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Abstract

Abstracts of reference papers in the field of edge detection are proposed: (Marr and Hildreth, 1980) and
(Perona and Malik, 1990), as well as surveys on edge detection (Ziou and Tabbone, 1998; Basu, 2002) and
old forgotten papers (Fram and Deutsch, 1975). Personal remarks are sometimes included.
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1. On the quantitative evaluation of edge de-
tection schemes and their comparison with
human performance

(Fram and Deutsch, 1975)

This is the first published paper to propose a
methodology in order to rate the respective merit of
Edge Detectors (ED). Of course the tested ED are
not up-to-date, but the framework is still interesting.
ED are supposed to find and locate the “bound-

aries of objects”. Even in 1975, a number of oper-
ators were available, and a comparision framework
was needed, as well as a ground truth in terms of
human visual performance. A number of edge prop-
erties would benefit from such an evaluation frame-
work, such as edge orientation estimation, detection
of curved edges, ability to discriminate close edges,
etc. The following of the paper focuses on straight
edge detection in the presence of noise. Three ED
are compared: those from Rosenfeld and Thurston
(1971), McLeod (1972) and Hueckel (1973). In short,
Hueckel (1973) detects edges thanks to a set of ideal
edge lines (templates). McLeod (1972) uses a con-
volution with an oriented kernel: it looks for an
edge in a given direction. Rosenfeld and Thurston
(1971) proposed a 2-steps operator, fitting a very ba-
sic model of the adjacent regions in various directions.

The resulting edges are then thinned.

For the operator’s evaluation, an image database
was build. Each image contained one vertical edge,
separating two adjacent regions. Then, some noise
was added. Each image was described by the (Gaus-
sian) noise rate and by the “edge’s strength” (inten-
sity difference) between the two regions.

The outputs from the ED produced edge weights,
and sometimes additional informations. This was
normalized, so as to get the same level of informa-
tion out of any ED: a binary image. The number of
edge points was estimated a priori, which allowed to
threshold the edge weights. For each image and each
ED, 2 indexes were computed: P1 = TP/(TP +FP )
(TP : True Positives, FP : False Positives), and
P2 = TP/(TP +M) (M : Misses).

Then a psycho-visual experiment allowed to com-
pare the detector’s performances to a mean human
performance (mean over 5 observers). The psycho-
visual task did not mimic the detector’s task: peo-
ple were asked the orientation of a displayed edge,
among four possible orientations. This led to some
discussions about how the two performance indexes
could be compared. Finally, the authors computed
an index, thresholding P1 and P2 (which includes the
hazardous step of setting the thresholds values), and
compared it to human perfomances.
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2. Theory of edge detection

(Marr and Hildreth, 1980)

Overview. This paper was not published in a com-
puter vision or image processing journal, but in the
proceedings of the Royal Society (London). It is a
starting point for edge detection algorithms, where
vision science was first introduced. Several important
ideas are proposed, some of them have become pop-
ular in computer vision, such as the zero-crossings
idea. As a whole, Marr an Hildreth’s paper is still
cited, but their approach is mostly considered as a
dead-end in the edge detection community1.

One tough issue in edge detection is that, as stated
by Marr and Hildreth, “the concept of an edge has
a partly visual and partly physical meaning”. Their
paper was an effort to make this double bind clear.

The paper is divided in two parts: a single scale
edge detector is followed by a multiscale edge de-
tector. The basic tool is the Laplacian of Gaussian
(LoG), applied to image I: the edges are expected
to be located at the zero-crossings of the LoG, for a
given scale. Then, a multiscale representation of the
image is proposed, where Gaussian filters at various
scales have to be combined in order to find out the
“true” edges. Finally, the proposed edge detection
theory is discussed in the context of psychophysical
knowledge.

The starting point of Marr and Hildreth’s paper
was to discuss previous results in vision science about
early visual processing. First, Hubel and Wiesel
(1962) found the so-called simple cells in V1, with
bar or edge-shaped receptive fields. Second, Camp-
bell and Robson (1968) showed that visual process-
ing includes parallel spatial frequency tuned chan-
nels, which results in some kind of a Fourier ana-
lyzer. These findings are not easy to mix up. Marr’s
feeling is that some notions about the task devoted to
early vision would help. His proposal is that a primal
sketch is built: a “primitive but rich description of the
image that is to be used to determine the reflectance

1I guess it is not.

and illumination of the visible surfaces2, and their
orientation and distance relative to the viewer” (p.
188). The article deals with the computation of the
raw primal sketch, which describes the image in terms
of edges, bars, blobs and terminations3.
One paradoxal idea is to detect edges, which is di-

rectional if anythink is, with an isotropic spatial filter.
The authors anounce a future paper, which addresses
directional selectivity (Marr and Ullman, 1981).

