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Abstract Free-space detection is a primary task for car
navigation. Unfortunately, classical approaches have diffi-
culties in adverse weather conditions, in particular in day-
time fog. In this paper, a solution is proposed thanks to a con-
trast restoration approach on images grabbed by an in-vehicle
camera. The proposed method improves the state-of-the-art
in several ways. First, the segmentation of the fog region
of interest is better segmented thanks to the computation of
the shortest routes maps. Second, the fog density as well as
the position of the horizon line is jointly computed. Then, the
method restores the contrast of the road by only assuming
that the road is flat and, at the same time, detects the vertical
objects. Finally, a segmentation of the connected component
in front of the vehicle gives the free-space area. An experi-
mental validation was carried out to foresee the effectiveness
of the method. Different results are shown on sample images
extracted from video sequences acquired from an in-vehicle
camera. The proposed method is complementary to existing
free-space area detection methods relying on color segmen-
tation and stereovision.
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1 Introduction

Free-space detection is a fundamental task for autonomous
or automated vehicles, since it provides the area where the
vehicle can navigate safely. In structured environments, the
free-space area is mainly composed of the road surface.
This area is either detected based on color [1] or texture
[2] segmentations, deduced from stereovision-based obsta-
cles detection [3] or is a combination of both approaches
[4]. However, all these methods have difficulties in foggy
weather. Indeed, the contrast is reduced with the distance,
which hinders classical segmentation techniques assuming
that the color or the texture of the road is constant, or stereo-
vision techniques based on local correlation from working
properly. To solve this problem, one may restore the contrast
of the image. Classical free-space detection techniques can
then be applied to the restored image.

Methods which restore the contrast of images grabbed
onboard a moving vehicle under bad weather conditions are
hardly encountered in the literature. Indeed, some techniques
require prior information about the scene [5]. Others require
dedicated hardware in order to estimate the weather condi-
tions [6]. Some techniques rely on two images with different
fog intensities and exploit the atmospheric scattering to ade-
quately restore the contrast [7]. Techniques based on polari-
zation can also be used to reduce haziness in the image [8].
Unfortunately, these methods require two differently filtered
images of the same scene. Finally, Narasimhan and Nayar
[9] proposed to restore the contrast of more complex scenes.
However, the user must manually specify a location for sky
region, vanishing point and an approximation of distance
distribution in the image. Recently, different methods have
been proposed which rely only on a single image as input
and might be used onboard a moving vehicle. Hautière et al.
[10] first estimate the weather conditions and approximate a
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3D geometrical model of the scene, which is inferred a pri-
ori and refined during the restoration process. The method is
dedicated to in-vehicle applications. Tan [11] restores image
contrasts by maximizing the contrasts of the direct transmis-
sion while assuming a smooth layer of airlight. Fattal [12]
estimates the transmission in hazy scenes, relying on the
assumption that the transmission and surface shading are
locally uncorrelated. These methods are computationally
expensive: 5–7 min with a 600 × 400 image on a double
Pentium 4 PC for Tan [11] and 35 s with a 512 × 512 image
on a dual core processor for Fattal [12]. Based on the prin-
ciple proposed in Tan [11], i.e., the inference of the atmo-
spheric veil, He et al. [13] as well as Tarel and Hautière [14]
have proposed improved algorithms; the latter [14] is fast
enough to be used in real-time applications. The problem of
these methods is that the depth map produced by their atmo-
spheric veil inference may be erroneous due to the ambiguity
between white objects and fog. A novel approach combin-
ing fog detection and contrast restoration is proposed in [15]
which is applied to the enhancement of driver assistance sys-
tems. Finally, a contrast restoration method able to deal with
the presence of heterogeneous fog is proposed in [16].

To solely detect the free-space area, we propose another
approach, taking advantage of fog presence. Following an
enhanced fog detection and characterization method, the con-
trast of the images is restored assuming a flat world. The
intensity of all the objects which do not respect this assump-
tion thus becomes null in the restored image, which leads to a
very efficient segmentation of the free-space area. This seg-
mentation method is thus inspired from contrast restoration
techniques but does not constitute a real contrast restoration
method. Indeed, only the road is correctly restored.

