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Abstracts of reference papers in the field of visual attention and visual saliency are proposed. Personal
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1. A brief and selective history of attention

(Tsotsos et al., 2005)

Descartes’ hypothesis that attention is controlled
by the pineal body (Descartes, 1649) is not consid-
ered any more1. Many alternative models have been
proposed since, both theoretical and computational,
to describe what appeared to James (1890) as an ob-
vious concept: “Everyone knows what attention is.”

The first psychophysical studies on attention inves-
tigated the span of visual attention, and von Helmoltz
(1896/1989) soon proposed the concept of covert at-
tention: the deployment of visual attention may be
independent of eye movements. While early ap-
proaches considered attention as a top-down guided
internal state, the Gestalt-theory tend to consider
the focus of attention as a bottom-up computation
(Köhler, 1947).

Sechenov’s neuro-physiological findings that inhi-
bition from the central nervous system may be a key
process in attention control (Sechenov, 1863/1965)
gave rise, more than one century later, to a num-
ber of computational models of attention, including
Tsotsos’ one (Tsotsos et al., 1995). Inhibition was

1As far as I know, the International Journal of Paper
Abstracts does not exist.

considered as a theoretical level by Pavlov as an at-
tention process (Pavlov, 1927): an unexpected stim-
ulus tends to capture attention (facilitation) (see also
Itti and Baldi (2009)), while stimuli in the near cor-
tical areas are faded by an inhibitory process.

Cognitive psychology proposed the first compre-
hensive model of attention (Broadbent, 1958), de-
scribed as a biological trick to cope with the limited
capacity of the information process. This bottom-
up theory of attention raised a discussion about the
stage where the selection happens: early in the infor-
mation pipeline (Broadbent, 1958), or latter in the
selection process ? (Norman, 1968). Treisman pro-
posed a half-way between these two options, includ-
ing an attenuation of unattended signals (Treisman,
1964). Shiffrin and Schneider (1977) split the infor-
mation processes between serial processes, which are
conscious, slow and limited in resources, and paral-
lel processes, which are unconscious, fast and virtu-
ally unlimited in resources. One interesting insight
of their work is to propose that practice may move a
task from the serial to the parallel process.

Milner (1974) was among the first to propose that
the attention not only selects relevant features, but
also send feedback to the early stages of the infor-
mation processing. This framework was then imple-
mented in Grossberg’s Adaptive Resonance Theory
(Grossberg, 1975). Evidence from neuro-physiology
showed since that the attention state impacts, in a
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top-down manner, the activation state of the percep-
tual circuitry, and it became clear that such feedback
may happen at any stage of the information pipeline.

Inhibition Of Return (IOR) refers to a bias against
attention focus on areas previously attended, which
may contribute to optimize the visual search sam-
pling (Posner et al., 1985).

Most computational models of visual saliency orig-
inates from the Feature Integration Theory (FIT) of
spatial visual attention (Treisman and Gelade, 1980).
The main purpose of this model was to explain the
difference in performance between pop-out stimuli
and conjunction search. Bergen and Julesz (1983)
also showed in their texton theory that some fea-
tures allow fast discrimination between a target and
surrounding outliers (pop-out), while other don’t (in
the latter case, the discrimination time is a function
of the number of outliers). According to the FIT,
a unique saliency map (“master map”) gathers in-
formations from separate feature maps about salient
locations. Treisman and Gelade also addressed the
binding issue (Rosenblatt, 1961): the unified repre-
sentation of an object implies that the object’s fea-
tures (color, shape, location, etc.) are bind together
in some way. Koch and Ullman (1985) proposed since
a computational implementation of the FIT, where
the saliency map is a weighted sum of the feature
maps. A Winner-Takes-All competition between the
salient regions leads to the selection of the current
focus of attention, and the IOR is implemented in
order to select the next salient location.

Although most models of visual attention are mod-
els of covert attention, eye tracking studies have ex-
tensively addressed the link between covert and overt
attention, through eye movements, showing a strong
top-down dependence (Yarbus, 1967). Posner (1980)
linked overt and covert attention into a unique frame-
work, through the three functions devoted to the at-
tentional system: alerting, orienting and search.

