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One may wish to use computer graphic images to carry out road visibility studies. Unfortunately, most display devices still have a
limited luminance dynamic range, especially in driving simulators. In this paper, we propose a tone-mapping operator (TMO) to
compress the luminance dynamic range while preserving the driver’s performance for a visual task relevant for a driving situation.
We address three display issues of some consequences for road image display: luminance dynamics, image quantization, and high
minimum displayable luminance. Our TMO characterizes the effects of local adaptation with a bandpass decomposition of the
image using a Laplacian pyramid, and processes the levels separately in order to mimic the human visual system. The contrast
perception model uses the visibility level, a usual index in road visibility engineering applications. To assess our algorithm,
a psychophysical experiment devoted to a target detection task was designed. Using a Landolt ring, the visual performances
of 30 observers were measured: they stared first at a high-dynamic range image and then at the same image processed by a
TMO and displayed on a low-dynamic range monitor, for comparison. The evaluation was completed with a visual appearance
evaluation. Our operator gives good performances for three typical road situations (one in daylight and two at night), after
comparison with four standard TMOs from the literature. The psychovisual assessment of our TMO is limited to these driving
situations.
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1. INTRODUCTION

Using computer graphic images for road visibility studies implies that the images are realistic enough
to lead to the same behavior as in a driving situation, which is called an “ecological” situation [Hoc
2001]. Thus, driving simulations and psychovisual experiments using computer graphic images need to
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be validated with regard to a number of visual tasks. Among them, the ability to detect a target in the
road scene is a key task in driving [Hills 1980], which is known to be poorly achieved in usual driving
simulators [Viénot et al. 2002]. It seems, then, that road visibility studies could benefit from the use of
computer graphic images, through driving simulation and psychovisual experiments.

Unfortunately, the visual environment of the driver is far more complex than any display device
is able to render in terms of luminance dynamic range, minimum and maximum luminance values,
quantization, color gamut, color values and spatial resolution, etc. In a daytime driving scene, the
luminance can be as high as 106 cd.m−2. In a nighttime driving scene, the luminance can be as low
as 10−2 and as high as 105 cd.m−2 at the same time, because of the headlights of on-coming traffic. A
standard LCD monitor is unable to display luminances below 0.5 and beyond 200 cd.m−2. The video
projectors usually used in driving simulators are even worse in displayable luminance dynamic range:
because of the size of the projection area, the maximum luminance can be as low as 10 cd.m−2. Thus, the
main limitation of display devices for road vision applications is the need to compress the luminance
dynamic range of images to fit the display device characteristics. This is what a TMO actually does: to
map real world luminances to target display luminances in order to reproduce the overall impression
of brightness and contrast of the real world, despite the limited range of the display device.

In this paper, we propose a methodology that aims to validate the use of computer graphic images for
road visibility applications, using a detection task to build a quality index. The ecological situation of
interest is a target detection while driving, and the experimental protocol takes into account the main
variables of this task. Hence, we can compare several tone-mapping operators (TMO). Thus, we propose
a specific TMO designed in order to fulfill the requirements of road vision experiments and we assess
our TMO in terms of a target detection task.

If one wants to use real-world luminance images to carry out road visibility studies, an appropriate
TMO should preserve the main visual cues of the road scene. TMOs found in the computer graphic liter-
ature mainly address visual appearance issues rather than visual performances: they try to reproduce
the subjective impression of observers. In this paper we focus on visual performance in a detection task
(i.e., the detection threshold), which is the main issue in road visibility applications. The difference be-
tween appearance and performance indexes is that appearance measurements record subjective feeling
on a topic where there is no objective answer (e.g., in your opinion, which of these images is nicer?),
whereas performance measurement refer to objective situations, so that the answer may be right or
wrong (e.g., what letter do you read here?).

Considering the state of the art in computer graphics, we designed a TMO based on vision science
literature, which tries to maintain the observer’s visual performances through keeping the visibility
level of objects (see Section 3.2.1). A psychovisual experiment allows to test our algorithm in three
situations with known display limitations for road scenes: two night scenes (with and without oncoming
cars with headlights on) and a daylight scene in fog (headlights on).

After a short overview of road visibility key issues, TMO design and evaluation protocols, we develop
our TMO in terms of underlying vision models and in terms of algorithmic implementation. We then
describe the specific psychophysical experiments we designed to assess a target detection task. This
protocol is used to compare our TMO to four well known operators. Finally the results are discussed
and future work is proposed.

2. RELATED WORK

2.1 Road Visibility

Target detection is a basic ability, which is critical in a number of driving tasks, as visual cues are the
main source of information for the driver [Hills 1980]. Thus, an experimental way to assess the ecological
ACM Transactions on Applied Perception, Vol. 5, No. 2, Article 12, Publication date: May 2008.
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validity of a detection task on displayed images is of great importance in the field of perception studies
in driving.

Visual performances depend on the task one considers (driving and reading, etc.) as well as on photo-
metric and colorimetric data (luminance, acuity, color, and visual adaptation, etc.). [CIE 1981] considers
that “free” visual detection (with no secondary task) is a key parameter in constrained visual detection
(as in a driving or reading task). This implies that a quantitative task-dependent relation can be found
between visual performances in a detection task and in a specific task (in the following, target detec-
tion during the driving task). This result, even modulated by [CIE 1992], allows to define a reference
situation limited to a detection task in a laboratory, even for road vision applications.

Considering the human visual system (HVS), the main parameters, in terms of target detection, are
the luminance contrast between object and background, the adaptation luminance, and the angular size
of the object [Adrian 1989]. At first order of approximation, color and object motion can be disregarded.
This hierarchy among object parameters leads to an experimental protocol devoted to static observation
of greyscale images (see Section 4.1).

This hierarchy can be translated in terms of image display devices limitations, in order to choose
which parameters have to be taken into account first. Considering the detection task, color display
and spatial resolution are second-order issues, while the critical parameters are luminance dynamic
range and quantization. Image quantization problems appear mostly in nighttime road images, where
contrasts in dark areas may be badly rendered when light sources are in the field of view. Another point
is the high luminance level (1 cd/m2 and more), which can be found as minimum displayable luminance
value, especially on driving simulator display devices, to be compared to real world values far under
0.1 cd/m2 for a road at night.