The following of this article is organized as follows. In
Sect. 2, we recall a well-known model of daytime fog, which
is used to detect its presence in highway images and to esti-
mate its density. The method is described in Sect. 3 and a
sensitivity analysis is carried out which leads to propose
improvements of the method in Sects. 4 and 5. In Sect. 6,
we explain the principle of the flat world contrast restoration
method, which is dedicated to the road, and explain how it
is used to properly detect the free-space area. Finally, exper-
imental results are given in Sect. 7 and discussed in Sect. 8.

2 Modeling fog effects in images

2.1 Koschmieder’s Law

The method proposed in this study is based on a physics
law governing the attenuation of brightness contrast by the
atmosphere. This law, derived by Koschmieder, is given by:

L = L0e−βd + L∞(1 − e−βd) (1)

It relates the apparent luminance L of an object located at
distance d to the luminance L0 measured close to this object
at a time when the atmosphere has an extinction coefficient
β. L∞ denotes the atmospheric luminance. On the basis
of this equation, Duntley developed a contrast attenuation
law [17], stating that a nearby object exhibiting contrast C0

with the background will be perceived at distance d with the
following contrast:

C = (L0 − L∞)

L∞
e−βd = C0e−βd (2)

This expression serves as a base to define a standard dimen-
sion called “meteorological visibility distance” Vmet, i.e., the
greatest distance at which a black object (C0 = −1) of a suit-
able dimension can be seen in the sky on the horizon, with
the threshold contrast set to 5% [18]. It is thus a standard
dimension that characterizes the opacity of a fog layer. This
definition yields the following expression:

Vmet = − 1

β
log(0.05) � 3

β
. (3)

3 Fog detection and characterization

In this section, a method to compute the extinction coeffi-
cient β using a single camera behind the vehicle windshield
is recalled from [19,20].

3.1 Flat world hypothesis

In the image plane, the position of a pixel is given by its (u, v)

coordinates. The coordinates of the optical center projection
in the image are designated by (u0, v0). In Fig. 1, H denotes
the height of the camera, θ the angle between the optical axis
of the camera and a horizontal plane, and vh the horizon line.
The intrinsic parameters of the camera are its focal length
fl , and the horizontal size tpu and vertical size tpv of a pixel.

We have also made use herein of αu = fl
tpu

and αv = fl
tpv

, and
have typically considered: αu ≈ αv = α. The hypothesis of
a flat road is adopted, which makes it possible to associate a
distance d with each line v of the image:

d = λ

v − vh
if v > vh, where λ = Hα

cos θ
. (4)

3.2 Camera response

Let us denote f the camera response function, assumed to
be linear, which models the mapping from scene luminance
to image intensity by the imaging system, including optic as
well as electronic parts. In a foggy scene, the intensity I of
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Fig. 1 Modeling of the camera
within its environment; it is
located at a height of H in the
(S, X, Y, Z) coordinate system
relative to the scene. Its intrinsic
parameters are its focal length f
and pixel size t . θ is the angle
between the optical axis of the
camera and the horizontal.
Within the image coordinate
system, (u, v) designates the
position of a pixel, (u0, v0) is
the position of the optical center
C and vh is the vertical position
of the horizon line
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a pixel is the result of f applied to (1):

I = f (L) = f (L0)e
−βd + f (L∞)(1 − e−βd)

= Re−βd + A∞(1 − e−βd) (5)

where, R is the intrinsic intensity of the pixel, i.e., the inten-
sity corresponding to the intrinsic luminance value of the
corresponding scene point and A∞ is the background sky
intensity.

