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ABSTRACT
A fine computation model may lead to poor image dis-
play, due to the limitations of the display device. This
well known problem has a specific intensity for night time
scenes, first because of the high luminance dynamic be-
tween dark areas and light sources, secondly because of
the image quantification of the dark levels. We propose a
specific TMO devoted to this kind of images, and compare
it to usual TMO of the literature, both in terms of visual
appearance and performance in the visual scene.
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1 Introduction

The visual quality of images depends on the quality of the
underlying computational models, but also on the quality
of the display. The visualization of night time images, ei-
ther from a synthetic model or from a video is a challenge
for two reasons: first the high dynamic luminance range
(HDR), from the black sky to the artificial light sources,
cannot be rendered with a display device. Second, item
discrimination among low luminance levels faces a specific
bias in most usual display devices: as luminance images
are rendered with 8 bits (that is 256 grey levels), quan-
tification effects may lead to objects disappearing, or non
significant contrasts appearing. Tone Mapping Operators
(TMO) are designed in order to manage this problem, and
the night time situation is among the harder they have to
face. Another points concerns the adaptation luminance,
the luminous level where the visual system adapts itself,
which depends on the display conditions. Visual perfor-
mances strongly depend on this adaptation level. In this pa-
per, we only consider the image visualization in controlled
conditions, that is, in the case of night time images, in a
dark room where no daylight or artificial light can add a
veiling luminance to the displayed image.

Two main streams have developed TMO in order to
cope with image display limitations: a first set of operators
use a number of algorithmic tricks in order to give a better
subjective impression of the displayed images (e.g. [1]);
another growing approach tries to model at least some as-
pects of the optical and psycho-visual properties of image
vision and image display in order to designed the operators
(e.g. [2, 3, 4]). [5] propose a State of the art in the field of

TMO, where most display issues are addressed; however,
in this paper, some of them (as color and real time) are
not considered, because we preferred to focus on the two
main issues with night time images: dynamic compression
and quantization at low luminance levels. This paper fol-
lows the main stream of TMO developments, trying to take
into account vision science data in order to include a vision
model and a display device model in our TMO. In the field
of vision science, among others, the International Commis-
sion on Illumination publishes recommendations and state
of the art reports, for instance on visual performances, dis-
play devices calibration [6] and adaptation luminance [7].
The idea of improving the image quality soon led to the
idea that a subjective evaluation of the displayed images
cannot be enough, and that evaluation experiments were
necessary, following the psycho-visual standard of experi-
ments in visual sciences. A number of experimental par-
adigms have been proposed, mostly on visual appearance
criteria [8], but also on visual performance criteria [9].

In this paper, we propose a TMO designed in order to
improve the display of night time images. This operator is
limited to luminance images, because we deal mainly with
mesopic light levels. It is also limited to low photopic, high
and medium mesopic light level, which means that we do
not consider luminance levels under 0.1 cd.m−2 which are
very difficult to render. Our model is based on both vision
models (including a visual adaptation model) and a display
model (taking into account the photometric characteristics
of the display device, especially the quantification effects).
We have compared our TMO to standard TMO from the
computer graphics literature [1, 2, 3, 4] with both appear-
ance and performance indexes for two kind of night time
images: with and without light sources in the field of view.

2 Night time images and vision

The Human Vision System (HVS) has 3 different behav-
iors, depending on the luminous level: photopic under day-
light conditions, when the rod photoreceptors of the retina
are saturated; scotopic, under dark night, when the cones
photoreceptors cannot perceive any light (they are not sen-
sitive enough, and no color vision available); and mesopic,
were both cones and rod are active. Usual night time scene
(urban night scene, road night with the lights on) typically
belong to the mesopic conditions. In this paper, we focus
on visualization of mesopic images. However, we follow



the results of the MOVE project [10] in considering that
there is no need to use a specifically mesopic luminance
definition above 0.1 cd.m−2.