2.2 Tone Reproduction Operators

The problem of tone reproduction is not a recent one. It was first tackled by photographers who needed
to process their pictures so that they fit the visual appearance of the photographed scenes. For computer
graphic images, many TMOs have been proposed to compress the dynamic range of an image so that
it can be effectively displayed [Reinhard et al. 2005]. There are two main categories of such operators:
spatially uniform (also known as global) and spatially varying (also known as local). Global operators
apply the same transformation to every pixel of the image regardless of their position in the image.
Local operators apply different transformations to different parts of the image, depending on their local
properties. As this is not the place for an exhaustive state of the art (see [Reinhard et al. 2005]), we focus
on four operators, which may illustrate some among the main tendancies of TMO design, with respect
to local versus global operators and vision science versus heuristic based strategies. These operators
are used in section 4 for comparison.

Among global TMOs, Ward’s operator [Ward 1994] is one of the first to have a psychovisual theoreti-
cal background. It is a fast linear operator which computes a scale factor using the visual performance
model of Blackwell [CIE 1981]. It aims at preserving the threshold of perceived contrasts while com-
pressing the luminance range, which is relevant for road vision applications. However, for low luminance
distributions, the scale factor expands the luminance dynamic so that nighttime images may appear
as daytime images. Larson et al.’s operator [Larson et al. 1997] uses a visual adaptation map. They
propose an histogram adjustment technique, including a visual detection threshold model in order to
constraint the histogram slope.

Pattanaik et al. [1998] proposed a local operator. Their TMO is divided in two parts: a vision model
and then a display model. It is based on a multiscale representation of patterns, on luminance and
color processing, and addresses the problem of perception of scenes at threshold and suprathreshold
levels. As most multiscale approaches, this method unfortunately introduces artefacts known as “halos”
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(contrast inversion). Even if this artifact has a counterpart in the HVS [Peli 1990], it is not wanted in
general-purpose image display. However, as the multiscale image decomposition is still considered as
a relevant way to tackle the tone-mapping problem, solutions were proposed to minimize those halo
artefacts [Li et al. 2005]. Also local, but with a completely different approach, is the TMO proposed
by Reinhard et al. [Reinhard et al. 2002]. Instead of relying on vision science models, they proposed a
photographic tone reproduction operator, based on a model of ad hoc know-how among photographers
practice, known as the zone system technique.

A further aspect to tone reproduction is time. Some operators include temporal adaptation (to light
and to darkness) [Ferwerda et al. 1996; Pattanaik et al. 2000; Ledda et al. 2004]. We do not consider tem-
poral issues in our TMO, because paradoxically most vision models in road engineering (road lighting,
road sign design, etc.) are static ones [CIE 1988].

2.3 TMO Evaluation

There are two ways to assess the quality of a TMO, both being explored in the computer graphic
literature. One can either rely on a perception-based image metric (e.g., Smith et al. [2006]), or use
subjective experiments (e.g., Ledda et al. [2005]), showing visual stimuli to human observers, and
concluding about the TMO quality from their answers to a specific question. The first approach is
a classical computational approach, whereas the second approach enters the field of experimental
psychology.

Following the psychological approach, Some subjective experiments have been proposed in the recent
years to evaluate TMOs. Most of them are based on visual appearance indexes. Drago et al. [2003] ask
their subjects to perceptually judge and to indicate their preference over a panel of images processed
by different TMOs. They analyze these preference data to determine a preference point in the stimu-
lus domain used as a reference to compare algorithms. In another study subjects were asked to rate
tone-mapped images, compared by pairs [Kuang et al. 2004]. Ledda et al. [Ledda et al. 2005] conducted
experiments using a high-dynamic range (HDR) image as a reference. They compared TMOs two by two
and asked the observers to choose, between two different tone-mapped images, the one they felt closer
to the reference image. On the other hand, Viénot et al. [Viénot et al. 2002] presented an evaluation
paradigm using a physical reference scene instead of a HDR image and performed TMO comparisons
with psychophysical experiments based on both visual performance (a detection task) and visual ap-
pearance (gratings comparison). Yoshida et al. [Yoshida et al. 2006] use a more sophsiticated kind of
physical reference, using a HDR photograph of the physical scene as an input of the TMO.

3. TMO

3.1 Motivations and Design Framework

Our objective is to build an operator, which modifies the luminance and the contrast in images according
to the characteristics of the display device and still preserves target detection performances. We are not
looking for a new TMO concept, but for concepts relevant for road vision. For this reason, the resulting
TMO may somehow look like a wall of old stones put together in a new arrangement. We feel comfortable
with this, as long as this new arrangement allows to extend the validity domain of computer graphic
images.

Driving environments generate complex images in terms of luminance distribution (for instance, a
nighttime road scene may include very dark areas with important semantic informations and, at the
same time, glaring light sources). It is well known that target detection mostly relies on luminance
contrast [CIE 1981], so that the images we are dealing with, in the following, are luminance maps. The
MOVE project [MOVE 2005] showed that it is possible to rely on the photopic definition of luminance
ACM Transactions on Applied Perception, Vol. 5, No. 2, Article 12, Publication date: May 2008.
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down to 0.1 cd/m2, which we considered low enough to cope with most driving environments (see
[Ferwerda 2001] for an overview of early vision).

Within all the display device limitations, we chosed to focus on two major constraints that can have
strong effects on a detection task in a driving context, luminance dynamic range, and quantization.
The compression of the luminance dynamic from HDR to LDR images modifies contrast and adaptation
luminance, which are key parameters in detection models. The quantization problem is because of the
fact that most display devices (including those in driving simulators) are limited to 256 luminance
values for each channel. For a grey-level image, the truncation of floating-point luminance values may
lead to significant errors in terms of contrast values—at least this is what we observed with nighttime
road images. To our knowledge, this issue was not previously addressed in the TMO literature. The
quantization drawback is emphasized when one tries to display low luminances with a display device
with a high minimum display value (e.g., around 1 cd/m2, which is typical of CTR display devices).

