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Abstract. A number of computational models of visual attention have
been proposed based on the concept of saliency map. Some of them
have been validated as predictors of the visual scan-path of observers
looking at images and videos, using oculometric data. They are widely
used for Computer Graphics applications, mainly for image rendering,
in order to avoid spending too much computing time on non salient
areas, and in video coding, in order to keep a better image quality in
salient areas. However, these algorithms were not used so far with High
Dynamic Range (HDR) inputs. In this paper, we show that in the case
of HDR images, the predictions using algorithms based on Itti et al.
(1998) are less accurate than with 8-bit images. To improve the saliency
computation for HDR inputs, we propose a new algorithm derived from
Itti & Koch (2000). From an eye tracking experiment with a HDR scene,
we show that this algorithm leads to good results for the saliency map
computation, with a better fit between the saliency map and the ocular
fixation map than Itti et al.’s algorithm. These results may impact image
retargeting issues, for the display of HDR images on both LDR and HDR
display devices.
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1 Introduction

The concept of visual saliency was introduced in the Image community by the
influential paper of Itti, Koch & Niebur [1]. The purpose of these algorithms
is to compute, from an image, a Saliency Map, which models the image-driven
part of visual attention (gaze orientation), for observers looking at the image. In
the same last ten years, High Dynamic Range imaging emerged as a new field of
research in image science, including computer graphics, image acquisition and
image display [2]. Eight-bit images are not the only way to deal with digital
images, since techniques have been proposed to capture, process and display
HDR images.

In this paper, we show that a direct computation of the saliency map using
algorithms derived from [1] leads to poor results in the case of HDR images. We
propose a new algorithm derived from Itti and Koch [3], with a new definition
of the visual features (intensity, colour and orientation), which leads to better
results in the case of HDR images. The saliency maps computed with our algo-
rithm and with [3] are compared to human Region of Interest (RoI), using an
eye tracker experiment.
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Previous work on visual saliency computation are reviewed in section 2. Ev-
idence for the drawback of Itti and Koch’s model for HDR images are given in
section 3, as well as our alternative model. An eye tracker experiment is presented
in section 4, allowing to compare the two computational models.The results are
discussed in section 5.

2 Previous Work

Among several theories of visual attention, the Feature Integration Theory (FIT)
[4] was made popular by [1] because it leads to an efficient computational model
of the bottom-up visual saliency. Other biologically plausible implementations of
the saliency map have been proposed, and some authors include computational
models of top-down biases (see [5] for a review).

Itti et al.’s model [1], further refined in [3], tries to predict the bottom-up
component of visual attention, which is the image-driven contribution to the
gaze orientation selection. They implement the FIT using Koch & Ullman’s
hypothesis of a unique saliency map in the spatial attention process [6]. This
model was tested against oculometric data, and proved to be better than random
at predicting ocular fixations [3].

Itti and Koch’s algorithm [3] is seen as the standard model for the compu-
tation of the saliency map in still images. It extracts three early visual features
from an image (intensities, opponent colours and orientations), at several spatial
scales. This computation is followed by center-surround differences (implemented
as Gaussian Dyadic Pyramid) and a normalization step for each feature. Next,
an across-scales combination and a new normalization step lead to the so-called
conspicuity map for each feature. The normalizations are computed as follows: a
conspicuity map is iteratively convolved by a Difference of Gaussian (DoG) fil-
ter, the original map is added to the result, and negative values are set to zero.
Then, a constant (small) inhibitory term is added. Finally, the three conspicuity
maps (Intensity, Colour and Orientation) are added into the saliency map (see
[3] for implementation details). Other saliency algorithms, such as [7, 8] use the
same principles derived from [1]: selection of the visual features, center-surround
differences, competition across features, and fusion of the conspicuity maps into
the saliency map.