3.3 Recovery of fog parameters

Following a variable change from d to v based on (4), (5)
thus becomes:

I = A∞ + (R − A∞)e
−β λ

v−vh (6)

By twice taking the derivative of I with respect to v, one
obtains the following:

∂2 I

∂v2 = βϕ(v)e
−β λ

v−vh

(
βλ

v − vh
− 2

)
(7)

where, ϕ(v) = λ(R−A∞)

(v−vh)3 . The equation ∂2 I
∂v2 = 0 has two

solutions. The solution β = 0 is of no interest. The only
useful solution is:

β = 2(v1 − vh)

λ
(8)

where v1 denotes the position of the inflection point of I (v).
Thus from v1, the parameter β of Koschmieder’s law is
obtained. Finally, thanks to v1, vh and β values, the values of
the other parameters of (5) are deduced through use of I1 and
∂ I
∂v |v=v1

, which are respectively the values of the function I
and its derivative in v = v1:{

R =I1 − (e2 − 1)
(v1−vh)

2
∂ I
∂v |v=v1

A∞=I1 + (v1−vh)
2

∂ I
∂v |v=v1

(9)

where, R is the intrinsic intensity of the road surface.
To originally implement this method, we measure the

median intensity on each line of a vertical band in the image.

As this band should only take into account a homogeneous
area and the sky, we identify a region within the image which
displays minimal line-to-line gradient variation when crossed
from bottom to top using a recursive region growing algo-
rithm. If such a region can be found, fog is detected. A vertical
band is then selected in the segmented area. Thus, we obtain
the vertical variation of the intensity in the image, and deduce
β by computing the maximum of the first derivative of this
profile.

3.4 Method discussion

The fog detection method presented in the previous para-
graph has two major limitations which are now discussed.

3.4.1 Segmentation of the region of interest

First, the method is sensitive to the presence of obstacles
such as a preceding vehicle which might prevent the region
growing algorithm to cross the image from bottom to top.
However, as long as a vertical path exists in the image, the
region growing is able to circumvent the obstacles, which
makes it possible to detect fog presence. A temporal filter can
also be used if fog is temporary not detected. An example of
temporal filter dedicated to our problem is proposed in [21].

Another limitation is related to the method of segmenta-
tion of the region of interest (ROI). As said previously, this
method identifies a region within the image which displays
minimal line-to-line gradient variation when crossed from
bottom to top, using a region growing algorithm which aims
at segmenting part of the road and the sky regions. In particu-
lar, a hard threshold is used to set the maximum allowed line-
to-line gradient. This threshold is difficult to set depending
of the image. Moreover, the method fails in case of highly
textured road surfaces. Then, in case of a strong transition
between the road and the sky, the region growing is not able
to segment the sky. Finally, the criterion to stop the region
growing algorithm is too strong. Indeed, the image must be
crossed from bottom to top, which is not possible in case
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Fig. 2 Challenging images with which the original ROI segmentation method proposed in [19] gives poor results. The original images are shown
in the first row. The second and third row show the results, respectively, obtained with �s = 2 and �s = 3

of road signs or a bridge above the road. Finally, the recur-
sive implementation of the algorithm may be problematic for
some hardware architectures.

In Fig. 2, some challenging images are shown with results
obtained using the original ROI segmentation method which
gives poor results. The original images are shown in the first
row. The second and third row show the results, respectively,
obtained with �s = 2 and �s = 3, where �s denotes the
local gradient threshold. The difference of results with very
close thresholds illustrate the sensitivity of this method with
respect to this local threshold. Fig. 2a, b illustrates the diffi-
culty to process textured road surfaces. Figure 2c illustrates
the difficulty to process scenes with very strong transitions
between road and sky. Finally, Fig. 2d, e, issued from the
FRIDA database [16], illustrate the difficulty to process scene
with objects above the road surface (buildings, trees, bridge).

3.4.2 Pitch angle sensitivity

Second, the proposed measurement process is sensitive to
variations of orientation of the vehicle with respect to the
road surface. It is not too much sensitive to variations of roll
angle thanks to the use of a measurement bandwidth, con-
trary to a change of pitch angle. Indeed, the estimation of
Vmet is correct if the position v1 of the inflection point as
well as the position vh of the horizon line are correct.