As pointed out by [Peli 1990], if one wishes to keep some perceptual meaning in the contrast definition,
a specific approach is necessary for complex images, taking into account local adaptation and the
multiple bandpass behavior of the HVS. We follow Peli in its implications by designing a local TMO
in order to deal with such a complexity. This starting point gives a design framework for our TMO.
In road visibility literature, the contrast perception is defined using the VL index, which is detailed
later (see Section 3.2.1). The HVS is sensitive to a large range of luminance values, thanks to visual
adaptation [Shapley 1991]. This complex physiological process tunes the perception characteristics
(pupil diameter and neural sensitivity, etc.) in order to give optimal performances around the current
level of illumination. However, perception is not achieved identically for all adaptation levels. The HVS
is differently sensitive depending on the range of spatial frequencies [Campbell and Robson 1968]. Our
operator decomposes the image into consecutive spatial frequencies bands and separately processes
them to mimic the HVS behavior.

3.2 Vision Models

In this section, we detail a vision model that meets our objectives, taking into account the three main pa-
rameters, which seem to be the most relevant for object detection: detection threshold and suprathresh-
old, visual adaptation, and spatial frequency decomposition. The quantization issue is addressed, then,
as a specific problem.

3.2.1 Visibility Level. In road lighting literature [Adrian 1989], the visibility level (VL) is the usual
index to rate the visibility of an object over its background. It is the ratio between the luminance
difference �L = L − Lb between the object and its background (Lb is supposed to be uniform), and the
smaller increment of luminance �Lt (t for threshold) detectable from the same background luminance:

V = �L
�Lt(Lb)

(1)

The VL is a quantitative index for contrast perception, which allows to describe the contrast detection
threshold (V = 1) as well as suprathresholds (V > 1).

Several models in vision science allow to compute the contrast detection threshold �Lt . The contrast
sensitivity function (CSF) gives �Lt as a function of the spatial frequency, but this model was developed
for a visual task, which is not a detection task (the discrimination of sinusoidal bands in a grid) and
is only available for a few adaptation luminance values. The threshold versus intensity function (TVI)
gives �Lt as a function of the adaptation luminance. It explicitly addresses the discrimination of a
target on a uniform background. Thus, the TVI model corresponds better to our objectives of modeling
a target detection at various adaptation levels than the CSF.
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Table I. JND Equations from [Larson et al. 1997],
with B = log(La) for Easy Reading

Luminance domain log(D(La))
B < −3.94 −2.86

−3.94 ≤ B < −1.44 −2.86 + [1.6 + 0.405B]2.86

−1.44 ≤ B < −0.0184 B − 0.395
−0.0184 ≤ B < 1.9 −0.72 + [0.65 + 0.249B]2.7

1.9 ≤ B B − 1.255
aThe JND appears as D in the equations. TVI data in [Ferwerda 1996]
comes from vision science literature.

Two TVI models are needed, for rods and for cones photoreceptors. To merge these two functions, we
use the same just noticeable differences (JND) equation system as Larson et al. [Larson et al. 1997] for
consistency with the TVI functions from Ferwerda et al. [Ferwerda et al. 1996] (see Table I).

The JND depend on the adaptation luminance La, which has to be computed locally. If La can be
assumed to be Lb, the VL of a contrast �L with adaptation level La can be rewritten from Eq. (1)
as:

V = �L
D(La)

(2)

3.2.2 Visual Adaptation. Visual adaptation depends both on temporal (to darkness or to light) and
on spatial adaptation. In the following, as we consider static visual performances, we only address the
spatial adaptation issue.

Several definitions of the adaptation luminance can be found in the vision science literature (see [CIE
1999] for a short review). When a target is seen on a uniform background, the adaptation luminance
can be set to the background luminance. However, usual scenes have rich and nonuniform luminance
distribution. In the general nonuniform case, even if there is no scientific consensus [CIE 1999], the
experiments carried out by Ishida [Ishida and Iriyama 2003] showed that it can be computed as the
mean luminance if the variance is small. As we are interested in local adaptation, we assume that
this definition is suitable to our operator. As the adaptation is mainly achieved in the fovea [Moon and
Spencer 1945], the angular size of which is around 1◦, we computed the adaptation luminance as the
mean over a square of 1◦ width (this implies that our TMO needs to know the geometrical conditions
of the display, which is easy in usual psychovisual experiments).

Psychophysical data suggest that the processing of retinal images may be described as including a
set of bandpass filters in the frequency domain, which process the visual signal in parallel [Campbell
and Robson 1968]. This corresponds to the different processing channels in the neural architecture
[Ginsburg 1986]. The contrast detection may then be described as the result (envelope) of the combined
activity of a number of bandpass channels. These results are of some consequencies on visual adaptation,
as it means that adaptation not only happens in a spatial surround, but also should be considered on each
channel. This idea lead to Peli’s local contrast definition [Peli 1990], well suited to perception issues in
image representation, because it takes local adaptation into account. Peli considers a bandpass filtered
image ai, j and defines the contrast at this frequency level as:

Ci, j = ai, j

li, j
(3)

where l is the low-pass filtered image containing all energy bellow the band. The link between this
contrast definition and the VL comes from the fact that the bandpass image ai, j contains luminance
differences, homogeneous to �L. This is made clear, considering a pyramidal decomposition of the
ACM Transactions on Applied Perception, Vol. 5, No. 2, Article 12, Publication date: May 2008.
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Fig. 1. Pyramidal decomposition of image DayFog: Contrast images �Lk
w (k =1–6) and low-frequency image L7

w.

image, in which bandpass images are composed of differences of filtered images (with increasing filter
size). On the other hand, the local adaptation luminance La may be estimated as the mean luminance
around pixel (i, j ) in the next bandpass level.

In short, the TVI data allows to compute luminance contrasts with the VL index in terms proposed by
Peli [Peli 1990], taking into account the differential HVS behavior depending on the spatial frequency.
The implementation of such a model leads to a spatial frequency decomposition of the images. Figure 1
shows such a decomposition, with six bandpass images and 1 low-pass image.

3.2.3 Quantization. We denote LtoAV (for luminance to addressing value) the function, character-
istic of the display device, which gives an 8-bit numeric value from a floating-point luminance value.
AVtoL is the reverse function that gives a luminance value from an 8-bit addressing value. LtoAV
is a quantization function so that Z = LtoAV ◦ AVtoL �= Id. Z (Ld ) can be understood as the actual
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12:8 • J. Grave and R. Bremond

Table II. Gaussian Filter g Used to Build the
Laplacian Pyramid.