2. Shifts in selective visual attention: towards
the underlying neural circuitry

(Koch and Ullman, 1985)

Koch & Ullman propose a biologically plausible
model for the shift of selective visual attention. Ele-
mentary features, such as color, orientation, direction
of movement, disparity, etc. are coded in topograph-
ical maps. A central representation, which is not to-
pographic, contains the properties of the selected fo-
cus of attention. The major rules, in order to select
the focus of attention from the feature maps, is im-
plemented using a WTA network. Inhibiting the cur-
rent focus of attention (Shiffrin and Schneider, 1977)
leads to a shift towards the next most salient loca-
tion. Other rules are discussed, such as proximity
and similarity.

The standard paradigm for detection, localization
and recognition of objects includes two steps: a pre-
attentive one, where the entire visual field is pro-
cessed in parallel, and an attentive one, which pro-
cesses the information in the focus of attention. high
level processing is associated with the second step,
called selective attention.

Treisman and Gelade (1980) showed that visual
search for targets defined by a single feature (e.g. red
vs. green) occurs in parallel (pop-out), whereas tar-
gets defined by the conjunction of several features
(e.g. a red horizontal bar) requires serial process-
ing, scanning the distractors in the visual field. This
results in constant search latency (vs. number of dis-
tractors) in single feature search, and linear search
latency in conjunction search. Similar results were
shown by Julesz (1984) about texture discrimination:
only a limited set of texture features (textons) are de-
tected in parallel. Reported elementary features are
color, orientation of line segments and curvature.

The questions that arise are: what operations ap-
ply to the selected location? how is this location se-
lected?

The problem. Koch and Ullman (1985) suggest that
selective visual attention operates on topographic
cortical maps called early representation, coding for
various elementary features such as orientation, color,
etc. Local connections in these maps (or before) im-
plement lateral inhibition, which result in contrast
feature selection: areas where the feature itself is con-
stant are not selected, whatever the absolute value.
These maps may well exist at different spatial scale
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(Campbell and Robson, 1968); they code feature con-
spicuity. Then, the area in the focus of attention is
processed in a non-topographic (conscious ?) repre-
sentation.

From this framework, two problems arise: (1) the
spatial selection should select only one area at a time.
(2) spatial accuracy: how biological system may keep
the topographic information across the various fea-
ture maps, in order to select the focus of attention?
(3) how does it work to shift from a location to an-
other? Two biologically plausible mechanisms are
proposed, computing the feature conspcicuity at a
given location (saliency map) and selecting the most
active unit in such a map (WTA).

The saliency map. The feature maps code for the
conspicuity within a feature dimension. The (hypo-
thetical) Saliency Map (SM) combines information
from the conspicuity maps into a global measure of
conspicuity. Saliency rates how different a location
is compared to its surround. Of course, top-down
modulation is possible.

Winner Takes All. The next step is the attention
selection in the saliency map. Two implementation
are proposed for a WTA network, which selects the
most active unit in the SM (biological maximum).
Then, a second network directs the properties of the
selected area in the central representation.

The simplest WTA implementation is a mutual in-
hibitory network: every unit inhibit every other unit
(Hadeler, 1974). In the end, only the higher units are
non-zero. However, this model does not converge,
and needs many connexions. An alternative model
may be derived from Hadeler’s equation:

∂yi

∂t
= yi(xi − Σjxjyj) (1)

where xi denotes the SM, and yi the WTA map. The
static solution is (if xi is constant over time):

yi =
yi(0)exit

Σjyj(0)exjt
(2)

As ∀t, Σjyj = 1, y may be seen as a probability
distribution. Note that the convergence speed de-
pends on the SM activity. Computationally, only one

fast computing unit is needed, in order to compute
Σjxjyj , which may be seen as the network activity.
If the SM changes over time, the key issue is to com-
pare the time constants of the two processes: changes
in the SM, and changes in the WTA.

The authors proposed another, faster implementa-
tion of the WTA. Two pyramidal networks are mixed.
The first one selects, at each level, the stronger among
the competing units (knock-out competition). How-
ever, the relevant information is not the value of the
maximum, but its location. Thus, an auxiliary pyra-
mid selects the location of the selected unit: an aux-
iliary unit is activated if it receives activation from
both the corresponding main unit, and the auxiliary
unit at the next higher level.

The last step is to copy the information under focus
(the feature maps content at the selected location)
into the central representation. This may be seen as
a spotlight inspection (Posner, 1980). No implemen-
tation is proposed for this “copy” process.