Let us study the influence of an estimation error δ on the
difference between these two positions. The error S between
the estimated meteorological visibility distance Ṽmet and the

actual meteorological visibility distance Vmet is expressed
with respect to δ by:

S = Vmet − Ṽmet

= Vmet − 3λ

2

1

v1 − vh + δ

= Vmet

[
1 − 1

1 + 2δVmet
3λ

]
(10)

The curves in Fig. 3 show the error for values of δ ranging
from −4 to +4 pixels. One clear result is that underestimat-
ing δ is more penalizing that overestimating it. To have stable
measurements, we may chose to set the horizon line above
its theoretical position.

However, estimating the position of the horizon line is a
difficult problem. It can be estimated by means of the pitch-
ing of the vehicle when an inertial sensor is available, but is
generally estimated by an additional image processing. This
type of processing seeks to intersect the vanishing lines in
the image, see [22,23] for instance. However, under foggy
weather, the vanishing lines are only visible close to the vehi-
cle. It is thus necessary to extrapolate the position of the hori-
zon line through the fog. Consequently, this kind of process
is prone to a significant standard deviation and, so far, using
the a priori sensor calibration was a better option.

In this section, two major limitations of the method pub-
lished in [19,20] have been highlighted. The novel proposals
described in the next two sections aim at solving these issues.
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Fig. 3 Method sensitivity with respect to the estimation error δ

between v1 and vh. Used camera parameter: λ = 1000

4 Segmentation of fog ROI based on geodesic maps

In this section, a novel approach for the fog ROI segmentation
is presented to circumvent the previous limitations, thanks to
the use of geodesic maps.

4.1 Optimal path computation in gray-level images

Following the original idea that the fog ROI should dis-
play a minimal line-to-line gradient [19], an analogy with
optimal path computation methods can be made. Assimilat-
ing an image with a graph, Dijkstra’s algorithm [24] allows
computing the shortest path but the complexity of the algo-
rithm O(n2) is problematic for large images. More effi-
cient approaches exist, making use of heuristics like the A∗
algorithm [25] but the complexity is still O(n log n) for com-
puting one single source shortest path. In our case, it is
problematic since the goal is to compute the shortest routes
between sets of nodes. The weighted distance transform on
curved space (WDTOCS) proposed in [26] aims at comput-
ing the shortest routes between sets on gray-level images.

The WDTOCS uses piecewise Euclidian local distance
computed with Pythagora’s theorem from the horizontal dis-
placement and the height difference. It is also referred as the
efficient geodesic distance transform [27] (see also [28]). Its
principle is presented in Fig. 4.

The route algorithm using WDTOCS requires two dis-
tance maps F ∗

a (x) and F ∗
b (x). The route endpoint a (respec-

tively, b) is the feature from which all distances are computed.
From the distance maps, a route distance image is computed
by a simple addition:

DR(x) = F ∗
a (x) + F ∗

b (x) (11)

Fig. 4 Efficient geodesic distance transform [27]. Usually, ρ1 = 1 and
ρ2 = √

2

The value DR(x) is the distance between the route end-
points along the shortest path passing through point x . Conse-
quently, the points with a minimal route distance value form
the desired route:

R(a, b) = {x |DR(x) = min
x

DR(x)} (12)

This idea can be generalized for a general route between sets.
The route between sets is found by computing the distance
maps F ∗

A(x) and F ∗
B(x), where A and B are the point sets

between which we want to find an optimal route. The distance
map R(A, B) is deduced as well.

4.2 Novel fog ROI segmentation approach

The optimal route computation approach detailed in the pre-
vious section may be adapted to segment fog region of inter-
est. The sets A and B have to be correctly chosen. We thus
make two minimal assumptions. First, we assume that the
road is at the bottom of the image, i.e., in front of the car.
A is the lowest line in the image belonging to the road surface.
Second, we assume that the sky area is among the brightest
pixels of the image above an a priori estimation of the hori-
zon line. B is thus made of the brightest pixels of the image.
Once the route map is obtained, a segmentation of the min-
imum route R̃(A, B) is performed starting from the bottom
of the image and stopping the highest possible in the image
using a tolerance τ parameter applied to (12):

R̃(A, B) = {x |DR(x) ≤ (1 + τ) min
x

DR(x)} (13)