0.0025 0.0125 0.02 0.0125 0.0025
0.0125 0.0625 0.1 0.0625 0.0125
0.02 0.1 0.16 0.1 0.02
0.0125 0.0625 0.1 0.0625 0.0125
0.0025 0.0125 0.02 0.0125 0.0025

luminance, which is displayed on the monitor when it is asked to display Ld . The quantization issue is
the fact that Z �= Id . We address it by considering an adaptation luminance Lad in the low-dynamic
range (LDR) image and the smallest visible luminance increment �LJV

ad (JV for just visible). We use
the display device photometric properties at low luminance levels in order to be sure that �LJV

ad shall
actually be visible (see Section 3.3.3).

3.3 Computational Model

3.3.1 A Pyramidal Decomposition. Figure 2 shows the general framework of our operator. For the
spatial decomposition of the HDR luminance image I , we use the Laplacian pyramid described by [Burt
and Adelson 1983]. We first build a Gaussian pyramid using a 5 × 5 Gaussian filter g (see Table II).

Each level of the pyramid represents a low-pass image, cut at a frequency one-half the one of the next
higher level. The Gaussian pyramid has seven levels to cover the sensitivity domain of the HVS (see
Figure 1). The image at level l of the pyramid, denoted as Ll

w (w for world) is computed from level l −1:

Ll
w(i, j ) =

2∑
m=−2

2∑
n=−2

g (m, n)Ll−1
w (2i + m, 2 j + n) (4)

L1
w(i, j ) = I (i, j ) (5)

The filtering process downsamples the image. To calculate a pyramid of difference-of-Gaussian images
(luminance difference images, denoted �Ll

w), the image at level l + 1 is upsampled into Ll+1
wExp and

substracted to the image at level l :

Ll+1
wExp(i, j ) =

2∑
m=−2

2∑
n=−2

g (m, n)Ll+1
w

(
i
2

+ m,
j
2

+ n
)

(6)

�Ll
w(i, j ) = Ll

w(i, j ) − Ll+1
wExp(i, j ) (7)

This results in a seven-level pyramid: the first six levels are bandpass images �Ll
w and the higher

level is a low-pass image L7
w.

3.3.2 Contrast Detection. We aim at preserving the contrast perception, which means that the ob-
server should detect in the same way both the contrast of a pixel in the HDR image and the contrast of
the same pixel in the processed and displayed LDR image. To quantify the contrast perception, we use
the VL index for each level of the pyramid at every pixel (i, j ), as:

V l (i, j ) = �Ll
w(i, j )

D
(
Ll

aw(i, j )
) (8)

where V l is the image of VL values at level l . The D function depends on the adaptation luminance
Ll

aw (see Section 3.2.1), which is computed from the expanded upper-level image Ll+1
wExp as the mean
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Fig. 2. Framework of the algorithm.
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luminance over 1◦ in the visual field (Sp is half the number of pixels in 1◦):

Ll
aw(i, j ) =

Sp∑
m=−Sp

Sp∑
n=−Sp

Ll+1
wExp(i + m, j + n) (9)

The VL images are used to compute �Ll
d images (d for display) adapted to the display device on

which the rebuilt image shall be displayed. The new contrast images are computed using Eq. (8) and
the JND equation, to inverse the model: instead of Ll

aw, the new contrast values are computed with an
estimation of the display adaptation luminance (see next section), in order to keep a constant VL in the
HDR and LDR images. Displayed values are computed as:

�Ll
d (i, j ) = V l (i, j )D

(
Ll

ad (i, j )
)

(10)

3.3.3 Adaptation Luminance. The display adaptation luminance Ll
ad is computed from the world

adaptation images Ll
aw of each channel l with a linear operator: a scale factor kl

ad is used, one for each
spatial frequency channel, in order to fit the HVS behavior.

Ll
ad (i, j ) = kl

ad Ll
aw(i, j ) (11)

Ward [Ward 1994] proposes such a scale factor kW , intended to keep the detection threshold:

kW =
[

1.219 + ((LdMax − LdMin)/2)0.4

1.219 + (Law)0.4

]2.5

(12)

where LdMax and LdMin are the extreme luminances that can be displayed by the device and Law is the
log mean luminance of image I . (LdMax − LdMin)/2 is an estimation of the adaptation luminance on the
display device.

However it is not possible to use this scale factor as it is in Eq. (11). The first reason is that when
the average luminance is small enough, as in night scenes, Ward’s scale factor expands the luminance
dynamic range so that nighttime images may appear like daytime images. More important for road
applications, visual performances may be improved instead of being preserved.

In a previous version of our TMO [Grave and Brémond 2005], we adapted Ward’s scale factor by
clipping it to 1. However, this solution does not allways hold for nighttime images, first because the
minimum of displayed luminance LdMin of most display devices is higher than the lower luminance to be
displayed LwMin, and, second, because of the quantization, many contrasts in these scenes are destroyed.
This leads us to accept scale factors higher than one. We choose the smallest value of the scale factor
allowing the smallest perceptible contrast in the image to be displayed to be actually perceived. Let us
denote Law an adaptation luminance in a HDR image and Lad the corresponding adaptation luminance
in the displayable image (Laplacian pyramid indexes are removed for easy reading). We consider the
smallest visible luminance contrast �LJV

ad (JV for just visible) in the displayed image on a background
Lad :

Lad + �LJV
ad = kad Law + JND(kad Law) (13)

We call Z = LtoAV ◦ AVtoL the quantization function. We can compute the actual displayed lu-
minance difference Z (LJV

ad ) − Z (Lad ), when the device is asked to display LJV
ad and a background

Lad :

Z
(
LJV

ad

) − Z (Lad ) = Z (kad Law + JND(kad Law)) − Z (kad Law) (14)

ACM Transactions on Applied Perception, Vol. 5, No. 2, Article 12, Publication date: May 2008.
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Assuming that this contrast has to be just perceived when Lad is the adaptation luminance, in other
words, assuming that JND(Lad ) = Z (LJV

ad ) − Z (Lad ), we can define:

α(kad , Law) = Z (kad Law + JND(kad Law)) − Z (kad Law)
JND(kad Law)

(15)

The quantization issue is no more a problem for a given adaptation level Law if α(kad , Law) = 1.
The α function may be computed for the complete range of Law values, however, as the quantization
issue emerges in road scenes in the darkest areas of nighttime images, we only consider the smallest
value LwMin, because it is the one which leads to the strongest constraint. Then, in our TMO, we chose
the smallest value of kad such that α(kad , LwMin) = 1. If α remains lower than 1, we first explore the
Lw domain and, if α is still smaller than 1, we choose kad , which result in the maximum value of
α.