A number of rendering models, either from ray trac-
ing techniques or from global illumination techniques, al-
low now to compute luminance images. On the other hand,
video-photometry today allows to capture real images with
photometric accuracy, in a metrological sense. Both tech-
niques lead to a increasing need of accurate image display
of luminance images. Unfortunately, even if their quality is
increasing, no display device allow the dynamic range, the
color range and sensibility of natural or computed images;
what is more, the best display device technology is not
available everywhere (for instance, on driving simulators),
and algorithmic strategies are developed in order to keep
the image quality despite of the display biases. A number
of display device techniques are nowadays available : CRT,
LCD, DLP, plasma, etc. The common framework to take
these systems into account in the image display procedure
is to perform a photometric (and if necessary colorimet-
ric) characterization of the display device [6], in order to
include these photometric data in the TMO display model.

The typical luminance range of a CRT display (when
used in a dark room) is [1:100] cd.m−2, which is very far
from what would be necessary for an urban night scene ren-
dering: car light may be up to 20 000 cd.m−2, dark ar-
eas under 0.1 cd.m−2, road surface between 0.1 and a few
cd.m−2. Another limitation is the quantization effect in the
dark areas: with 256 grey levels, if one wish to render light
sources, very few grey levels are available to render the low
level luminances (between 0.1 and 2 cd.m−2). This results
in artificial contrasts which should not appear.

Light sources lead to another set of display issues.
Actual glare is almost impossible with current display tech-
nology, while glare effects should be rendered if one wish
to display images with the same visual appearance as the
real scene. Spencer et al. [11] address this problem with
a specific algorithm, based on vision science data, which
computes a veiling luminance depending on the angle be-
tween the light source and the gaze axis, and adding it to
the luminance image. The veiling luminance lowers the
contrast discrimination capacities for people looking at the
displayed image, as true glare would do. As light source
are a major issue in night time images, we use Spencer’s
technique as a pre-processing step in our algorithm.

3 A night time TMO

We want to design a TMO which aims at improving the vi-
sualization of night time images. As we explained in our
introduction, the images are luminance maps. The techni-
cal limitations of display devices (luminance dynamic and
quantification) highly modify luminance and contrasts in
images. Our objective is to build an operator which modi-
fies the luminance and the contrasts of the image according
to the device characteristics, preserving the contrast per-
ception. The HVS is sensitive to a large range of luminance

managed by visual adaptation. But perception depends on
the adaptation levels; in particular, contrast perception. Our
HVS is sensitive differently to different range of spatial fre-
quencies. Our operator imitates the HVS on those aspects
by using vision models function of adaptation luminance
and spatial frequency.

3.1 Theoretical background of the operator

In this section, we develop the vision model we use to build
our operator.

To mimic the sensitivity of the HVS to the spatial fre-
quency, we decompose the image into different frequency
bands. Burt and Adelson [12] proposed a fast pyramidal
decomposition of the image into 7 frequency bands. They
first build a Gaussian pyramid in which each image is the
Gaussian filtered and sub sampled of the image at previous
level. Then they compute the laplacian pyramid by sub-
tracting the up sampled image of next upper level to the
current level. The laplacian pyramid has 7 levels. The first
6 are images containing luminance contrasts. In the rest of
this article we will call them contrast images. This is how
we get the contrast values of objects with different size.
The last level contains the low frequencies of the original
image.

To model the contrast perception, we use the visibil-
ity level. It is the ratio between the luminance contrast be-
tween the object and the background, and the smaller in-
crement of luminance detectable from the background lu-
minance [13]:

V L =
∆L

∆Lt
(1)

In our case, the ∆L is the value of luminance contrast given
by the pyramidal decomposition. The contrast threshold
∆Lt is given by the Threshold Versus Intensity (TVI), a
vision model that gives a contrast threshold depending on
the adaptation luminance. The TVI is available for rods
and for cones [14]. We use an equation system proposed
by Larson et al. [3] that merges the two functions called
Just Noticeable Differences (JND). The JND depend on the
adaptation luminance La which is different for each level
of the pyramid.