The single scale problem. The first issue addressed
in the paper is the selection of an optimal smoothing
filter, in order to detect intensity changes at a given
scale. The proposal is to design a bandpass filter with
a smooth spectrum in the frequency domain; in other
words, the variance in the frequency domain, ∆ω,
should be small. The second constraint is that the
edge should be accurately localized, as “the things
in the world that give rise to intensity changes” are
spatially localized. This is expressed with ∆x, the
spatial variance of the filter, which should be small.
The choice of a linear filter is not discussed. The
point is, an uncertainty principle states that ∆ω∆x ≤
π/4. The optimal distribution in terms of uncertainty
was found to be the Gaussian distribution (Leipnik,
1960).
Given a smoothing filter, where are the edges at

the selected scale? Intensity changes correspond to a
peak in the first derivative, that is, a zero-crossing
(maximum) in the second derivative. For a 2D
Gaussian filter, edges are found where this second
derivative crosses zero. Marr and Hildreth note that
this second derivative “closely resembles” the Differ-
ence of Gaussians (DoG) found by Wilson and Giese
(1977) in vision science (this similarity is discussed in
an Appendix: the second derivative of the Gaussian
is the limit of the DoG when... the size of the two
Gaussians tend to one another!).
The next issue is to compute the edge direction,

when an edge is found. That is, in what direction

2This idea may be related to the Retinex theory by Land
and McCann (1971).

3Marr and Hildreth’s approach seems purely bottom-up,
following the first trend of cognitive science, that is, the infor-
mation theory in the 1950’.
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should we compute the second derivative? The an-
swer is that the edge direction is given by the lo-
cal zero-crossings. Assuming that intensity variations
along the line of zero-crossing are (locally) linear, the
solution is given by the Laplacian ∇2. Finally, the
proposed filter is a Laplacian of Gaussian (LoG, or
∇2G). Thus, the edge orientation is the one at which
the zero-crossing has the maximum slope.
Marr and Hildreth define edges in the image as

linear segments (in the u direction) of zero-crossings
of ∂2G/∂v2, where u⊥v. An amplitude ν is associ-
ated with each segment: it is the slope of this second
derivative along the segment (supposed to be almost
constant). Finally, the set of these segments is the
raw primal sketch mentioned above, at the selected
scale.

The multispectral problem. The main proposal for
combining results from different channels was called
the spatial coincidence assumption. A given intensity
change is spatialy localized, and shoud be detected at
various scales with (more or less) the same size and
(more or less) the same orientation and (more or less)
the same localization. From this statement, 3 cases
are discussed: (1) isolated edges, (2) bars, (3) blobs
and terminations. The purpose of this discussion is to
build an informative so-called raw primal sketch; that
is, to describe the relevant properties of the detected
edges, along with their localization. For instance, the
edge amplitude and width may be computed. Bars
are pairs of parallel edges; they may reveal the pres-
ence of a thick edge, that is, a single edge in a higher
spatial scale4.

Psychophysics of edge detection. The proposed
model is compared to Wilson’s models (Wilson
and Giese, 1977; Wilson and Bergen, 1979) for
orientation-dependent, spatial frequency-tuned chan-
nels. The authors discuss the idea that Hubel and
Wiesel’s simple cells (Hubel and Wiesel, 1962) may
simply measure second directional derivatives (they
guess not). Then, they argue that the LoG and DoG

4Note that due to the author’s goal of building a semi-
semantic, low level primal sketch, some discussions and ques-
tions do not adress edge detection, but edge description.

are not so different, meaning that biological mod-
els including DoG may as well be implemented with
LoG: it is not so easy to discriminate between these
models on the basis of experimental data.
Marr and Hildreth propose that ∇2G ⋆ I may be

coded in the lateral geniculate nucleus (LGN) of the
thalamus, while some “simple cells” of V1 (in the
sense of Hubel and Wiesel) may code segments of
zero-crossings in the previous map. They argue that
the DoG have been proposed as a model for LGN
cells (Rodieck and Stone, 1965; Enroth-Cugell and
Robson, 1966), and may implement their LoG in the
sustained cells (carrying either the positive or the
negative part of ∇2G ⋆ I). Then, the zero-crossings
detection in V1 could be an AND operator, combining
the positive and negative components of the input
signal from the LGN. The amplitude of the edge de-
tector should be linked with ν in some way.