Saliency maps have been widely used in the recent years for Computer Graph-
ics applications, mostly in order to save computing time in rendering algorithms
[9, 10]. Video coding applications have also emerged, keeping a better image
quality in salient areas [11]. All these applications compute saliency maps using
models derived from [1], with Low Dynamic Range (LDR) images. The present
paper addresses the computation of saliency maps for HDR images, which has
implications for both LDR and HDR display devices.
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3 Saliency Maps of HDR Images

We have extended the Saliency Toolbox for Matlab [12] available online [13] to
HDR input (float images). Alternative algorithms, such as [14] were not tested,
so that our findings are restricted to Itti’s computational strategy, which is the
most popular in computer science, and led to the more convincing oculometric
validations.

3.1 Drawback of the Standard Model

Focusing on biologically inspired algorithms derived from [1], it appears that a
direct computation of the saliency map may lead to poor results for HDR images
in terms of information: the saliency map selects the most salient item, loosing
information about other salient items.

Fig. 1. Space Needle (left), Memorial Church (middle) and Grace New (right) HDR
images. Top: LDR tone mapped images. Bottom: Saliency maps computed from the
HDR images.

Fig. 1 (top) gives two examples of saliency maps computed with [3] from
32-bit HDR images from Debevec’s website [15]. As HDR images cannot be
printed, they are displayed (Fig. 1, bottom) after being tone mapped into LDR
images [16]. These examples suggest that a direct computation of the saliency
map looses relevant information, as far as visual attention is concerned. In the
Grace New image, only windows and light sources are selected. The saliency
map aims at predicting the visual behavior: one may doubt that observers would
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only look at light sources and windows in the HDR scene. This is even worst
with the Memorial Church HDR image, where the saliency map only selects one
window in the church. From these limited examples (more examples are available
as supplementary material of the present paper), it seems that state-of-the art
saliency map algorithms tend to select the most salient items in a HDR scene,
the other salient items being either faded, or removed. These ”poor” saliency
maps of HDR images do not correspond to the actual visual behavior.

3.2 Contrast vs. Difference

A naive approach would be to compute the saliency maps after a tone mapping
preprocessing (see section 3.3), however we were looking for a unified approach,
which proved to give better result than the two-steps approach (see section
4.2). Looking carefully at the conspicuity maps of HDR images, we found that
the color map seems to include more information than the two others. This
observation suggested an hypothesis. When the feature maps are computed in
[3], the Colour feature is normalized, at every pixel, with respect to intensity
I, whereas the Intensity and Orientation features process differences (between
spatial scales). Knowing that biological sensors are sensitive to contrasts rather
than to absolute differences, we felt that the saliency map of HDR images would
benefit from a computational model in terms of contrast on all three conspicuity
maps (Intensity, Colour and Orientation). This normalization may be seen as a
gain modulation, which is the physiological mechanism of visual adaptation.

Thus, we replace the Intensity channel in [3]. Instead of computing the in-
tensity difference between scales c and s: I(c, s) = |I(c)− I(s)|, we compute an
intensity contrast:

I ′(c, s) =
|I(c)− I(s)|

I(s)
(1)

(a) (b) (c)

Fig. 2. Contour detection in (a) with (b) normalized Gabor filters (our proposal), and
(c) differences of Gabor filters at successive scales, as in [3].

Then, we propose a modification of Itti et al.’s definition of the Orientation
features, so that the new feature is homogeneous to a contrast. In the original
paper, orientation detectors were computed, for each orientation angle θ, as
differences between Gabor filters at scales c and s: O(c, s, θ) = |O(c, θ)−O(s, θ)|.
This leads to orientation detectors where the borders themselves are not detected
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(see Fig. 2). Instead, we see a propagation across scales of what is actually
detected: borders of borders. This observation, added to the fact that a Gabor
filter is a derivative filter, led us to a new definition of the Orientation features:

O′(c, s, θ) =
O(c, θ)

I(s)
(2)

with a normalization over the intensity channel, as for the two other features.
Fig. 3 shows examples of saliency maps computed for HDR images with this
new operator, denoted CF (for Contrast Features) in the following, without the
strong drawback of Fig. 1.