Few definitions exist for the adaptation luminance.
The experiments carried out by Ishida [7] show that it can
be computed by the mean of the luminance if the variance is
small. We use this definition in our operator. As the adap-
tation is mainly achieved at the fovea, which size is around
one degree, we will compute the adaptation luminance in a
1o area.

The two technical limitations of the visualization de-
vices that highly damage night time image rendering are
luminance dynamic and quantification. To limit the dam-
age, we want to anticipate the loss of information due to
luminance compression and quantification. To reckon on
the contrast and luminance modifications, we need to know
some of the device characteristics such as the minimum



and maximum of displayable luminance and the Look-Up-
Table (LUT) between the addressing value and the dis-
played luminance. The LUT is measured with a photome-
ter, following the method proposed in report 122 of the CIE
[6]. We focus on contrast perception rendering. The VL,
that quantifies the contrast perception, is used to make sure
that the original contrast and the displayed contrast are per-
ceived the same way. If we want the VL to remains constant
while changing the contrast, the contrast threshold have to
change as well. The contrast threshold is given by the JND,
computed for an adaptation luminance. The adaptation lu-
minance is processed, to fit the luminance dynamic of the
display device in order to maintain a constant VL, despite
the quantification.

3.2 Computational model

Spatial frequency decomposition The original image I
is decomposed into a laplacian pyramid according to the
method of Burt and Adelson [12]. We first build a Gaussian
pyramid using a 5 × 5 gaussian filter w. Each level of the
pyramid represents a low-pass image, cut at a frequency
half the one of the next higher level. The Gaussian pyramid
has 7 levels to cover the sensitivity domain of the HVS. The
image at level l, l ∈ {1, 2, 3, 4, 5, 6, 7}, of the pyramid,
denoted as Ll

w, w for world, is computed from level l − 1:

Ll
w(i, j) =

2∑
m=−2

2∑
n=−2

w(m,n)Ll−1
w (2i + m, 2j + n) (2)

L1
w(i, j) = I(i, j) (3)

The filtering process downsamples the image. To compute
a pyramid of difference-of-Gaussian images, we take the
image at level l, Ll

w, and we subtract the expanded image
at level l + 1 which has been upsampled, denoted Ll+1

wExp:

Ll+1
wExp(i, j) =

2∑
m=−2

2∑
n=−2

g(m,n)Ll+1
w (

i

2
+ m,

j

2
+ n) (4)

Cl
w(i, j) = Ll

w(i, j)− Ll+1
wExp(i, j) (5)

This results in a 7 levels pyramid, the first 6 levels are band-
pass images and the last higher level is a low-pass image.
We denote Cl

w the contrast images.

Contrast perception modelling The contrast perception
is modelled by the Visibility Level (VL), defined by:

V l(i, j) =
Cl

w(i, j)
∆Lt(Ll

aw(i, j))
=

Cl
w(i, j)

JND(Ll
aw(i, j))

(6)

where V l is the image of VL values at level l, ∆Lt is the
perception threshold of luminance contrast which depends
on an adaptation luminance denoted Ll

aw and is computed
using the JND.

The adaptation luminance values Ll
aw are reckoned

from the Ll+1
wExp images. We compute the mean of lumi-

nance over 1 degree in the visual field.

Figure 1. Framework of our algoritm

The VL images are used to compute new contrast im-
ages Cl

d (d for display) adapted to the display device char-
acteristics on which the rebuilt image shall be displayed.
The new contrast images are computed using equation 6
and the JND, to inverse the model. The new adapted con-
trast is computed in order to maintain a VL constant:

Cl
d(i, j) = V l(i, j).∆Lt(Ll

ad(i, j)) (7)

Adaptation luminance processing To adapt the contrast
to the display device, we need then to modify the adap-
tation luminance taking the device characteristics into ac-
count. New adaptation images Ll

ad are computed from the
old ones Ll

aw, using a scale factor kad (one for each spatial
frequency band, in order to fit the HVS behaviour).