Finally, the method has no local parameter anymore.
Instead, we use two global parameters: γ represents the rel-
ative weight of the gradient with respect to the Euclidian
distance in the geodesic transform (cf. Fig. 4) and τ gov-
erns the final extraction of the minimum route. Then, the
segmentation is successful if the segmentation region goes
above the theoretical position of the horizon line position.
The process is illustrated in Fig. 5 on a challenging road
scene. Fig. 5b shows the origin and destination set points.
Figure 5c, d, show, respectively, F ∗

A(x) and F ∗
A(x) distance

maps. Figure 5e shows the final route map. Figure 5f shows
the segmented fog ROI overlaid on the original image.
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Fig. 5 Fog ROI segmentation based on WDTOCS transform: a origi-
nal image; b origin (A) and destination (B) set points; c F ∗

A(x) distance
map; d F ∗

B(x) distance map; e R(A, B) route map; f final segmented
ROI overlaid on the original image. In the distance maps, the distance
is mapped linearly into gray levels

5 Horizon line position

In Sect. 3.4.2, the sensitivity of the fog density estimation
algorithm to the horizon line position has been highlighted.
In this section, a new estimation method is proposed.

5.1 Joint estimation of the horizon line position

By taking the derivative of I with respect to v one more time,
we obtain the following:

∂3 I

∂v3 (v) = βλ(R − A∞)

(v − vh)6

(
6v[v − (βλ + 2vh)]

+ . . . . . . + 6vh[βλ + vh] + β2λ2)e
− βλ

v−vh (14)

Thus, the derivative of Koschmieder’s law owns two inflec-
tion points whose locations are denoted v2 and v3:
{

v2=vh + βλ(3−√
3)

6

v3=vh + βλ(3+√
3)

6

(15)

Thanks to (8) and (15), the position of the horizon line vh

can be computed for each inflection point of the derivative:
{

vh=(1 − √
3)v1 + √

3v2

vh=(1 + √
3)v1 − √

3v3
(16)

For each inflection point of the derivative, we deduce an esti-
mation of β:{

β= 2
√

3
λ

(v1 − v2)

β= 2
√

3
λ

(v3 − v1).
(17)

5.2 Accurate estimate

Generally, the estimation of the position the most important
inflection point of a signal is made by looking for the loca-
tion where the first derivative is maximum. Consequently, v1

is obtained as the location where the first derivative of I is
maximum. v2 is obtained by looking at the location of the
maximum of the second derivative of I between the top of
the image and v1. v3 is obtained by looking at the location of
the maximum of the second derivative of between the bottom
of the image and v1.

We are thus able to estimate the extinction coefficient of
the atmosphere as soon as we are able to detect the inflection
point of the intensity curve as well as to estimate the position
of one of its inflection points, figured out in Fig. 6. In this
way, we are able to simultaneously estimate the position of
the horizon line. From a practical point of view, the results
using v2, the inflection point between the sky and v1, are
more accurate since they are less sensitive to the texture of the
road surface. However, both estimators might be combined
by giving a lower weight to the measurements based on v3.

Whatever the technique used to estimate the vertical inten-
sity profile I , the obtained profile is noisy. It is thus necessary
to smooth the profile before extracting the positions of the
different inflection points v1, v2 and v3. Usually, the profile
is over-sampled ten times so as to have a sampling uncer-
tainty smaller than one-tenth of a pixel. The problem is that
the application of a smoothing filter (Gaussian for instance)
on the profile, even if it reduces the noise, is likely to bias the
position of the inflection points, as shown for v1 in Fig. 7.
To have correct results, it is thus necessary to correct this
bias. This correction is performed in two steps.