Finally, the adaptation luminance is computed with a kad value for each pyramid level, and then
clipped by the two extreme displayable luminances, Ldmin and Ldmax.

3.3.4 Image Recontruction. The last level of the pyramid, being a low-pass image, is scaled with
Ward’s scale factor kLF , which is kW

ad clipped to 1 (see Eq. (12)). The image is then reconstructed,
following the inverse process of the pyramidal decomposition: the last level is upsampled and added
to the next lower level; the result is upsampled and added to the next lower level, and so on, until the
image is rebuilt. Finally, a display device model LtoVA is applied to convert luminance values into grey
levels. The device model is measured from the display device chosen for the LDR display, through a
photometric calibration [CIE 1996].

Figures 3–5 show three road images processed by different TMOs from the computer graphic liter-
ature (see Section 2.2), as well as the TMO proposed in this paper. We cannot judge or compare these
TMOs, based on the printed images, because they have been calculated to be displayed on a specific
LCD device, under specific visual conditions. In addition, the HDR image cannot be printed, so that no
comparison is possible that way. At this stage of our work, we need to evaluate our algorithm with an
objective method.

4. TMO EVALUATION FOR A DETECTION TASK

Our main objective being the evaluation of a TMO for road vision applications, we focus on the ex-
perimental psychology approach instead of image metric methods, for two reasons. First, it may be
unconclusive to use vision models to assess the quality of a TMO, which is already based on vision
models: depending on the models included in the image metric, the results would change. Second, and
more important, we are looking for a TMO evaluation as ecological as possible (in the sense of ergonomic
psychology) considering an object detection task while driving, because such an evaluation would be
of greater impact on the confidence one could have in the results of experiments using tone-mapped
images for road visibility applications [Hoc 2001].

4.1 Experimental Setup

Unlike most experimental TMO psychometric evaluations in the computer science literature [Drago
et al. 2003; Ledda et al. 2005; Yoshida et al. 2005], we assess the quality of our TMO with respect to
the target detection performances of observers. We use a standard psychovisual experiment in order to
measure a visual performance in terms of object detection with a “Landolt ring” task (see Fig. 6: the
broken ring of Landolt is the simplest optotype, that is to say, a visual test, which leads to a certain point
to form recognition). The ring is presented at the center of the image on an uniform square background
of 1◦, and a gap in the ring is then presented during 100 ms. People are asked to say where they saw
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Fig. 3. Daytime image DayFog, LwMin = 113.18 cd.m−2, LwMax = 1392 cd.m−2, processed by five TMOs. The HDR image was
computed following [Dumont and Cavallo 2004].

the gap (top, bottom, right or left of the ring), by means of a gamepad. The Landolt ring task is relevant
for a large amount of detection tasks [CIE 1981].

We consider a reference situation as close to a driving situation as our laboratory conditions allow. It
is designed in order to keep the main variables of a detection task and we make comparisons between
this reference and comparison situations, in which tone-mapped LDR images are displayed. Our goal
at this point is to assess the quality of the LDR displayed images with respect to the detection task.
In the reference situation, we display an HDR image. In the comparison situations, the same image is
displayed after having been processed by a TMO to fit the low dynamic range of the display device.

Concerning the reference situation, two experimental setup are possible: either a “physical” scene
[Viénot et al. 2002; Yoshida et al. 2006], made of physical objects, among which a visual detection task
would be performed, or a displayed HDR image [Ledda et al. 2005]. A “physical” scene may be closer
to a driving situation than a displayed image, in particular, in terms of visual acuity, of depth vision,
of visual complexity of the scene, etc. On the other hand, such a physical scene suffers from a number
of problems. First, it is necessary to provide the LDR display device with images and to measure the
visual performances staring at these images. Thus, the comparison between physical and displayed
scenes implies an intermediary step, namely, converting the physical scene into a numerical one, and
to build HDR luminance images from this numerical scene. This could be done for static images using
photographic HDR acquisition techniques [Seetzen et al. 2004], but the complexity of the technical
ACM Transactions on Applied Perception, Vol. 5, No. 2, Article 12, Publication date: May 2008.
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Fig. 4. Nighttime images: NightDrive (LwMin = 0.5 cd.m−2, LwMax = 478.4 cd.m−2) processed by five TMOs. The Nightdrive
HDR image was computed following [Dumont and Cavallo 2004].

environment, which is necessary to perform a “physical” detection task (including a 100-ms stimulus
presentation) was the main problem. On the other hand, the biases because of the use of an HDR
image as a reference do not include the main independent variables, but only visual cues that were not
considered as pertinent for our experimentation (see Sections 2.1 and 3.1). Therefore we decided to use
HDR images as reference scenes. This seemed to us the optimal experimental framework, considering
the problems raised by both approaches.

Concerning the visual task, the main point in designing the experimental setup was to decide whether
the scene should include semantic contents (namely, a road scene). We decided to keep some semantic
contents, even if it may be considered as a bias in a vision science approach: people may give biased
answers (with respect to a scene with no semantic at all), because semantic cues may lead to specific
expectations. However, because of the ecological situation of interest, we are more interested in the
biased performances than in the “standard” ones. Another point which led us to use semantic cues
is that considering the possible use of LDR images on a driving simulator, it is a key parameter to
use reference images containing the same kind of luminance histogram, luminance dynamics, and
spatial frequencies as in road scenes. An unwanted drawback of our choice is that the validity of the
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Fig. 5. Nighttime images: LN150W (LwMin = 0.25 cd.m−2, LwMax = 5.1 cd.m−2) processed by five TMOs. The LN150W HDR
image was captured with a video photometer.

Fig. 6. Positions of the gap in the Landolt ring.

evaluation is restricted to driving situations, but this is understood and of little importance for road
vision applications.