3. Scale-space and edge detection using
anisotropic diffusion

(Perona and Malik, 1990)

One nice formalism for a multiscale image descrip-
tion is the scale-space filtering (Witkin, 1983; Koen-
drink, 1984). An image I0 is embedded in a family of
derived images:

I(t) = I0 ⋆ G(t) (1)

where G is a Gaussian kernel with variance t. Then,
Koendrink (1984) noticed that the image family may
be viewed as the solution of the heat conduction
(with t the time): I(t) = ∆I (with initial condition
I(0) = I0). He proposed two properties for the kernel:
“causality” (a new feature [edge] should not appear
at a coarse level), and “Isotropy” (the kernel should
be isotropic). The last criterion was chosen foro the
sake of simplicity, and Perona and Malik (1990) show
it is not necessary.
Anisotropic diffusion is proposed as a solution

to several weaknesses of the scale-space paradigm:
boundaries are shifted at coarse scales, and some
junctions disapear. The authors replace Koendrink’s
“Isotropy” criterion with two more criteria: “imme-
diate localization” (boudaries are well localized at all
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scales) and “piecewise smoothing” (smoothing apply
to the regions rather than to the edges). The pro-
posed solution is that the diffusion coefficient may
vary spatially, along with an estimation of the edge
presence (local contrast). The heat diffusion equation
becomes:

I(t) = div(c.∇I) = c(t)∆I +∇c.∇I (2)

with ∇ and ∆ the gradient and Laplacian operators,
respectively. It reduces to I(t) = c∆I if c is constant
over space and time. The idea is to smooth the image
within regions, not across boundaries. The optimal
solution is c = 1 inside regions, and c = 0 on edges,
but at this stage the solution is not known! Thus,
the best edge estimator is used instdead5.

For practical application, various values for c were
tested of the form c = g(∥∇I∥), based on the idea
that ∥∇I∥ is an estimation of the presence of an edge.
g should be monotonic and decrease between 1 and 0.
The authors did not report a big difference depending
on g. One proposal was the Gaussian function6:

g(x) = e−x2/K2

(3)

Then, it is shown that using adiabatic boundary
conditions (c = 0 on the image boundaries), the max-
imum principle is followed: no new maxima emerge
at coarse scales. Another nice property is that edges
are enhanced by the diffusion process, while noise
is reduced (this is demonstrated analytically, under
some reasonable hypotheses). One interesting result
is that if ϕ(Ix) = c.Ix denotes the flux along x, one
sees at the same time forward diffusion almost every-
where (ϕ′(Ix) > 0), and backward diffusion around
the edges ( ϕ′(Ix) < 0). Backwards diffusion is said
to quickly shrink, so that the process is stable.

5It should be noted that unlike many papers on edge detec-
tion, edges are considered as region boundaries, and the issue
of edge detection is seen as a joint issue, together with regions
segmentation.

6The setting of the K parameter is not much discussed: it is
either fixed by hand, or using Canny’s noise estimator (Canny,
1986). The idea is that K should be set to the “typical contrast
value”, and thus may vary across the image if this typical value
strongly varies.

A practical implementation is proposed, on a 4-
connexity lattice, where the nodes code for intensity
(I), and the arcs code for diffusion (c). The author
prove that no maximum can emerge: I(t+1) is always
between the local Min and Max in the neighbourhood
of I(t).

This implementation is compared to other edge de-
tectors, which are classified into two classes: fixed-
neighbourhood (such as Canny (1986)) and en-
ergy/probability global schemes, such as Geman and
Geman (1984). Compared to Canny, in addition to
the nice property of avoiding localization errors at
coarse scales, the combination of result images at var-
ious scales is avoided. Moreover, edge thining and
linking becomes almost unnecessary. They also note
that the proposed algorithm is massively parallel.

Anisotropic diffusion is also compared to energy
minimization approaches (Geman and Geman, 1984),
which is similar to maximizing a Markov probability
distribution function. In this approach, the Energy
U is the sum of an a priori term (containing prior
knowledge about the image space) and an a posteriori
term (which depends on the available information,
that is, the image data). An interesting result is that
the proposed anisotropic diffusion may be seen as a
gradient descent of the a priori part V of the energy
function.