Shifting the focus of attention. The shift of attention
takes time, and the delay depends on the angular dis-
tance. Several implementations are possible, such as
inhibition feedback from the central unit, or local in-
hibition at the SM level after time (note that both
mechanisms let the feature maps unchanged). Koch
and Ullman (1985) emphasize the fact that with their
second WTA architecture (pyramidal), the computa-
tion of the next focus of attention is shorter when the
location is closer.

The proposed mechanisms explain both parallel
and serial search. When the target differs from the
distracting objects by one property (a red object
among green objects), its locations pops out in the
feature map, and then in the SM. When a conjunction
is needed, no location pops-out in the corresponding
feature maps, and the focus of attention is almost
randomly selected.

The proposed mechanism also explains some as-
pects of visual masking (camouflage). Blending an
object with its background, or adding conspicuous
objects around, both lower the SM activity at target
location.
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Shifting rules. Two additional mechanisms are pro-
posed for the control of the attentional shift, both
related to the Gestalttheorie. The proximity prefer-
ence may be implemented by enhancing the locations
close to the current focus of attention in the SM, with
a factor depending on the distance. The similarity
preference is the fact that the features contributing
to the selection of the current focus of attention are
enhanced when selecting the next focus. It may be
implemented by increasing the conspicuity of these
feature maps.

Fusion. In the central representation, the informa-
tion coming from the feature maps are glued into a
single object representation. When objects are not
in the focus of attention, the features are glued on
a random basis, leading to illusionary conjunctions
(Treisman and Schmidt, 1982).

3. Computational modeling of visual atten-
tion

(Itti and Koch, 2001)

Most computational models of visual attention fo-
cus on the bottom-up image-based control of atten-
tion. Five trends emerge: (1) Visual saliency strongly
depends on the surrounding context. (2) Using a
unique saliency map efficiently models the bottom-up
attention control. (3) Inhibition of return (IOR) is a
key issue in attention modeling. (4) Covert attention
(saliency) and overt attention (eye movements) are
strongly linked, but their interaction still is a chal-
lenge for computational models. (5) Scene under-
standing and object recognition constrain the atten-
tion selection.

Covert attention directs the gaze toward objects of
interest. The current framework is that the selection
of salient items uses both bottom-up, image-based
saliency cues, and top-down task-dependent cues.
The bottom-up selection is massively parallel, invol-
untary, rapid and automatic (Shiffrin and Schneider,
1977); however it is not completely straightforward,
in the sense that the local surround strongly modu-
lates this selection, through center-surround mecha-
nisms at different spatial scales. Top-down attention,
in contrast, is costly in cognitive resources.

The behaviorally relevant part of visual informa-
tion is selected and reaches the short term memory
(Sperling, 1960). In Broadbent’s framework, it is a
way to cope with the limited processing capacity of
the nervous system (Broadbent, 1958).

Binding is a key function of top-down feedback,
and overall of conscious representation. Attention
not only selects a region of interest (the where (dor-
sal) visual stream), it also enhances the object’s rep-
resentation (the what (ventral) visual stream).

The aim of this review is biologically plausible
computational models of bottom-up (covert) atten-
tion. The key concept of most of these models is
the saliency map (Koch and Ullman, 1985), and thus
originates from Tresiman’s Feature Integration The-
ory (FIT) (Treisman and Gelade, 1980). Top down
attention is not reviewed, due to the lack of compu-
tational models.

Pre-attentive computation of visual features. Early
visual features are computed in the first processing
stages of the visual pipeline. They may code inten-
sity contrast, color oponency, orientation, direction
and velocity of motion, stereo disparity, etc. (Wolfe
and Horowitz, 2004), at several spatial scales.

We are far less sensitive to what happens outside
the focus of attention, which may be set in terms of
higher psychophysical thresholds. Models have been
proposed in terms of enhanced gain, biased compe-
tition, intensified competition (Winner Takes All2),
enhanced spatial resolution, modulated background
activity, stimulus strength and noise, etc.

The early stages of visual processing are usually
described in terms of center-surround filters (Dif-
ference of Gaussian, DoG) (Wandell, 1995). Simi-
larly, orientation selection is modeled through Ga-
bor wavelets(Daugman, 1984). The main result is
that the visual system is sensitive to feature con-
trast rather than absolute feature levels. Interest-
ingly, closed contours were found to be enhanced in
V1.