4.2 Apparatus and Method

Our experiments are designed in order to evaluate a TMO, together with a display device (through
LdMin, LdMax and LtoVA) and a geometry for the display (through the pixels angular size). We compare
the visual performances of a set of observers measured in two display configurations: first when the
ACM Transactions on Applied Perception, Vol. 5, No. 2, Article 12, Publication date: May 2008.
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Fig. 7. Principle of the evaluation experiment.

observers are looking at a reference image (a HDR image); second, when a tone-mapped image is
displayed on a LDR display device (see Fig. 7).

The performance obtained with the reference and the comparison images are compared for different
TMOs: ours and four others (see Section 2.2):

—Ward’s operator [Ward 1994], a nonparametric visual performance-based linear operator.
—Larson et al.’s [Larson et al. 1997], an nonparametric histogram adjustment operator using a TVI

function. We use a restriction of this paper to the histogram adjustment method based on human
contrast sensitivity.

—Pattanaik et al.’s [Pattanaik et al. 1998], which provides a nonparametric computational model for
adaptation and spatial vision. We use a restriction of this paper to luminance images.

—Reinhard et al.’s [Reinhard et al. 2002], an heuristic model based on the zone system photographic
technique. We use the local automatic dodging and burning version of this TMO with the default
values given in the paper for the key, scaling, and threshold parameters.

Subjective evaluation experiments [Ledda et al. 2005] indicate that [Larson et al. 1997] and [Rein-
hard et al. 2002] provide good results for image comparisons. These algorithms are restricted, in our
evaluation, to luminance image processing.

Following [Larson et al. 1997] and [Pattanaik et al. 1998], we model the glare effects because of
light sources in the scene using Spencer et al’s algorithm [Spencer et al. 1995]. This preprocessing step
concerns all five TMOs.

These algorithms are well known in the TMO literature and are chosen for this evaluation step as
an illustration of the variety of TMO design, as well as for their respective strong point for target
detection: Ward’s operator is the simplest TMO to use a detection threshold; Pattanaik et al.’s includes
a local adaptation estimation following Peli’s contrast image representation; Larson et al. and Reinhard
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et al. both lead to good visual appearance indexes in Ledda et al.’s [Ledda et al. 2005] TMO evaluation.
Larson et al. [Larson et al. 1997] is a global TMO and includes a TVI model, while [Reinhard et al.
2002] is based on a photographic technique.

The experiments are carried out in a dark room dedicated to psychovisual experiments. The room
is painted black and has no window so that the illumination and the experimental conditions can be
reproduced at any time. We use road images (see Figs. 3 and 5) in which a Landolt ring is inserted with
an uniform square background of 1◦ width. The ring together with the background are called “the test”
in the following.

As our TMO needs as an input some photometric properties of the LDR display device (a LCD screen),
it is characterized on the basis of a CIE metrological protocol [CIE 1996] using a Minolta spectrora-
diometer CS 1000. The HDR images are displayed with a digital light processing (DLP) video projector
(see Figure 7), and the DLP display device was characterized following the same metrological protocol,
in several configurations (Contrast C, with range from 0 to 255, and Brightness B, with range from
−64 to 64) depending on the road scene. For each display configuration, the AVtoL function is mea-
sured. The LCD used in this experiment has a dynamic range of 320 : 1 and a maximum luminance of
168 cd.m−2. The DLP has a dynamic range around 1000 : 1 and, depending on the tuning configuration
(C and B) and on the projection surface, a minimum luminance, which can be as low as 0.25 cd.m−2

and a maximum luminance, which can be as high as 1392 cd.m−2. The angular size of the pixels in the
experimental situation was 0.013◦ for both DLP and LCD displays.

The Landolt ring test greatly simplifies the driving visual task, but still leads to a fundamental aspect
of this task and is often used as a reference task in road visibility and road lighting studies. This test
is, however, complex and the detection of the gap depends on several parameters. Some of them are set
in our experiment: the time during which the gap is shown is 100 ms.; the background luminance Lb
is equal to the adaptation luminance computed with [Moon and Spencer 1945], assuming the gaze is
centered on the ring; and the size of the gap e is 8 min of angle (see Figure 6). Two parameters may vary:

—the contrast (Weber fraction C = �L/L) between the background luminance Lb and the ring lumi-
nance LR . It is positive and takes eight different values from under the perception threshold to easily
detected;

—the gap can take four different positions (see Figure 6).

The images into which the test is inserted are chosen to stand for typical driving scene with spe-
cific visibility conditions. They all have the same resolution 1024 × 768 pixels. Three typical driving
conditions are tested. Each one addresses a specific problem that all TMOs have to face with road
images:

—Luminance dynamic: a daytime driving scene with fog and visible rear foglights. To display this image,
a uniform luminance is projected around the image to adapt the observer’s peripheral vision and limit
eyestrain. The DLP configuration is C = 128 and B = 0. The projection surface is 49 × 37 cm (see
Figure 3, DayFog image).

—Quantization and high LdMin: a nighttime urban driving scene without light source in the visual field.
The DLP configuration is C = 0 and B = −64. The projection surface is 76 × 57 cm (see Figure 5,
LN150W image).

—Luminance dynamic and quantization: a nighttime country driving scene with light sources in the
visual field. The DLP configuration is C = 128 and B = 0. The projection surface is 76 × 57 cm (see
Figure 5, NightDrive image).
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Table III. Characteristics of the Subjects for
DayFog, NightDrive, and LN150W Images.

DayFog NightDrive LN150W
Women 2 2 1
Men 8 8 9
Total 10 10 10
25 ≤ age ≤ 35 7 7 3
35 ≤ age ≤ 55 3 3 2
age ≥ 55 0 0 5
Total 10 10 10

4.3 Experimental Protocol

Thirty subjects were asked to perform a “Landolt ring” task, with the reference image and with the five
tone-mapped images displayed on the LCD device. Three situations are tested, DayFog, NightDrive,
and LN150W, with ten subjects each. For every test, we displayed an image with a full ring during 1 s,
then, for 0.1 s, the gap is displayed at one of the four possible positions. The observer indicates on a
gamepad the position of the gap he/she has perceived. We ask him/her to give an answer whether or
not he/she has seen the gap. The answer is recorded and the next test is displayed. We showed 200
tests for the reference scene and for each of the TMOs (25 tests for each of the 8 contrasts). For a given
observer, the 6 series of 200 tests were performed on different days, in order to avoid biases resulting
from visual fatigue. The total number of ring presentations is 3 × 10 × 6 × 200 = 36 000. Table III gives
the characteristics of the subjects for the three images.