4. Edge detection techniques. An overview.

(Ziou and Tabbone, 1998)

The first sentance of this paper may be quoted: “In
computer vision, edge detection is a process which at-
temps to capture the significant properties of objects
in the image” (emphasized by myself). these proper-
ties give rise to variations in the image (step edges,
line edges, junctions). The purpose of edge detec-
tion is to localize them, “and to identify the physical
phenomena which produces them”.

The basic tool is the computation of image deriva-
tives, which is sensible to noise. Smoothing removes
some noise, at the cost of lost information and spatial
uncertainty. Edge detection algorithms have tried to
cope with these two constraints.
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Figure 1: Line, staircase and pulse profiles.

Edge definition. Physical edges correspond to dis-
continuities in the topological, geometrical or pho-
tometrical properties of the objects. They inform
about variations in reflectance, illumination (Stock-
ham, 1972), orientation or depth, to name some.
A line results from mutual illumination between

two objects in contact (Fig. 4.a).
The “usual” edge is called a step: it is a fronteer

between two regions. Due to the camera point spread
function, to noise, to the pixel’s size, to quantifica-
tion, and so on, the image is not identical to the
scene7. Still, step edges are localized where the first
order derivatives reach local extrema (that is, zero-
crossings of the second order derivative).
Most edge definitions do not consider the spatial

distribution of edge points: instead, the edge detec-
tors detect “edge points” rather than edges. The ba-
sic approach is to look for double step edges, that is,
pairs of inflexion points near each other. Depending
on their relative sign, they are denoted “staircase”
or “pulse” (Fig. 4.b and 4.c). T-junctions are also
encountered sometimes.

Properties of edge detectors. An edge detector uses
an image as input, and produces an edge map as out-
put. Additional information may be provided, such
as the segmentation, strength, orientation and scale
of the edges. Edge Detectors (ED) may be clas-
sified depending on their use of prior information.
General-purpose ED (without prior information) are
local operators, while contextual ED use prior infor-
mation about the edges, or about the scene. Most
published ED use no prior information. Both kind

7The map is not the territory (Korzybski, 1931).

of operators use the same 3-step scheme: differentia-
tion (computing the derivatives), smoothing (remov-
ing noise) and labeling (localization, and removing
“false” edges). Differentiation may happen befor or
after the smoothing.

Smoothing. Smoothing is a tradeoff between infor-
mation loss and noise reduction8. Thus, a smooth-
ing may be said to be “optimal” if one can quantify
both the information loss (edge conservation) and the
noise reduction. This is the aim of the regularization
theory.
To make the problem easier, one may choose a

function family (e.g. Gaussian filters, cubic splines,
Green functions, etc.). Then, a scale parameter (reg-
ularization parameter) may be choosen in order to op-
timize something. It makes people happy, and they
say the problem is well-posed, because an analyti-
cal computation is made possible, providing that we
know something about the “noise”.
Non-linear filters perform better than linear fil-

ters, especially with random white noise (Pitas and
Venetsanopoulos (1986), see also Perona and Malik
(1990)). Still, most ED use linear filters, and rota-
tionnal invariance is preferred. Using linear filters, it
is te same to smooth the image before or after the dif-
ferenciation. Using non-linear filters, the smoothing
must precede the differentiation.

Differentiation. The differentiation is the computa-
tion of the image derivatives, in order to localize the
edges. The most commonly used operators are the
gradient ∇⃗, the Laplacian ∇2 and second order di-
rectional derivatives (this last one is neither linear
nor invariant to rotations):

∇⃗I = {∂I
∂x
,
∂I

∂y
} (4)

∇2I =
∂2I

∂x2
+
∂2I

∂y2
(5)

∂2I

∂n⃗2
(6)

8Thus, some notions about the noise’s properties are
needed.
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where n⃗ is the gradient direction and ψ the corre-
sponding angle. One key assumption is that the gra-
dient is perpendicular ot the edge orientation.