The first step consists in smoothing the signal with two
filters having different scales, typically sm = 15 pixels and
sM = 30 pixels. We denote vi,m and vi,M the estimated posi-
tion of one of the inflection point (i = 1 or 2). The extrapo-
lated position of the inflection point at zero scale is given by:

vi = sM × vi,m − sm × vi,M

sM − sm
. (18)

The values of β, vh, A∞ and R are deduced according to the
previous equations (9), (16) and (17).
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The second step consists in reconstructing the intensity
profile based on the values of β, vh, A∞ and R estimated
thanks to the first step. Then, we apply a smoothing of
scale sM on the reconstructed profile and estimate, from the
smoothed profile, the positions of the inflection points ṽ1

and ṽ2. The values v1 and v2 are then updated, taking into
account the residual bias by adding the term r(vi,M −ṽi ), i =
1 or 2, where r denotes a ratio inferior to 1, typically 0.8. The
second step is iterated until the sum of distances between the
successive ṽi and ṽi is small enough. The number of possible
iterations is limited. The algorithm is schematized on Fig. 8.

6 Free-space detection method

6.1 Restoration principle

In this section, we describe a simple method to restore scene
contrast from a foggy image. Let us consider a pixel with
known depth d. Its intensity I is given by (5). (A∞, β) char-
acterizes the weather condition and are previously estimated.
Consequently, R can be estimated directly for all scene points
from (5):

R = I eβd + A∞(1 − eβd) (19)

This equation means that an object exhibiting a contrast C in
the original image will have the following contrast Cr with
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Fig. 9 3D plot of the corrected contrast restoration function (21) for
β = 0.05 and A∞ = 255. The object intensity may become null after
contrast restoration

respect to the background sky in the restored image:

Cr = (R − A∞)

A∞
= (I − A∞)

A∞
eβd = Ceβd (20)

We thus have a method which restores the contrast exponen-
tially with respect to the depth. Unfortunately, R is negative
for some values of (I, d). In such cases, we clip these values
to 0. The restoration equation becomes finally:

R = max
[
0, I eβd + A∞(1 − eβd)

]
(21)

This function was plotted for a certain range of (I, d) values
in Fig. 9. To properly restore the scene contrast, the remaining
problem is to estimate the depth d at each pixel.

6.2 Flat world restoration

Based on (21), a 3D model of the road scene is necessary to
restore the contrast accurately. As a first step, we propose to
use a quite opposite scheme, which only assumes that the road
is flat. The distance of a pixel in the image is thus assumed
given by (4). Large distances are clipped using a parameter
c. The distance dc of a pixel P(i, j) is thus expressed by:

dc
(
i ∈ [0, N [, j ∈ [0, M[) =

{
λ

j−vh
if M > j > c

λ
c−vh

if 0 ≤ j ≤ c
(22)

where, N × M denotes the size of the image. c serves to set
the maximum distance for the contrast restoration. It makes
sense to set the position of this clipping plane at the meteo-
rological visibility distance. Indeed, no pixel has a contrast
above 5% beyond Vmet. Consequently, the structure of the
scene is unknown beyond this distance. Using (3) and (8),
we thus set:

c = (2v1 + vh)

3
(23)

Fig. 10 Sample result of flat world restoration. The intensity of vertical
objects becomes null in the restored image: a original image; b result

Using (22) in (21), the contrast of objects belonging to the
road plane is correctly restored.

6.3 Free-space segmentation

Conversely, as soon as they are darker than the sky, i.e.,
I < A∞, the contrast of vertical objects of the scene (other
vehicles, trees, etc.) is falsely restored since their distance in
the scene is largely overestimated. Consequently, according
to (21), their intensity becomes null in the restored image
thanks to the exponential formula, like in Fig. 10b. This is an
inconvenience of this method, which was mitigated in [29]
by underestimating the value of the horizon line. However,
this inconvenient can be turned into our advantage. Thus, by
detecting the pixels whose intensity is null after contrast res-
toration, we easily segment the vertical objects and then seg-
ment the free-space area accordingly by looking for the big-
gest connected component in front of the vehicle. To improve
the results of this last step, a morphological opening of the
connected component may be performed.

7 Experimental validation

In the previous sections, three contributions have been pre-
sented: a fog ROI segmentation method, a process to jointly
estimate the horizon line and the fog density and a method
to segment the free-space navigation area. In this section,
experimental results are presented to illustrate the relevance
of each of these contributions.