5. RESULTS

5.1 Uncertainty Estimation

For each of the three images, we consider an average observer whose visual performance is computed
by averaging the performances of the ten observers. We compare his performances measured with the
reference (HDR image) and those measured with the image processed by the TMOs.

For a better comparison, we estimate the margins of error around the reference values of the rate
of correct answers, for each contrast value. For a contrast c, the tests are the realizations of a random
variable, with expectation pc, the performance of the average observer. Let us denote X c a random
variable that follows a Bernouilli distribution. X c can take two values: 1 if the answer is correct (with
probability pc) or 0 if it is wrong (with probability qc = 1 − pc). Let us denote Yc, a random variable
corresponding to the number of correct answers for contrast c. In our case, Yc ∈ [0, 250], because we
have 25 answers for each of the ten observers, so that Yc follows a binomial distribution with parameters
n = 250 and pc. We know (binomial distribution properties) that E(Yc) = npc and V (Yc) = npc(1 − pc).
We consider F n

c = Yc/n the rate of correct answers. E(F n
c ) = pc and V (F n

c ) = pc(1 − pc)/n. The
Bienaymé–Tchebychev inequality gives for F n

c :

P
(∣∣E(

F n
c

) − F n
c

∣∣ ≥ εc
) ≤ V

(
F n

c

)
ε2

c
(16)

If we denote a = V (F n
c )

ε2
c

, then εc =
√

pc×(1−pc)
na . By fixing a, we can compute εc with:

P
(∣∣F n

c − pc
∣∣ ≥ εc

) ≤ a
⇔ P

[(
F n

c − εc
) ≤ pc ≤ (

F n
c + εc

)] ≥ (1 − a)
(17)
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Fig. 8. Visual performances measured with the DayFog image, ploted against the luminance contrast (i.e., the Weber fraction).
The reference image is compared to the image processed by five TMOs, including ours.

In the following, we set a = 0.1, which is the same as looking for a margin of error (±εc around the
value of F n

c ), which gather together 90% of the values that F n
c can take. We can then estimate the

values of εc =
√

pc(1−pc)
0.1n .

5.2 Results with the DayFog Image

Figure 8 shows the visual performance (the uncertainty estimations are only displayed for the reference
situation, for easy reading) measured with the DayFog reference image and the five TMOs. The 50%
detection threshold obtained with the reference image is for a contrast c ∈ [0.03; 0.04].

The detection thresholds obtained with W94, P98, and our TMO are within this interval. For con-
trasts just below the perception threshold, we overestimate and P98 underestimates the detection rate.
For contrasts beyond the threshold, W94 overestimates the detection rate. Whereas the rendering of
contrast detection is rather satisfactory with these three operators, the two others do not meet the
objective as far as this daytime road scene is concerned. L97 overestimates the detection rate, while
R02 underestimates it.

5.3 Results with the LN150W Image

Figure 9 shows the visual performance (the uncertainty estimations are only displayed for the reference
situation, for easy reading) measured with the LN150W reference image and the five TMOs. The 50%
detection threshold obtained with the reference image is for a contrast around c = 0.08.

Two operators successfully render the visual performance: ours with a threshold slightly lower than
0.08 and P98, with a threshold slightly higher than 0.08. L97 enhances the contrast so that contrasts,
which should not be detected, are seen. W94 and R02 also overestimate the contrast, with a threshold
that is close to the minimum displayed contrast of 0.036.

5.4 Results with the NightDrive Image

Figure 10 shows the visual performance (the uncertainty estimations are only displayed for the reference
situation, for easy reading) measured with the NightDrive reference image and the five TMOs. The 50%
detection threshold obtained with the reference image is for a contrast c ∈ [0.18; 0.28].
ACM Transactions on Applied Perception, Vol. 5, No. 2, Article 12, Publication date: May 2008.
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Fig. 9. Visual performances measured with the LN150W image. The reference image is compared to the image processed by
five TMOs, including ours.

Fig. 10. Visual performances measured with the Nightdrive image. The reference image is compared to the image processed by
five TMOs, including ours.

Our TMO gives a detection threshold of c = 0.28, which means that we underestimate the detection
rate. However, the performance curve obtained with our operator has a shape close to the reference
curve’s shape. W94 and R02 enhance the detection rate, since their threshold is close to 0.04. P98 and
L97 also overestimate the detection rate, but with thresholds closer to the reference, around 0.10. None
of the tested TMOs fit the reference curve well, which is consistent with the fact that this image includes
both the luminance dynamic and the quantization issue, which is, of course, harder to cope with for a
TMO than a single issue.
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Table IV. Comparison of Five TMOs (for a
Detection Task and for Three Typical Road

Images
W94 L97 P98 R02 Grave

DayFog G B G B G
LN150W B B G B G

NightDrive B B B B F
aGood, good; F, Fair; B, Bad.

6. DISCUSSION

Table IV sums up the performance tests for the three selected road images. These results suggest
that our algorithm suits its purpose, except for the NightDrive situation, where the other TMOs we
have tested did not give better results. This confirms that there was indeed a need for such a specific
algorithm.

Two algorithms seem to stand out of the group of TMOs, P98 and ours, concerning the performance
rendering for all three driving scenes. However, we cannot make general conclusions about TMOs
quality out of this limited experiment, for at least three reasons:

1. We only tested three road images, chosen in order to emphasize three specific TMO issues, which are
commonly addressed in road-images rendering (light sources, quantization, low luminance levels).
This cannot be generalized without caution to other visual environments.

2. The algorithms chosen for this comparison are well known, but we cannot reject the idea that others
may have given better results, even for target detection. For instance, Reinhard et al. [Reinhard
et al. 2002] include parameters which were set to their default value. An optimization of these
parameters may have lead to better results. However, road vision applications would benefit more
from a nonparametric TMO, if its has to be used by “naive” users (in the computer graphics sense).