Fig. 3. Saliency maps of the Space Needle, Memorial Church and Grace New HDR
images computed with the CF algorithm, with new definitions of the Intensity and
Orientation features.

In order to check the consistency of the CF algorithm for LDR images, we
also compared the saliency map of the LDR images, computed with [3] and with
the proposed algorithm. An example is given Fig. 4 for the Lena picture, showing
that the saliency maps are close to each other for LDR inputs.

(a) (b) (c)

Fig. 4. Saliency maps of Lena (a), computed with (b) [3] and with (c) the CF algo-
rithm.

3.3 Tone Mapping preprocessing

Usual sensors, either physical or biological, cope with the high dynamic range
of input luminance by means of a non-linear sensitivity function, allowing to
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shrink the luminance dynamic into a LDR output dynamic: all sensors include
a Tone Mapping Operator (TMO). Thus, one may argue that the apparent
failure of [3] for HDR images comes from the HDR input data. One may expect
that reproducing sensors properties and mapping HDR images to LDR images
before computing a saliency map would lead to better results than without this
preprocessing step.

A number of TMO have been proposed so far in the Computer Graphics
literature. Please note that in the following, we use TMO for a task which is
not the usual rendering task. Instead of comparing the visual appearance of
tone mapped images, we use them in order to compute accurate saliency maps.
In section 4.2, we have compared our algorithm to six such operators from the
literature, combined with a saliency map computed with [3]:

– Tumblin and Rushmeier [17] (denoted O1), based on psychophysical data,
tries to keep the apparent brightness in the images.

– Ward et al. [18] (denoted O2) uses a histogram adjustment method (we did
not consider the colour processing, nor the glare simulation of the operator),
trying to keep the contrast visibility in the images.

– Pattanaik et al. [19] (denoted O3) uses a colour appearance model (we used
the static version of the operator).

– Reinhard et al. [16] (denoted O4) uses a method inspired by photographic
art (we use the global version of the operator).

– Reinhard and Delvin [20] (denoted O5) is inspired by photobiology.
– Mantiuk et al. [21] (denotedO6) optimizes tone mapping parameters in terms

of visibility distortion, using Daly’s Visual Difference Predictor (VDP) [22].

Given that these operators may be sensitive to the parameter tuning, we have
used the default parameters as described in the cited publications.

4 Experiment

In order to test the relevance of a given saliency map computation for HDR
images, a ground truth is needed. This was done on a limited scale in a psycho-
visual experiment, with a HDR physical scene, collecting oculometric data.

In the general case, one may consider the saliency map as an input for the
top-down biases in the attention process. However, we followed [3, 23, 11] and
did not considered such top-down biases. Instead, we used the saliency map as
a predictor of the gaze orientation, in an experiment where the visual task was
chosen in order to avoid strong top-down biases. Thus, the fixation map could
be compared to predictions from these saliency maps.

We have designed an eye tracking experiment to test our hypothesis about
the visual behavior looking at HDR scenes. The ocular fixations of 17 observers
looking at a physical HDR scene were recorded. Then, the scene was scanned
with a camera with various exposures, in order to build a HDR image. This
allowed to compute various saliency maps from the HDR image.
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Fig. 5. Framework of the Saliency Map evaluation for HDR images.

4.1 Material and Method

The experiment took place in a dark room (no windows, walls painted in black)
under controlled photometry. The scene (Fig. 7, right) included dark (small box,
yoghurt) and bright parts (lamps), leading to a luminance dynamic of 3,480,000:1
and very strong contrasts (the yoghurt and the open box are near the light
sources). The scene was installed in a closed box (except for the front part, see
Fig. 6).

observer

eye tracker

scene box

video-projector

Fig. 6. Experimental setup.