Edge labeling. The basic idea is to threshold a plau-
sibility index on the output of the previous two steps.
The plausibility is often taken as the gradient modu-
lus. As this may produce thick edges, a skeletization
may be required. Canny also proposed to find local
maxima along n⃗.
For zero-crossing algorithms, one checks whether

there are positive and negative values in the neigh-
bourhood of a pixel. Then the question arises: what
value should be thresholded? some authors use the
gradient (Clark, 1989), other prefer the slope a the
zero-crossing location (Marr and Hildreth, 1980; Ziou
and Tabbone, 1993), which is quite noise-sensitive 9.
False edge do not only originate from noise (they

may be due to surface texture or image acquisition).
Most operators use a threshold to select the edges,
which breaks the edges. Hysteresis thresholding,
then, is an improvement (Canny, 1986). Another
kind of false edge is the “phantom edge”, which may
appear for thick edges when one looks at it at the
wrong scale.
One unsolved problem is the threshold selection,

which may be local or global. Most authors use a
trial-error process (needing a ground truth database).

Multiscale approaches. Marr and Hildreth (1980), af-
ter Rosenfeld and Thurston (1971), apply edge de-
tectors at various scales, and then combine the re-
sulting edges. The scale selection issue is replaced
by a combination problem. Moreover, in multiscale
approaches, the smoothing are computed after the
differenciation.
One key issue is to label the same edge, detected

at various scales, with the same label. Fine-to-
coarse and coarse-to-fine strategies have been pro-
posed (Canny, 1986; Bergholm, 1987). One original
approach is the one from Ziou and Tabbone (1993),
which is neither coarse-to-fine nor fine-to-coarse. The

9Using the gradient module and the zero-crossing image to
compute the edges has something to do with the joint bilateral
filtering idea of Petschnigg et al. (2004).

behaviour of a given edge is compared to 4 edge mod-
els (ideal, blurred, pulse, staircase) in scale space, and
two scales are selected for each edge.

Evaluation of detectors. A good ED produces prim-
itives (chaine, straight lines, circles, splines, etc.)
from which an object may be found with little com-
putation. Thus, it is a first step in a specific strategy
for object segmentation, and the evaluation should
address the object segmentation task. However, ex-
perimental evaluations of edge detectors have focused
on their specific failures in the subtask of “true edge”
detection.
Subjective judgments by humans “cannot be used

to measure the performance of detectors, but only to
establish their failure”. This is because human judg-
ments are unaccurate and depend on many strange
factors10 (however, see Heath et al. (1997)). Objec-
tive evaluation is much better, it just needs a subjec-
tive labelling of true edges (ground truth)11. Quanti-
tative indexes are proposed, for instance, in Kitchen
and Rosenfeld (1981) and Kanungo et al. (1995). The
main idea is to look for various a priori error types,
such as false detection, non-detection, double edges,
localization error, lack of continuity, etc.

Survey of edge detectors. The first operators were
limited to the differentiation (without filtering), us-
ing 3× 3 masks, such as ∆x and ∆y = ∆T

x :

∆x =

−1 0 1
−a 0 a
−1 0 1


where a = 1 for Prewitt’s mask, a = 2 for Sobel’s
mask. The Laplacian is implemented with:

∇ =

0 1 0
1 −4 0
0 1 0


The idea of parametric fitting is to use an a pri-

ori model of what an edge is (Hueckel, 1971; Baker

10For instance, Webb and Pervin (1984) found that subjec-
tive contours do not correspond to local discontinuities!

11:-)
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et al., 1998). A pixel’s neighbourhood is compared to
this model, and classified as an edge or not. Models
may be available for step edges, corners, etc. Haralick
proposed to use a function family (e.g. Tchebychev’s
polynomials) instead of a single model for the local
fitting (Haralick, 1984). One good point in paramet-
ric fitting is that the images are considered as sample
data, and the fit is in R2.
The alternative to parametric fitting is optimal en-

hancement: (1) performance criterion definition, and
(2) optimal filter selection (Marr and Hildreth, 1980;
Canny, 1986). The performance criterion should have
a mathematical expression, so as to select the filter
with an analytic derivation of the criterion’s con-
straints. For instance, Canny’s performance is re-
lated to the detector’s performance in the presence
of Gaussian white noise. Many authors followed
Canny’s path (Deriche, 1987; Sarkar and Boyer, 1991;
Pettrou and Kittler, 1991). Still, one weakness of
most ED is that they do not detect 2D edges, only
0D edge points.

Lines. A line is a local extremum of a grey level im-
age. They are detected by thinning algorithms, in bi-
nary (Smith, 1987) and grey-level images (Dyer and
Rosenfeld, 1979). Haralick’s technique of polynomial
fitting is also relevant here. Giraudon (1991) pro-
posed that a line is a negative local maximum of the
second derivative of the image (rather than a zero-
crossing in Marr and Hildreth (1980)). To some ex-
tend, we agree with this.

