly interested in visual performances, we only base our algo-
rithm on data from Blackwell [CIE19 1981], whereas Pattanaik et
al. also use suprathreshold data.

2.1 Vision model

Physiological and psychological data indicate that the retinal image
is processed by visual mechanisms which are sensitive to different
scales of patterns. The responses of those mechanisms have the
same characteristics as bandpass filters in the spatial frequency do-
main. These mechanisms are sensitive to different range of spatial
frequencies and the Contrast Sensitivity Function (CSF) is the en-
velope of their sensitivities [Wilson 1991].

Starting from this retinal model, Pattanak et al. build a pyramidal
decomposition of the image. Each level of the pyramid corresponds
to a passband filtering. This pyramidal decomposition follows the
Laplacian pyramid model [Burt and Adelson 1983]: level l of the
pyramid (image Ll) is obtained by the convolution of level l − 1
with a Gaussian filter. The size of Ll−1 is four times the size of
Ll , which makes necessary to expand Ll to build a contrast image
Cw

l (i, j) for level l:

Cw
l (i, j) = Ll−1(i, j)−Lexpand

l (i, j) (1)

The restrictions we explained earlier lead us to use Blackwell data
[CIE19 1981] to compute threshold data. Ferwerda [Ferwerda et al.
1996] uses these data to make tvi (threshold versus intensity) func-
tions, for cones and for rods. Larson [Larson et al. 1997] com-
bines the two functions into a set of equations giving the contrast
threshold for different ranges of adaptation luminance. These func-
tions are called Just Noticeable Difference (JND). The detection
task is linked to contrast perception through the Visibility Level



Figure 1: Flow-chart of our Tone reproduction operator.

(VL) which is defined in road lighting applications as V = ∆L/∆Lt ,
where ∆L is the actual luminance contrast and ∆Lt is the JND for a
given adaptation luminance, see figure 2.

Figure 2: Just Noticeable Difference for different ranges of adapta-
tion luminance.

The way we compute the adaptation data also differs from that of
Pattanaik et al. We take into account known data about the visual
field (around 1 degree according to Moon and Spencer [Moon and
Spencer 1945]). This implies that the computational model depends
on the distance between the observer and the display device.

The VL image at each level l contains at every pixel the modelized
visibility level of the corresponding pixel in the original image for
the frequency range of level l.

So the VL image at level l is computed as follows:

Vl(i, j) =
Cw

l (i, j)
∆Lt(Law

l (i, j))
(2)

where Vl(i, j) is the VL for pixel (i, j) at level l, Cw
l (i, j) the contrast

and Law
l (i, j), the local adaptation luminance.

2.2 Image reconstruction

To build a displayable image, the characteristics of the device used
for display such as maximum and minimum displayable luminances
need to be specified.

The VL images are converted into contrast images, using the same
JND equations with new adaptation luminance values. These adap-
tation values are computed through a scale factor [Ward 1994] using
the display characteristics as follows:

Lad
l (i, j) = kLaw

l (i, j) (3)

with

k =
[

1.219+(Ldmax/2)0.4

1.219+(Law
l (i, j))0.4

]2.5

(4)

hence the displayed contrast is:

Cd
l (i, j) = Vl(i, j).∆Lt(Lad

l (i, j)) (5)

The final image is built by agregating all pyramid levels into a low
luminance range image which can be displayed on the device. The
model of the device is used to convert luminances into RGB data.
This model is a Look Up Table (LUT) obtained with the calibration
method described in the publication 122 of the CIE [CIE122 1996].

3 Experimental Method

An experimentation has been designed in order to assess the quality
of our algorithm, on a LCD display device, for a visual performance
task. At the moment, the evaluation only concerns daytime fog en-
vironments. The experimental method is adapted from [McNamara
et al. 1998]. We compare the visual performances of 9 subjects
measured with a reference scene (with high luminances, up to 1000
cd.m−2) and with a simulated and tone mapped scene displayed on
a low luminance range LCD screen (up to 200 cd.m−2).

The visual task was chosen comparable with a danger detection task
and associated to a performance index. We chose to measure the
visual performance. This task is simplified but fundamental for the
visual driving task. The test is a Landolt ring on a background of
uniform luminance usually used for visual performance evaluation
[CIE19 1981]. The image surrounding the test is a road image in
daytime fog, computed with a photometric model of fog effects on
road vision [Dumont and Cavallo 2004].

We decided to avoid any semantic clue, in order to limit the cog-
nitive aspect of the visual environment. To make the background
image, a luminance image of the driving scene is cut into blocks
which are mixed randomly like a jigsaw. Thus the new image has
the same luminance histogram as the former but the semantic in-
formation is removed, see figure 3. We want to decorrelate the
test from the comprehension of the image which could sidestep the
results.