7.1 Fog ROI segmentation

The fog ROI segmentation has been tested on actual fog
images as well as on synthetic images from the FRIDA data-
base [16]. From a qualitative viewpoint, the proposed method
appears to be very effective. The sensitivity to the internal
parameters of the method is limited. The limitations of the
original segmentation which were outlined in Sect. 3.4 were
circumvented. The local gradient parameter was replaced by
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Fig. 11 Sample results of fog ROI segmentations obtained with the
novel method on challenging images including the ones used in Fig. 2.
The parameters of the method γ = 10 and τ = 5%. The original images

are shown in the first and third rows. Results are shown in the third and
fourth row

the γ internal parameter of the geodesic image transform.
Consequently, the texture of the road does not block the
method anymore. The criteria to stop the segmentation is
not so constraining. The abrupt transition between the road
and the surface is not problematic anymore, thanks to a rough
segmentation of the sky area. Finally, the complexity of the
algorithm is much reduced and is quasi-linear. No recursive
scheme is used anymore which may ease the implementation
of the algorithm on hardware architectures.

To show qualitatively the effectiveness of our method, dif-
ferent experimental results obtained with the same parame-
ters (γ = 10 and τ = 5%) are shown in Fig. 11. The images
from Fig. 2, where the original method was inoperative, are
used as well as other challenging scenes that the original
method was already able to cope with. As one can see, the
segmented ROIs meet the constraints of Koschmieder’s law
and allow the computation of the fog density as well as of
the actual position of the horizon line.

7.2 Joint fog density and horizon line estimation

Sample results of the joint meteorological visibility distance
and horizon line position estimation are shown in Fig. 12 on
synthetic images as well as on an real images. In these pic-

tures, the overlaid area denotes the limits of the fog ROI. The
vertical noisy profile denotes the median gray level profile
measured on each line of the fog ROI. This profile instantiates
Koschmieder’s law. The vertical smooth profile denotes the
reconstructed profile. The horizontal black line denotes the
estimated position of the horizon line. The horizontal purple
line denotes the estimated meteorological visibility distance.
On synthetic images such as Fig. 12a, the accuracy is good for
low visibilities (<150 m). For higher visibilities, the accuracy
might be smaller, because of the angular size of the pixels
and of the presence of objects in front of the background
sky. Indeed, the road surface represented by a single pixel is
hyperbolic with respect to the distance [19]. Consequently,
the accuracy of the estimation is necessarily reduced when
the visibility increases. On sensor images such as Fig. 12b,
we can only comment that the location of the different lines
seems adequate, since the ground truth is not available.

7.3 Free-space detection

A way to assess the joint fog density and horizon line estima-
tion process is to assess its ability to segment the free-space
area. Using the proposed method, we obtain the results shown
in Fig. 14. From a qualitative point of view, we get good
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Fig. 12 Sample results of joint meteorological visibility distance and
horizon line position estimation on a (a) synthetic image (Vmet = 91.6
m and vh = 257): V est

met = 92 m and vest
h = 260; (b) an actual image:

V est
met = 87 m and vest

h = 145. The vertical noisy profile denotes the
median gray level profile measured on each line of the fog ROI. The
vertical smooth profile denotes the reconstructed profile. The horizon-
tal upper line denotes the estimated position of the horizon line. The
horizontal lower line denotes the estimated meteorological visibility
distance

results, even if some minor improvements could be made on
the segmentation of curbs, sidewalks and very bright objects,
i.e., objects whose intensity is equal to or higher than the sky
intensity. The quality of these results seems comparable to
color-based or stereovision approaches.