Subjects were seated in an ergonomic automobile seat, allowing to adjust
the eye height and to minimize head movements. The scene box angular size
was 20◦. Ocular fixations were recorded using a SMI X-RED distant eye tracker.
Eight LEDs around the box served for the eye-tracker calibration, together with
a central LED in the middle of the box, with a physical protection around,
avoiding that any light would make the scene visible during the calibration. A
video-projector displayed light on the back wall, avoiding possible glare due to
the lamps in the scene box, however without light reflexion inside the box.

Seventeen subjects participated to the experiment (11 men, 6 women, mean
age 29). Although some of them worked in the field of digital image, they were
naive to the purpose of the experiment. They were asked to look freely at the
scene during 30 s. We followed [23], telling them that they would be asked a very
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general question at the end of the experiment. Altogether, these instructions
avoided strong task-dependent biases.

A black curtain hid the scene during the first part of the experiment (subjects
entering the room, seating, seat adjustment in height, explanations about the
experiment). Then, the light was turned off in the room, the curtain was opened,
and the eye tracker was calibrated using the LEDs as reference fixation points.
Finally, the LEDs were powered off, the scene box was lit, and the eye tracker
record began. In the end, subjects were asked to mention the main objects they
had noticed in the scene (these data are not analyzed here).

4.2 Results

We followed Le Meur et al. [11] and computed a Regions of Interest (RoI) map
from the subject’s fixations in the first 30 s. Fixations were defined as discs of
1◦ radius, where the gaze stayed for at least 100 ms. All fixation patterns (for
the 17 subjects) were added together, providing a spatial distribution of human
fixations. The RoI map is a probability distribution of the gaze direction, so
its integral is normalized to 1. Fig. 7 (left) shows the RoI map obtained from
individual fixations. Compared to the saliency maps of Fig. 8, the RoI map is
smoother, which sets some limits to further comparisons.

Fig. 7. Left: Fixation map (RoI) recorded over the individual fixations of 17 observers,
in false colours. Right: : LDR (JPEG) photograph of the HDR scene.

The next step was to compute saliency maps out of the experimental scene.
First, photographs were taken with various integration times (bracketing) from
the observer’s position, in order to build a HDR image [24] close to what ob-
servers actually looked at. Saliency maps were computed out of this image, using
both [3] and theCF algorithm. We also computed, for comparison, saliency maps
using [3] after preprocessing with O1 to O6 (see section 3.3). Fig. 8 shows the
resulting saliency maps in false colours.

Comparing the saliency maps suggests that some items which were missed
by [3] were found by the CF algorithm, such as the yoghurt, the black box,
the top right photograph, while the wine bottle is enphasized (see Tab. 1 for
quantitative evidence). As expected, the direct saliency map computation with
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CF [Itti 2000]

O1 + [Itti 2000] O2 + [Itti 2000] O3 + [Itti 2000]

O4 + [Itti 2000] O5 + [Itti 2000] O6 + [Itti 2000]

Fig. 8. Saliency maps of the experimental HDR scene computed with the proposed
CF algorithm, and with [3] without and with preprocessing O1 −O6.

[3] only selects the two lamps and the colour chart (the colour feature is the only
one to be normalized, see section 3.2).

An unexpected result is that some TMO fail in capturing more areas of
interest than the direct saliency map computation with [3] (see O5 for instance).
Another interesting point is the strong difference between the saliency maps,
depending on the TMO preprocessing. For instance, most TMO allow to capture
the yoghurt (bottom right of the image) which is not detected by the direct
computation, however O2 and O6 emphasize the left lamp, while O2, O4 and O6

emphasize the wine bottle, O5 captures the top right photograph, etc.

The RoI only contains low spatial frequencies, partly due to accuracy issues
in the eye tracking methodology. Thus, a direct quantitative comparison be-
tween the RoI and saliency maps is meaningless, as far as high frequencies are
concerned. We took this limitation into account using the same 1◦ dilatation for
the saliency maps as was previously done for the RoI, before any quantitative
comparison. Then, we assumed that both the saliency maps and RoI map are
probability distributions, and thus normalized in consequence.