Ll
ad(i, j) = kad.L

l
aw(i, j) (8)



Ward [2] proposes a scale factor that can be used for each
level of the Laplacian pyramid to process the adaptation
images. But this scale factor expands the luminance dy-
namic when the average luminance is small and night time
images appear like daytime images.We could adapt Ward’s
scale factor by maximizing the scale factor by one. How-
ever, this simple solution does not hold for night time im-
ages. First because the minimum of displayed luminance
Ldmin of most display devices is higher than the lower
luminance to be displayed Lwmin. Secondly, because of
the quantification, many contrasts in those scenes are de-
stroyed. So the scale factor should be higher than one but
in a reasonable way. We propose in this paper to choose the
smallest value of the scale factor allowing that the smallest
perceptible contrast ∆Lt would be perceived. Let’s note
Aw an adaptation level in the original image and Ad the
one in the displayable image.

Ad = kad ∗Aw (9)
A

′

d = Ad + ∆Ld
s = kad ∗Aw + JND(kad ∗Aw) (10)

We call LtoAV is the function, characteritic of the display
device, that gives an 8-bit numeric value from a luminance
value and AV toL the function that gives a luminance value
from an 8-bit numeric value (LtoV A is a quantification
function so Z = LtoAV ◦AV toL 6= Id).

ALCD = AV toL(LtoAV (Ad)) = Z(Ad) (11)

Z(Ad) gets the actual adaptation level which is displayed
when we want to display Ad.

A
′

LCD = ALCD + ∆LLCD
s (12)

∆LLCD
s = A

′

LCD −ALCD = Z(A
′

d)− Z(Ad) (13)

Since we want ∆LLCD
s = ∆Ld

s :

Z(Aw+kad∗Aw)−Z(kad∗Aw) = JND(kad∗Aw) (14)

Let’s consider:

α(kad, Aw) =
Z(Aw + kad ∗Aw)− Z(kad ∗Aw)

JND(kad ∗Aw)
(15)

For a given value Aw, we choose the smallest value of kad

such that α(kad, Aw) = 1. If α(kad, Aw) remains lower
than 1, we choose kad such that α(kad, Aw) = αmax. To
make sure that kad is optimal for every adaptation level in
the image, we chose Aw = Lwmin. Finally, we clip the
adaptation luminance by the two extreme displayable lu-
minances, Ldmin and Ldmax.

Image reconstruction The image is reconstructed, fol-
lowing the inverse process of the pyramidal decomposition.
The last level of the pyramid is first scaled with the factor
kLF [2], clipped to 1. It is then upsampled and added to
the next lower level. The result is upsampled and added
to the next lower level and so on until the image is rebuilt.

We finally apply the LUT of the display device to convert
luminance values into addressing values.

Figures 3 and 2 show images processed by different
TMOs. We cannot judge or compare the TMOs based on
those images because they have been calculated to be dis-
played on a specific LCD display device, under specific vi-
sual conditions, and because we cannot display the HDR
image. In the next section, we detail the experiments we
carried out to evaluate the image quality rendered by our
operator.

Figure 2. Image LN150W, Lwmin = 0.25 cd.m−2 and
Lwmax = 5.1 cd.m−2, processed by 5 different TMOs:
W94, L97, P98, R02 and the one we present in this paper

4 Quality evaluation

Two main indexes are used in general purpose perception
evaluation: appearance and performance cues. In the case
of image quality evaluation, these two psycho-visual in-
dexes difference lies in the subjective vs. objective record.
An appearance test concerns the subjective evaluation of
the images quality (or image comparisons) by a panel of
observers, while a performance test concern the objective
performance of a panel of observers in a visual task (ob-
ject detection, object shape discrimination, reading, etc.).
As both criteria are important, we test our TMO with both
kind of psycho-visual experiments. A performance and an
appearance tests are carried out with two night time images:
a nighttime urban driving scene without light source in the



Figure 3. Image NIGHTDRIVE, Lwmin = 0.5 cd.m−2 and
Lwmax = 478.4 cd.m−2, processed by 5 different TMOs:
W94, L97, P98, R02 and the one we present in this paper

visual field and a nighttime country driving scene with light
source in the visual field. 10 subjects take the tests for each
scene. For the NIGHTDRIVE image, there are 2 women
and 8 men. 7 subjects were between 25 and 35 years old
and 3 were between 35 and 55. For the LN150W image,
there are 1 woman and 9 men. 3 subjects were between 25
and 35, 2 were between 35 and 55 and 5 were over 55.