To assess quantitatively this free-space segmentation, we
have used a receiver operating characteristic (ROC) curve.
The larger the area under the ROC curve, the better the extrac-
tor. In our case, this curve is obtained by plotting the true
positive rate (TPR) versus the false positive rate (FPR) for
different values of a corrective coefficient ρ applied to the
meteorological visibility distance Vmet found automatically
by the algorithm. We do not change the other parameters of
the algorithm, in particular the position of the horizon line.
In this aim, we have extracted manually the free-space region
(ground truth) on different images from a small database of
15 images. The TPR is the rate of pixels which belong to
the free-space region and is detected as part of this region
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Fig. 13 ROC curve of the free-space detection obtained on a 15 images
database. The true positive rate (TPR) is plotted versus the false positive
rate (FPR) for different values of the corrective coefficient ρ applied to
the meteorological visibility distance Vmet

by the algorithm. The FPR is the rate of pixels which do
not belong to the free-space region and is detected as part
of this region by the algorithm. The ROC curve is plotted
in Fig. 13. When segmenting the ground truth, an ambigu-
ity was found in the definition of the free-space area. Is it
the road surface only or does it also include other flat areas
like the sidewalks where vehicles can also evolve? We chose
the most restrictive definition of the free-space, i.e., the road
surface only. The parameters found by the automatic process
(ρ = 1) lead to a TPR close to 1 and a FPR close to 0.4. It
means that there are some false detection. This is especially
the case on the sidewalks and curbs which are detected as
a part of the free-space area by the algorithm (see Fig. 14c
for example), which was expected due to the definition cho-
sen for the free-space area. A corrective coefficient (ρ < 1)

reduces the FPR. Indeed, by reducing the estimated meteoro-
logical visibility distance, the contrast restoration is stronger,
so that objects like curbs and sidewalks are also detected as
obstacles. ρ = 0.6 leads to TPR=95% and FPR=10% on our
database. As one can see, the algorithm is able to perform a
quite accurate segmentation.

7.4 Discussion

The proposed method allows to obtain good results, even
if minor improvements could be made on the segmentation
of sidewalks and very bright objects, i.e., the objects whose
intensity is higher than the sky intensity A∞. The quality of
these results seems comparable with color-based or stereo-
vision approaches. The good point in our method is that we
only use one gray-level image. However, it only works in
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Fig. 14 Free-space detection of the road scene. First and third columns original images. Second and fourth columns results of vertical objects seg-
mentation are overlaid on the original images. The figure at the bottom-right shows a test using a rainy weather image (in this case, β is set manually)

daytime foggy weather. The classical methods and the pro-
posed one are thus complementary. Of course, the proposed
method has the limitations of all monocular methods, i.e., it
is restricted to flat world scenes. On the one hand, the fog
detection method is able to estimate both the fog density and
the position of the horizon line. Even if the novel fog ROI
segmentation improves drastically the original method, the
method is still sensitive to the presence of big objects in front
of the vehicle (see [19] for more details). On the other hand,
the segmentation method is not too sensitive to the inhomo-
geneity of fog and can be applied to other weather conditions
such as rainy weather. A sample of rainy weather image is
shown in Fig. 14f.

From a hardware point of view, the computation of the
fog density alone takes less than 40 ms in C++ using a 2.4-
GHz Intel Core 2 Duo PC on 1/4 PAL images. On the same
hardware platform, the free-space detection takes less than
20 ms. However, the joint estimation process of the meteoro-
logical visibility and the horizon line is iterative. Its computa-
tion time depends on the number of iterations. Each iteration
takes 20 ms. Usually, we limit the algorithm to a maximum
of 10 iterations, i.e., a maximum of 260 ms, before skipping
the image in case of no convergence and to process a new
one. The algorithm has still to be optimized to be operated
at frame rate.

8 Conclusion

A solution was proposed to detect the free-space area in foggy
road scenes thanks to a contrast restoration approach. First,
the method estimates simultaneously the density of fog and
the position of the horizon line in the image, which improves
drastically the state-of-the-art in this area. A highly effec-
tive fog ROI segmentation method based on geodesic maps
computation is proposed as well as a novel joint fog den-
sity and horizon line estimation process. Thanks to a sim-
ple contrast restoration method, the proposed method is then
able to restore the contrast of the road and at the same
time to segment the vertical objects. Indeed, these objects
are falsely restored and in this way easily segmented. An
experimental validation allows figuring out the potential of
the method. Results on sample images extracted from video
sequences acquired from an in-vehicle camera are shown
and discussed. In the future, we would like to integrate
these works in prototypes and test intensively the method,
so as to identify some eventual new problems which could
appear.
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