Two criteria were used for the comparison. The first one is the square root
e of the Mean Square Error (MSE) between the saliency and RoI distributions
(see Tab. 1). However, as the MSE is a global criterion averaging on many
pixels, we also used a finer comparison criterion based on level sets. For any
probability value t between 0 and 1, saliency and RoI binary images can be
built by thresholding the saliency and RoI distributions, and then compared. To
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compare two binary images, we used the Dice coefficient, which is relevant when
the relative surface of the target is small:

s =
2× TP

2× TP + FP + FN
(3)

where TP = True Positive, FP = False Positive and FN = False Negative
pixels. The higher the Dice coefficient, the more similar the binary images. This
leads to curves of the Dice coefficient s versus the threshold probability value t,
as shown in Fig. 9. If the Dice curve obtained for one algorithm is always higher
than the one obtained for another algorithm, the first one performs better.

Algo. 104 e rank s rank

[3] 6.15 [6] 0.127 [6]
CF 4.63 [1] 0.161 [1]
O1 + [3] 4.65 [2] 0.158 [3]
O2 + [3] 5.47 [5] 0.131 [5]
O3 + [3] 7.67 [8] 0.093 [8]
O4 + [3] 4.89 [3] 0.160 [2]
O5 + [3] 6.22 [7] 0.126 [7]
O6 + [3] 5.36 [4] 0.145 [4]

Table 1. Error indexes e and s comparing the RoI and the saliency maps, depending
on the algorithm (rank in brackets).

Fig. 9. Dice coefficient for the CF Saliency Map and [3] when compared to the RoI
map, with threshold t as parameter.

When comparing MSE values and mean Dice coefficients (see Tab. 1), the
CF algorithms ranks first in both cases (the rank does not change much whether
we use the MSE or the Dice). The square root of the MSE is improved by 33%
compared to [3], while the mean Dice is improved by 27%. Besides, none of the
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TMO, used as preprocessing before [3], managed to perform better than the
proposed CF algorithm in the tested situation. Furthermore, the tested TMO
not always lead to a more predictive saliency maps than a direct saliency map
computation without TMO, which is a counter-intuitive result. For instance,
using O3 and O5 before [3] is worst than [3] alone.

5 Conclusion

We have focused on a drawback of the most popular computational models of
the visual saliency when applied to HDR images. This can be put in terms of
missing information: a direct saliency maps computation is poorly predictive of
the gaze orientation. We have proposed a new algorithm, improving the saliency
map quality on HDR images, that is, leading to a better fit with oculometric
data. This CF algorithm was rated best in terms of the Dice coefficient and in
terms of MSE, compared to [3]. In addition, it gives better results than 6 TMO
from the literature (in order to compress the image dynamic) followed by [3].
This last result suggests that the drawback of Itti and Koch’s standard model for
HDR images is not due to the input image interpretation, but more probably to
the feature’s definition. Note that the standard feature definitions perform well
on LDR images, and the need for modified features is limited to HDR images.

These results may benefit to HDR video coding and HDR display, as a num-
ber of compression and processing algorithms already use bottom-up saliency
computations in order to optimize the computing time and compression rate.
Thus, a more reliable computation of the bottom-up saliency of HDR input
images should improve the quality of the displayed image.

Still, a predictive model of human fixations is beyond the possibility of such
bottom-up saliency models [25]. This is emphasized by the fact that the Dice
coefficients (Tab. 1 and Fig. 9) are quite low, whatever the method. This is partly
due to the fact that visual attention is not only driven by the bottom-up visual
saliency. In search for a more predictive model, alternative approaches may also
compute the top-down component of visual attention, providing that a semantic
description of the scene is available, which is often the case in Computer Graphic
applications. For instance, Navalpakkam and Itti used the scene gist and a priori
knowledge about the current task in order to bias the bottom-up saliency [26],
while Gao and Vasconcelos computed a discriminant saliency linked to object
recognition [27].
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