5. Gaussian-Based Edge-Detection Methods.
A Survey.

(Basu, 2002)

Edge detection and Gaussian filters. This pessimistic
paper reviews the main developments in edge-
detection techniques, using Gaussian filters, after
Marr and Hildreth’s seminal paper in 1980 (Marr and
Hildreth, 1980). The edge-detection problem is de-
fined, as usual, as having nothing to do with edges:
“ In a gray level image, an edge may be defined as a
sharp change in intensity. Edge detection is the pro-
cess which detects the presence and location of these

intensity transitions”. The ambiguity may be related
to the various applications of edge detection, from
image compression to visibility estimation. However,
the author claim that the main purpose of edge de-
tection is to mimic the Human Vision System (HVS):
it is supposed to be a low-level image processing step,
on the way to object detection.
Old operators, such as Sobel’s gradient, are very

sensitive to noise. Since then, the main trend use
linear operators which are derivatives of some sort
of smoothing filters, among which the Gaussian filter
is the most popular. These operators are described
in the present paper, while a more general overview
of edge detection can be found in Ziou and Tabbone
(1998).
The theoretical framework of edge detection seems

to be the signal detection theory: “true edges” are
presents in an image, and the challenge is to detect
them (and localize at their “true position”) without
missing any, and without false detections (that is,
locate “intensity changes where edges do not exist”).
Thus, one key issue in edge detection is the sensibility
to noise (robustness), where noise is defined as an
intensity transition which is not an edge. In short,
noise is a false edge12.
Based on the signal/noise framework, a problem

appears. The noise is expected to be removed by
bluring filters, at the cost of localization errors for
the remaining edges. Anyways, a consensus seems
to appear on the fact that smoothing an image on
a single scale is not a good idea. The key issue in
multi-scale edge detection, still, is how the response
of each filter are combined.
The Gaussian filter was proposed by Marr and

Hildreth, because they share a number of interst-
ing properties. First, it is a good candidate to
mimic some aspects of image processing in the HVS
(Enroth-Cugell and Robson, 1966) (see also Wandell
(1995)), which may include Difference of Gaussian
(DoG) operators. Marr and Hildreth demonstrated

12To my opinion, the edge/noise distinction is due to an
ill-defined problem. One way to make this clear is to split
between edges in the image and edges in the scene: edge-
detection should detect the object’s edges in the scene, not
in the image.
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that under some hypothesis, a Gaussian filter fol-
lowed by a Laplacien is close to a DoG.

Starting from the edge-detection as an optimiza-
tion problem, Canny derived an optimal edge de-
tector which turned out to be a first derivative of
a Gaussian function (Canny, 1986). One fine prop-
erty of Gaussian filters is that they do not create new
zero-crossing when moving from fine-to-coarse scales
(together with the Laplacian, see Yuille and Poggio
(1986)). Another fine property of the Gaussian filter
is that it is the only one to fulfill Eq. 7:

∆x∆ω ≥ 1

2
(7)

where ∆x and ∆ω are the variance of the filter in the
spatial and frequency domains, respectively.

Marr and Hildreth. The first insight from Marr and
Hildreth is the spatial coincidence: a relevant edge
should be detected at several spatial scales. This was
the rationale for a multiscale analysis in edge detec-
tion. They also argue that the Gaussian filter is a
good candidate for edge detection, thanks to Eq. 7.
Their basic proposal Marr and Hildreth (1980) was
that the edges produce zero-crossings in the second
derivative of the Gaussian filter. Given a Gaussian
filter Gσ:

Gσ(x, y) =
1

2πσ2
e−r2/2σ2

(8)

the Laplacian of Gaussian (LoG) is:

∇2 =
∂2G

∂x2
+
∂2G

∂y2
=
r2 − 2σ2

σ4
G (9)

One problem with such a detector is spatial accu-
racy, especially with corners and curves.

Marr and Hildreth claim that their operator have
support from biological vision, namely, from the DoG
model of Enroth-Cugell and Robson (1966)13. This
was another insight: rely edge detection in computer
vision to edge detection in human vision.

13However, vision science results support the DoG model
rather than the zero-crossing proposal.