Performance rendering To evaluate the quality render-
ing of our operator in terms of performance, we record the
visual performance of observers with a reference scene and
with a comparison scene. The reference scene is a High
Dynamic luminance Range (HDR) image displayed with a
DLP (Digital Light Processing videoprojector). The com-
parison scene is the image processed by a TMO to fit the
low dynamic range of the display device, a LCD (Liquid
Crystal Device). The closer the visual performance with
the comparison scene are to the one with the reference
scene, the better is the TMO. The visual performance is
measured with a Landolt ring (see figure 4) in a uniform
square. The whole is inserted in a night time image (see
figures 2 and 3). The ring is full during 1 s, then a gap
appears in one of the four possible positions (left, right,
top, bottom), during 100 ms. The subjects indicate, with a
gamepad, the position of the gap. The test is carried out 200
times spread over eight different contrasts. The luminance
of the square, the size and the position of the ring remain

constant. Figure 5 shows the visual performance for both

Figure 4. The Landolt ring for the performance test

scenes, measured with the reference scene, and with the
comparison scene computed using different TMO: W94,
L97, P98, R02 and our operator. For the image LN150W,
2 operators provide good results, P98 and our operator.
W94, L97 and R02 over estimate the contrast perception
and improve the visual performance of observers. For im-
age NIGHTDRIVE, the visual performance with our oper-
ator are closer to the visual performance with the reference
than with the other TMO, yet the contrast perception is un-
der estimated.

Figure 5. Visual performance measured with the image
processed by 5 TMO, including our, for images LN150W
(top) and NIGHTDRIVE (bottom).

Appearance rendering Our operator is compared to the
same other TMOs, with an experimental protocol close to
Ledda et al. [8]. Two images are displayed at the same
time, with the same angular size: the reference image, dis-
played by the DLP, and the comparison image, displayed
by the LCD. The reference image remains the same during



the whole test. On the LCD device, two images processed
by two different TMO are displayed successively. The sub-
jects are asked to choose between the two processed images
the one that seems, according to them, the ”closest” to the
reference scene. The observers may go back and forth from
one image to another as many time as needed to make their
choice. The 5 TMO are compared, which results in 10 dif-
ferent image couples. Each couple is displayed 3 times,
which means that each TMO appears in 12 couples. Ta-
ble 1 shows the average number of time an operator was
chosen, over the 10 subjects. The results show that our op-
erator is the first chosen in the night time with direct source
light image, and is the first, equal with Ward’s operator, in
the night time without direct light source image.

W94 L97 P98 R02 G total
nightdrive 5.9 8.9 0.8 2.9 11.5 30.0
LN150W 9.4 0.8 3.1 6.8 9.9 30.0

Table 1. Appearance tests results: Ward94, Larson97, Pat-
tanaik98, Reinhart02, Grave.

5 Conclusion

We propose a new tone mapping algorithm designed for
night time image visualization. Our main objective is to
preserve the observer’s contrast perception at low lumi-
nance levels despite the luminance dynamic range com-
pression and the quantification of images. To evaluate our
algorithm, we carried out two psychophysical experiments
in order to evaluate the quality of the processed images with
appearance and performance tests. We performed the tests
with 2 night time images: a night time without direct light
source and a night time with direct light sources scenes.
Over the 2 scenes, our operator gives better results than the
4 other TMO used for comparison. This means that our
TMO fulfills our objectives. It allows to display images
preserving the contrast perception and the general bright-
ness. Our operator only process luminance map. Even
if colour is not a critical parameter for the mesopic do-
main, the ecological validity of our operator would need
to expand our operator to colour images. Our operator
deals with still images. We could develop our algorithm
to video. Then with a real time implementation and a re-
configuration of some aspects, we could integrate our algo-
rithm into the visual loop of a driving simulator and simu-
late night time driving.
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