2A WTA neural network is nothing more than a maximum
detector, which links neuroscience to mathematical morphol-
ogy (Serra, 1982, 1988).
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Once the feature maps are computed, they are
weighted in the saliency map. Top-down control
may change the weights (visual search, learning, etc.)
(Nothdurft, 2000). One important result is the lack
of interaction across features. This result is linked
to the low performance in searching for conjunctive
targets (Treisman and Gelade, 1980; Wolfe, 1996).
There seems to be no competition either between spa-
tial scales.

Visual Saliency. Early visual processes may be seen
as a filter bank, including contextual modulation. In
Koch & Ullman’s model, the feature maps feed a
saliency map, which maximum is seen as the focus of
attention. It should be noted that the rest of the map,
in this model, does not model anything. The model
only predicts spatial pre-attentive selection (where).

An alternative model to the FIT is proposed by
Wolfe et al. (1989); Wolfe (1996, 2007) for visual
search. It states that parallel computation in the fea-
ture maps help the serial process to select the Focus
of Attention. Interestingly, the saliency is seen as a
probability: the likelihood that the target is present
at a given location.

Tsotsos et al. (1995) used a hierarchy of feature
extraction, bottom-up and feed-forward, followed by
selective tuning feedback. The salient areas propa-
gate back some kind of inhibition around them in
terms of feature sensitivity. However, its seems that
these feedback does not change the choice of the spa-
tial focus of attention.

Milanese et al. (1994) proposed a model which is
not really biologically-inspired. Relaxation optimizes
“energy” in several ways: (1) biasing towards regions
where several feature maps are excited; (2) group-
ing salient points into clusters, (3) minimizing “en-
ergy” in the feature maps; (4) maximizing the dy-
namic range of each map.

Itti’s model (Itti et al., 1998; Itti and Koch, 2000)
uses surround modulation to select salient areas in
each feature map. This is implemented with a DoG
in Itti and Koch (2000), followed by a half wave rec-
tification (?). in order to remove non-salient areas.
This model was tested in pop-out, conjonctive search
tasks (Itti et al., 1998) and search asymetries (Itti
and Koch, 2000). The effect of noise on the saliency

map was also explored (Itti et al., 1998).
In contrast to these models, Desimone and Duncan

(1995) proposes that the focus of attention may be
selected without explicit saliency map. Top-down se-
lection enhances the more relevant feature maps, and
inhibit the less relevant. Hamker (1998, 2004) pro-
posed a computational model derived from this idea.
However, as in Wolfe’s Guided Search, the feature
biases computation needs a search task.

Inhibition of Return. The saliency map tries to
model covert attention: where the focus of attention
will shift next? However, covert and overt attention
(eye movements) are strongly linked.

The scan-path is computed in (Koch and Ullman,
1985) from the saliency map with successive inhibi-
tions of the most salient areas. This is a simulation
of the biological Inhibition of Return (Klein, 2000),
however with important differences. For instance, bi-
ological IOR is object based, and follows moving ob-
jects.

Attention and Recognition. The previous models
may well predict the visual behavior in the second af-
ter the presentation of a new scene. To ask for more,
a mixed model, including top-down and bottom-up
processes as well as overt and covert attention is
needed.

Several models try to predict the visual scan-path.
Schill et al. (2001) proposes that the focus of at-
tention selects informative areas in order to lower
ambiguity. Ryback et al. (1998) also proposes a
model with both bottom-up and top-down processes.
Bottom-up selects the where, while top-down selects
the what of the where. Deco and Schumann’s model
first selects a set of where at a coarse scale, then
these locations are processed in a what manner (ob-
ject recognition) at finer and finer scales, until an ob-
ject is found Deco and Schumann (2000). Stark et al.
(2001) states that the control of eye movements is
mostly top-down (scan-path theory). The cognitive
model of what we expect is the basis of our percepts.
Note that all these complex models of the visual be-
havior fail in finding a biologically plausible frame-
work.
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4. A model of saliency-based visual attention
for rapid scene analysis

(Itti et al., 1998)

A computational model of visual attention is pro-
posed, based on a biologically plausible architecture
(Koch and Ullman, 1985) related to the FIT (Treis-
man and Gelade, 1980). Other architectures have
been proposed, such as dynamic routing (Olshausen
et al., 1993). Koch and Ullman’s model was also used
by previous authors (Milanese et al., 1995; Baluja and
Pomerleau, 1997). This model represents the bottom-
up saliency, and does not requires any top-down guid-
ance to shift attention, in contrast with Wolfe (1994),
which is a model of visual search, including a repre-
sentation of the target to enhance the relevant fea-
tures (see also Gao and Vasconcelos (2005); Simon
et al. (2008)). It is a fast parallel method for the
selection of a small number of regions of interest, to
be analyzed by more complex (and time-consuming)
processes, such as object recognition.