The problem when equating edges with zero-
crossings is that it fails when the edges are close
to each other, and when the Signal-to-Noise Ratio
(SNR) is low. The classical problems are the shift of
the edge location (related to σ), missed edges, and
the detection of “false” edges (noise artifacts). In ad-
dition, combining LoG at different scales raise specific
problems:

• a given edge produce zero-crossings only in a lim-
ited range of scales;

• the zero-crossing of a given edge moves (spa-
tially) from one scale to another;

• noise also produces zero-crossings at small scales.

Three trends emerge from Marr’s seminal paper:

1. improving Marr’s approach, under linear con-
straints. The key paper here is Canny (1986);

2. improving Marr’s approach, focusing on biolog-
ical vision. The key paper here is Kennedy and
Basu (1997);

3. improving Marr’s approach, in the non-linear do-
main. The key paper here is Perona and Malik
(1990).

Linear approach. Canny proposed an edge-detection
operator from an optimization point of view, and
happened to find out that the first derivative of a
Gaussian filter was this optimal operator. His idea
was that an optimal edge-detector should be a good
detector, with good localization, and should give only
one detection for a single edge. This was derived
from an information theory point of view, comput-
ing the SNR, detection and localization for a given
edge, noise and detector (local filter). For step edges,
Canny’s optimal operator was similar to Marr’s LoG.
Canny’s proposal for the multi-resolution problem
was called feature synthesis, and is fine-to-coarse.
Two thresholds are included in an hysteresis thresh-
old; their value depend on the noise estimation.
Witkin (1983) initiated intensive studies about

scale-space localisation of zero-crossings. For in-
stance, Bergholm (1987) proposed a coarse-to-fine
method, called edge focusing. A strong Gaussian
smoothing detects edges, and these edges are tracked
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at finer scales in the vicinity of the higher level edges.
Thus, their localisation is more and more accurate,
and the final edges are not due to noise. Of course the
start and end scales have to be chosen; moreover, a
threshold is needed. Instead of zero-crossings, Gosh-
tasby records the sign of the pixels, after filtering
with a LoG operator (Goshtasby, 1994), which avoids
disconnected edges.The image analysis compares the
sign of a given pixel at consecutive scales. There is
no need for arbirary scale choice, the main problem is
the amount of memory needed. Instead of a full mul-
tiscale approach, Jeong and Kim (1992) compute, for
each location, the optimal size for a Gaussian filter
in terms energy miminization. They proposed a def-
inition of energy such that σ is large in flat regions,
and small in sharp regions. Unfortunately, the com-
putation is slow.

The LoG zero-crossings may be considered as a
guide to the true edges (Quian and Huang, 1996).
This was done using a parametric edge model, with a
SNR optimization14. In this approach, edge segments
are combined in a fine-to-coarse strategy. Then, Lin-
deberg (1998) proposed to compute two measures of
the edge strength: the magnitude of the gradient, and
a second index, to check if the gradient magnitude is
maximal in the gradient direction. A parameter γ is
added, to make scale selection dependent on the dif-
fuseness (sharpness) of the edge. Following this ap-
proach, Elder and Zucker (1998) include the sensor
properties, and make the scale a function of the sec-
ond moment of the sensor noise. The authors argue
that the classification between important and unim-
portant edges should not happen at such a low level
of image processing. Basu’s reply is that it should
happen somewhere.

Non-linear approach. The starting point of non-linar
approaches of edge detection with Gaussian filter is
the similarity between this filter and the heat equa-
tion; only, the spatial scale σ in the Gaussian filter
coresponds to time t in the diffusion equation. Based
on this analogy, Perona and Malik (1990) proposed a
multislcae image representation, based on anisotropic

14We call it the Tarel top-down approach.

diffusion. The heat diffusion coefficient is made de-
pendent on the image gradient. The main instability
of this method is the stairacse effect: an edge is split
in linear segments separated by jumps (Nitzberg and
Shiota, 1992); however it is rarely observed in prac-
tical situations.

Human vision approach. Basu (1994), followed by
Kennedy and Basu (1997), introduced a Line-Weight
Function (LWF) to enhance the edges. It is a combi-
nation of zero and second order Hermite functions,
which is equivalent to a Gaussian and its second
derivative. The operator was consistent with spa-
tial vision knowledge about edge detection (Young,
1987), as well as a mathematical derivation of con-
trast sensitivity in the HVS (Stewart and Pinkham,
1991).
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