We fixed some of the parameters of the test such as:



Figure 3: Reference image displayed by a video projector

• the presentation time of the gap, fixed to 100 ms;

• the background luminance, calculated like the adaptation
luminance defined by Moon and Spencer [Moon and Spencer
1945];

• the angular size of the gap fixed to 0.13 degree.

The variable parameters are:

• the position of the gap, which can take 4 different positions
(right, top, left, bottom);

• the contrast between the background Lb and the ring Lt lu-
minances, which takes 8 values sampled from values detected
with difficulty and to easily detected ones.

4 Image Comparison Experiment

The reference scene is generated with two projectors, in order to
achieve high luminance values, see figure 4. The central part of the
image is projected on the center of the screen by a video projector
(DLP NEC LT 1065, 2100 ANSI lumen) which has been calibrated
[CIE122 1996]. This image is 1024 by 768 pixels on 70 by 54 cm2

so that the angular size of a pixel is 0.013 degree. We can thus
display luminances up to 1000 cd.m−2. The rest of the image is
projected by an overhead projector (PROLITE 250/400, max power
300W).

The low luminance scene configuration is similar to that of the ref-
erence. The central image is tone mapped and displayed on a LCD
(1701 NEC, 17”), calibrated as well [CIE122 1996]. The rest of the
image is again projected by the overhead projector on a polystyrene
screen after having been scaled down to keep the same ratio of the
average luminance with the central image as in the reference.

We use the Presentation software [Presentation ] in order to control
the display and to record the answers given by the observers with
a gamepad. 17 tests were carried out for each of the 8 contrast
values, with 9 observers. The subjects were instructed to indicate
the position of the gap, even when they had not seen it.

Figure 4: Experimental setup for the reference scene.

5 Results

The data gathered through this experiment cannot lead to a signi-
ficative statistical analysis for each person. We rather consider an
average observer whose visual performances are shown in figure
5. We can compare the performances obtained with the reference
scene with those obtained with the scene processed by our algo-
rithm.

To compare the results of our algorithm to those of the reference,
we compute an estimate of the margin of error of the reference val-
ues for each contrast. We consider each answer, for contrast c, as
a realization of a random process which follows the Bernouilli dis-
tribution, with the probability pc. We consider Xc the number of
good answers within the 153 tests for contrast c. Xc follows the
binomial distribution, with parameters n = 153 and pc. The Bien-
aymé-Tchebychev inequality gives:

P(|E(Xc)/n− pc| ≥ εc)≤ 0.05

with

εc =

√
pc(1− pc)

0.05n

We are looking for the values of εc, the uncertainty around the ex-
perimental values which gather 95 percent of the data. Figure 5
shows the reference visual performance values, with the estimated
margin of error, and the values we obtained with our algorithm.
These values are mostly inside the uncertainty range, except at con-
trast 0.034 where the reference value seems aberrant.

6 Discussion

We used the same experimental method, with the same observers
and with the same reference images to measure visual performances
obtained with two other tone mapping operators: the operator of
Ward [Ward 1994] and the one of Larson [Larson et al. 1997]. The
operator of Ward is linear. It uses the experimental data of Black-
well on thresholds of detection contrast to compute a luminance
scale factor. It is designed to measure visual performance. The
method of Larson et al. [Larson et al. 1997] is a compression and



Figure 5: Average visual performances over 9 observers.

equalization of the luminance histogram, using JND functions. It
focuses on object visibility and image contrast. We did not imple-
ment the part of the algorithm which considers the viewer’s depen-
dent response, that is to say glare, acuity and chromatic sensitivity.
That way, it suits visual performance measures as well. Figure 6
compares the visual performances obtained with our algorithm, that
of Ward and that of Larson et al., with the reference.

Figure 6: Comparison of average visual performances for 9 sub-
jects, measured with 3 tone mapping operators and with the refer-
ence.

We note that the algorithm we propose gives the best results for
contrasts close to the threshold. Yet this comparison is only relevant
for daytime fog visibility condition and for a LCD display device.
We should extend the evaluation to other conditions of visibility,
especially nighttime. Nevertheless, these results are hopeful and
allow to use computer graphics images for visibility studies on a
LCD device, in daytime and with foggy weather.

7 Future work

The next step of our work is to evaluate and adapt if necessary our
algorithm for nighttime traffic conditions of visibility. In particu-
lar, we would like to introduce glare effects which turn to be very
disturbing at night.

If the detection of static objects is classicaly used in experimental
paradigms, the detection of moving objects, in particular in periph-
eral vision, is a visual task for which we would like to validate our
algorithm so that it should be relevant for the whole detection task
while driving.
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