Feature maps. from 640×480 images, dyadic Gaus-
sian pyramids are built (Adelson, 1982), in order
to implement the multi-scale center-surround pro-
cesses in the early visual system. The Difference of
Gaussian (DoG) compute center-surround operators
(to compute the difference, an interpolation of the
coarser scale is needed). In the following, c is the
scale and δ is the scale difference in the DoG; the
across-scale difference is denoted ª. The authors use
c ∈ {2, 3, 4} and δ ∈ {3, 4}.

An intensity image is first obtained from I = (R +
G + B)/3, and an intensity pyramid is built from.
The r, g and b channels are normalized by I, except
that they are set to 0 when I ≤ Imax/10. Four color
channels are created, leading to four color pyramids:

• R? = max(0, r − (g + b)/2) (red)

• G? = max(0, g − (r + b)/2 (green)

• B? = max(0, b− (r + g)/2 (blue)

• Y ? = max(0, (r + g)/2 + |r − g|/2− b) (yellow)

Center-surround differences are computed on the
intensity channel: I(c, s) = |I(c) ª I(s)|. Thus, the
ON and OFF channels of biological vision are mixed.

Color features are computed using red/green and
blue/yellow opponencies (Gegenfurtner and Kiper,
2003). Two channels are computed:

• RG?(c, s) = |(R?(c)−G?(c))ª (G?(s)−R?(s))|
• RG?(c, s) = |(B?(c)− Y ?(c))ª (B?(s)− Y ?(s))|

Note that most of the time (when the max is > 0),
R?−R? = 3/2(r−g), and B?−Y ? = 2b−3g/2−r/2
(or 2b− 3r/2− g/2, depending on the sign of r − g).

Orientation features are computed using oriented
Gabor pyramids, based on the intensity channel.
Then,

• O?(c, s, θ) = |O(c, θ)ªO(s, θ)|
Finally, 42 feature maps are computed: 6 for in-

tensity, 12 for color and 24 for orientation (θ =
0◦, 45◦, 90◦ and 135◦).

Saliency map. To combine the feature maps in a sin-
gle saliency map, Itti et al. (1998) propose a 3-steps
normalization operator N, to enhance rare strong
peaks, and suppress noise. The first step is to nor-
malize the current map to a fixed range (say [0...1]).
Then, the average m̄ of all local maxima mi < 1 is
computed. Finally, the map is multiplied by (1−m̄)2.
The authors claim that this mechanism coarsely repli-
cates lateral inhibition (Cannon and Fullenkamp,
1996).

The normalized maps are summed up across scale
into global maps: one for intensity, two for color and
four for orientation. The color maps (RG? and BY ?)
are added in a unique color map, and the orientation
maps are normalized again into a unique orientation
map. Finally, the 3 intermediate conspicuity maps
are normalized, then summed up in the Saliency Map
(SM).

Focus of Attention. The Focus of Attention (FOA) is
the maximum of the SM. It is implemented as a 2D
layer of integrate and fire neurons SM?, at scale 4 of
the image pyramid, fed by the SM and feeding a WTA
network. the SM pixels send a continuous signal to
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SM? neurons, proportional to their activity. When
a threshold is reached, the SM? neurons fire to the
WTA, and are reseted to 0. In parallel, the WTA
computes the most active location (the FOA). When
a new FOA is selected, all WTA neurons are reseted,
and a local inhibition is activated in the SM around
the current FOA (inhibition of return).

The FOA was implemented as a disc of radius 80
pixels. Time constants were set so as to jump from
one location to the next one in 30-70 ms, and the
inhibition time last 500-900 ms.

Results. The model was compared to another ap-
proach: rating the entropy (Spatial Frequency Con-
tent, SFC) as a measure of visual saliency. The
proposed approach seemed very robust to additional
noise, while the SFC approach wasn’t.

The more interesting result is the reproduction
of pop-out for laboratory tasks, while conjunctive
search needed search time which linearly increased
with the number of distractors. In natural images,
the SM was quite similar to the SFC, except in some
extended areas with high SFC and low saliency, where
the saliency map seemed more relevant.