3. Our quality index is based on a visual performance task. It says nothing about the visual appear-
ance of the tone-mapped images, which is the main purpose of most TMOs design and evaluation
techniques.

Concerning the second point, it is obvious that our experiment cannot lead to the conclusion that our
TMO is better than any others. However, considering the growing literature on TMOs for the past 20
years, an exhaustive comparison is not possible and we are not aware of a unique and broadly used
TMO evaluation procedure in the computer graphic literature. Our point in this comparison was to
assess our TMO to well-known algorithms, which are either based on psychophysical data, or with good
evaluation indexes in experimental psychology experiments. The comparison shows, at least, that a
TMO design devoted to a specific visual task may give good results for this task.

Concerning third point, our TMO was designed for a detection task, which calls for the visual per-
formance of observers, so we evaluated it with a performance test. However, at a more general level,
two classes of quality indexes can be used for perceptual evaluation: performance indexes (as presented
above), based on error rates or on reaction times, and appearance indexes, which are purely subjective
evaluations. Appearance indexes are widely used for TMO evaluation and are also important in road
visibility applications considering the immersion feeling in driving simulators. We have thus completed
the performance evaluation of our TMO with an appearance evaluation.

Our operator is compared to the same other TMOs, with an experimental protocol close to [Ledda
et al. 2005]. Two images are displayed at the same time, with the same angular size: the reference
image displayed by the DLP and the comparison image displayed by the LCD. For a given observer, the
reference image remains the same during the entire test. On the LCD device, two images processed by
two different TMOs are displayed successively and the subjects are asked to select the one that they
ACM Transactions on Applied Perception, Vol. 5, No. 2, Article 12, Publication date: May 2008.



A Tone-Mapping Operator for Road Visibility Experiments • 12:21

Fig. 11. The visual appearance rendering evaluation experiment.

Table V. Visual Appearance Tests: Score of the Five
TMOs

W94 L97 P98 R02 Grave max.
DayFog 9 1.3 6.1 3.3 10.3 12.0

NightDrive 5.9 8.9 0.8 2.9 11.5 12.0
LN150W 9.4 0.8 3.1 6.8 9.9 12.0

feel is “closest” to the reference image. The observers may go back and forth from one image to another
as many times as needed to make their choice. The images and the observers are the same as in the
performance tests. The same five TMOs are compared, which results in ten different TMO pairs of
images. Each pair is displayed three times, which means that the maximum number of times a TMO
can be chosen is 12. Table V shows the average score of each operator, over the ten subjects.

Our operator is the first chosen with the NightDrive and DayFog images and, it is the first, almost
equal with Ward’s operator, in the LN150W image. With the restriction (1) and (2) above, these results
tend to show that our operator keeps a fair image fidelity in terms of visual appearance, despite the
fact that it is built on visual performance models. One may find that these results are unexpected,
after Ledda et al.’s experiments [Ledda et al. 2005]. In our opinion, this kind of subjective evaluation is
sensitive to the choice of the HDR images (see [Yoshida et al. 2006] for an exhaustive comparision over
25 images), so that we recommend to restrict the conclusions to road images. In addition, we cannot
reject the possibility that the observers, having already been participating to a detection task with the
same images, may have answered with a bias toward detection criteria.

A drawback of our TMO is that we noticed halo artifacts (contrast inversion) in the tone-mapped
images, as well as with other local operators like Pattanaik et al’s. Because of the control over the linear
factors kl

ad for the adaptation image transformation, halos were hardly perceived in the LDR images of
road scenes processed by our operator; however, halos were clearly visible in the images processed by
Pattanaik et al., which may explain the bad results this TMO obtained with the appearance evaluation
(it has to be noted that this drawback does not disturb the visual performances as long as the visual task
is not too close to a light source). Even if the contrast inversion is hardly visible in the displayed images,
this is to our opinion the main problem we have to address in order to improve our TMO. However,
going back to a global operator is not a valuable solution as we need to keep the visual performance
fidelity.
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7. CONCLUSION AND FUTURE WORK

We proposed a new tone-mapping operator, designed for a detection task, for road visibility, and road
lighting applications. Our main objective was to preserve the observer’s visual performance despite
the luminance dynamic range compression, the possible high level of minimum displayable luminance,
and the image quantization. To assess our algorithm and to check that it fulfills these conditions,
we carried out a psychophysical experiment in order to compare visual performance measured with
reference road images (HDR images), and with tone-mapped images. The comparison images were
made of the reference images tone mapped and displayed on a LDR display device. We performed these
tests with three typical road images: daytime and nighttime with and without direct light sources. Over
the three scenes, considering a mean of ten observers for each, our operator seems to render the visual
performance correctly, which is not always the case with four other TMOs from the computer graphic
literature that we have tested. To complete the TMO assessment, we carried out appearance-rendering
comparisons with the same images and observers. Our operator came first for the three driving scenes.
This means, if we merge the results of both tests, that our TMO fulfills its objectives: it allows to display
road images preserving the contrast perception and the general visual appearance.

We have showed that for a detection task, in roadlike visual conditions, our operator is effective.
However, the comparison situation is too restricted to allow an extrapolation of these results to more
general situations and visual tasks. Our experimental results only suggest that our TMO is well suited
to the detection task for road images, which is consistent with the fact that the vision models used in
the TMO directly address this visual task. However, in our opinion, the main conclusion in terms of
design is that we propose a practical example of a TMO design driven by the user’s needs (in our case,
road engineering).

The next steps of this work should be at least in three directions. Even if color is not a critical param-
eter for a detection task, the ecological validity of our operator would need to extend the performance
tests to color images and to motion detection, as well [Kelly 1985]. The second aspect is the integration
of our algorithm into the visual loop of a driving simulator. This includes a real-time implementation of
the algorithm and also a re-configuration of some aspects of the design of usual visual loops (including
a photometrical calibration of the display systems) in order to cope with a photometrical description of
the 3D databases [Brémond and Gallée 2002; Dupuis and Grezlikowski 2006]. Finally, we must admit
that even if our reference images allowed to show significant differences between the TMOs, which
were compared, they were not full HDR images, because of our limited DLP image display system. A
promising future work would be to use a full HDR display device [Seetzen et al. 2004], as was done by
[Ledda et al. 2004], to assess the quality of our TMO with more realistic reference situations.
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