5. Guided Search: an alternative to the Fea-
ture Integration model for visual search

(Wolfe et al., 1989)

Searching for a target among distractors is easier
for some stimuli than for others. When the target
differs from the distractors by a unique feature, the
Reaction Time (RT) is almost independent from the
number of distractors (Treisman and Gelade, 1980),
while for conjunctive searches, RT linearly depends
on the number of distractors (e.g. a T among Ls).
Moreover, for “serial” search, the RT when a target is
present is expected to be half the RT when no target
is present.

Treisman’s FIT is the main model to explain the
difference between serial and parallel visual search
(Treisman and Gelade, 1980; Treisman, 1986). Two
steps are proposed: a pre-attentive, massively par-
allel one computes basic feature maps, and a serial

one is needed for conjunction search. Julesz’s tex-
ton model (Julesz, 1984) shares many features with
Treisman’s one.

One problem with these models is that the parallel
computation has little influence on the serial search
process. Wolfe et al. (1989) conducted several vi-
sual search experiments, suggesting that visual search
may be guided by informations from the parallel pro-
cesses.

A first series of experiments resulted in conjunctive
search (color + form, color + orientation) with very
flat slopes in the “RT vs. set size” function. The
difference with Treisman’s results was investigated in
a second series of experiments. The conclusion was
that some changes are needed in the FIT. Wolfe pro-
posed that the parallel process guides the spotlight of
attention towards likely targets. This model is con-
sistent with Hoffman (1979).

Unlike Treisman’s model, the guided search pre-
dicts that triple conjunctions are easier to detect than
double conjunction, that is, lead to flatter slopes in
the RT vs. set size function, which was found exper-
imentally.

Experiments 1-3: conjunction search tasks. Three
conjunction search tasks were tested: Color × Form,
Color×Orientation and Color× Size. In the first one
for instance, targets were red Os, while distractors
were green Os and red Xs. In all three experiments,
the slopes of RT vs. set size were much lower than the
Treisman’s experiment (Treisman and Gelade, 1980).
In addition, RT vs. set size data were not linear in
the Color × Orientation task (may be due to side ef-
fects, such as density and image border). The Color
× Size experiment was consistent with Treisman and
Gormican (1988).

Experiment 4: T vs. Ls. In contrast with these
conjunction search experiments, a search experiment
used T as target and Ls as distractors, both with 0◦,
90◦, 180◦ or 270◦ rotations, with results consistent
with the Feature Integration Theory. Wolfe’s under-
standing is that the feature maps, in this case, do not
covey relevant information to the serial process.

Experiment 5 and 6: practice effects. Two experi-
ments were conducted in order to control possible
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practice effects. In one case (conjunctive search), an
effect of practice was found for blank trials, not for
target trials. Conversely, for T vs. L searches, a prac-
tice effect was found for target trials, not for blank
trials. However, one may argue that a different statis-
tical analysis ma have found stronger practice effects
in all situations.

Experiment 7 and 8: stimulus salience. Treisman
and Gormican (1988) argued that less salient targets
and distractors lead to stepper slopes in the RT vs.
set size graphs, which was also found in Wolfe’s ex-
periments (under mesopic light levels), however with
slopes lower thane expected. Anyhow, it appears that
the target and distractor’s saliency plays a role in de-
termining whether the search for conjunction is serial
or parallel, which enforces the Guided Search hypoth-
esis.

The Guided Search model. Wolfe’s understanding of
the data was that the FOA can be guided by pre-
attentive, parallel mechanisms, which select candi-
date targets. Thus, eye movements are not random,
they are directed towards the most likely target. If
the signal from the parallel process is high (com-
pared to noise), the target is found quickly. Note
that in Guided Search, the difference between serial
and parallel search is only quantitative. Wolfe notes
that even in Treisman’s approach, the parallel pro-
cess selects some information: fixations do not ex-
plore blank areas!

Guided Search is implemented with an addition
of the feature map selection (with reference to the
known target), followed by the selection of the max-
imum value of this target-based saliency map. The
psychological meaning is that some top-down process
(selection of the relevant features) reaches the parallel
process. Visual performance is explained by noise in
the parallel 7→ serial information transmission. The
parallel process follows on during all the stimulus du-
ration, so that threshold may be overtaken during
visual search.

The Guided Search explains the difference between
conjunctive search and T vs. L searches. It also
predicts that conjunctive search with 3 features are

easier than with 2 features, which was demonstrated
in an additional experiment.
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