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ABSTRACT 
The simulation tools of people‟s displacements become more and more popular for applications emerging 2 

in the field of mobility planning, traffic management, impact assessment for city design and infrastructure 

modifications. Moreover, there is a lack of computational tools for the microscopic simulation of urban 4 

interactions between drivers and pedestrians. Feeling that road crossing is currently the main problem 

with pedestrian behavioural models, we conducted a laboratory experiment in order to understand to what 6 

extend the pedestrian‟s visual environment contribute to the crossing decision in order to improve a 

computational street crossing model. In the experiment, 36 12-second-video clips were presented to 32 8 

participants, in conditions close to the crossing situation (scale 1, 160° of angle displayed on 6 large 

screens). The subjects were asked if they would have cross the street at the end of each clip. Two 10 

hypotheses were under investigation. The first one focuses on the objective description of the road 

crossing environment in terms of visual cues relevant for the crossing decision (traffic light, approaching 12 

vehicles, other pedestrians, etc.). The subject‟s answers were compared to the coding of the visual 

environment. The second hypothesis focuses on the subject‟s own explanations, about their motivations 14 

for crossing / not crossing. In both cases, the statistical analysis (logistic regressions) suggests that the 

crossing decision does not use the same visual cues depending of the presence/absence of traffic lights. 16 

The main result of this study is that the relevant visual cues are not the same at the signalized and at the 

unsignalized crossing, which leads to build separate quantitative models.  18 

 

Keywords: pedestrian, road crossing, experimental psychology. 20 
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INTRODUCTION 
The “digital city” is a growing challenge for many actors of urban planning, raising new issues to the field 2 

of numerical simulation. One promising aspect is the numerical simulation of people‟s displacements 

inside a city with applications emerging in the field of mobility planning, traffic management, impact 4 

assessment for city design and infrastructure modifications. One of the associated scientific challenges is 

to propose realistic computational models of the pedestrian‟s behaviours. Although a number of 6 

commercial applications are available for traffic simulation on the one hand (Aimsun®, Corsim®, 

Paramics®, Vissim®...), and for crowds simulation on the other hand (Legion®, SimWalk®, (1)), very 8 

few simulation tools include both cars and pedestrians (2). The simulation of their interactions in road 

crossing is a major problem for a complete urban traffic simulation. 10 

 In their review on pedestrian‟s crossing decision models, Tom et al. (2) concluded that available 

computational models are not suited for this task, first because the pedestrian/driver interactions are only 12 

weakly considered, second because very few pedestrian‟s skills are taken into account in these models (3, 

4, 5, 6, 7). Indeed, in accordance to Grayson (8), the road crossing task is made up of three steps, the 14 

second one, itself made up of three steps in accordance to Tolmie et al. (9), are briefly the following: 

 step 1: choice of the area for the street crossing 16 

 step 2: choice of the time to cross 

◦ step 2.1: exploration of the visual space; 18 

◦ step 2.2: selection of the relevant information ; 

◦ step 2.3: analysis of the situation based on the estimation, of the time to collision, the distance 20 

to the conflict point...; 

◦ step 2.4: decision to cross or not 22 

 step 4: the road crossing as a motor task, The risk of accident arises during this phase. 

Most of the existing road crossing models are only based on the studies which focus on both steps 2.3 and 24 

2.4.  

 Moreover, Kitazawa and Fujiyama (10) claim that most pedestrian computational models use 26 

what they call the Information Process Space (IPS): the area around the pedestrian where s/he picks up 

information in order to compute where to move next. This area may be considered as a component of the 28 

pedestrian‟s perceptive skills, and the authors showed that the IPS, which may be thought to as a visual 

attention area, is included in most computational pedestrian models (3; 4, 5). But models are not made for 30 

the road crossing studies since only pedestrian/pedestrian interactions and pedestrian/infrastructure 

interactions are considered. 32 

 A simulation approach needs some inputs from behavioural science in order to implement the 

pedestrian‟s and driver‟s behaviour. A number of such models have been proposed, both for pedestrians 34 

(3, 4, 7) and drivers (11, 12). The interactions between these two types of actors have been addressed in 

psychological studies, with two main approaches: gap acceptance (13) and rule compliance (see (14) for a 36 

review). Very few studies have addressed so far the complexity of road crossings, and computer 

simulations are far from realistic there, considering the road crossing decision. 38 

 Furthermore, Tom et al. (2) have suggested that a more relevant computational model of 

pedestrian could be built on a Multi-Agent System (MAS), where each pedestrian would have his/her own 40 

perceptive, cognitive and anticipative skills. This would imply a computational model of information 

taking, as in (15), including some perceptive limits (16; 12).  42 

 One of the objectives of this works was to improve the road crossing models for such simulation 

tools. In many models, street crossing models are very simple from a psychological point of view, 44 
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comparing the time gap offered by the traffic flow to an estimation of the pedestrian‟s crossing time 

(Steps 2.3 and 2.4). Commonly, modellers use an equation in the following form: 2 

Time_Headway > a * (Safety_Margin + Estimated_Crossing_Time) (1) 

where 4 

Estimated_Crossing_Time = Road_Width / Pedestrian_Desired_Speed (2) 

where the Time_Headway is the time between two successive vehicles, the Safety_Margin takes into 6 

account the reaction time, the time to start and a safety margin (it varies between 2 and 4s in the Highway 

Capacity Manual) and “a” is a parameter to illustrate the aggressive/prudent behaviour of the pedestrian. 8 

 If (1) is true, the pedestrian crosses, otherwise he waits for a new gap. In future work, we consider 

replacing the parameter “a” with outputs from a quantitative psychological model, taking better into 10 

account pedestrian perceptual and cognitive skills (steps 2.1 and 2.2). 

 For instance, what visual cues pedestrian selects and takes into account has seldom been 12 

studied (9) and this key factor of crossing decision is then not implemented in models (3). With goals to 

better understand what visual cues in environment are used by the pedestrians in their crossing decision, 14 

and to take this into account in a pedestrian model, we have designed a laboratory experiment, in order to 

get realistic road crossing situations, whilst controlling the experimental parameters. We developed a new 16 

experimental setup (17, see Figure 1a), where videos taken from urban road crossings, from the point of 

view of a pedestrian facing the crossings. The videos were displayed at scale 1 in a Virtual Reality room, 18 

with more than 160° of display angle, and spatial sound (see Figure 1b). The subjects were asked, after 

each video clip, if they would have crossed the street at the very moment when the clip ends. This 20 

“Crossing decision” was the variable to explain. 

 Two approaches were considered. First, each video clips were coded with visual cues which were 22 

found a priori relevant for the crossing task decision, and statistical models tested whether these objective 

variables could explain the subject‟s Crossing decision. This was the “objective” approach. Second, just 24 

after their Crossing decision, the subjects were asked to explain their reason for crossing or not, and the 

visual cues which were mentioned in their justification were also coded. The visual cues the subjects 26 

mentioned were also considered as independent variables to explain the crossing Decision. This was the 

“subjective” approach. 28 

MATERIAL AND METHOD 

Video Clips 30 
Forty-one panoramic video clips of 12 seconds each were selected for this experiment. First, 3 videos of 

one hour each were taken at 3 road crossings in Paris, France. The video capture system (17) was facing a 32 

crossing area. As the panoramic system was limited to 160° (compared to 360°), the street behind the 

central camera did not appear in the videos. Thus, it was decided as a criterion in the crossroads selection 34 

that this street behind the camera should be one-way (vehicles coming in front of the subjects). 

Crossroads C1 (Convention/Saint-Charles, named after the streets‟ name) and C2 (Ledru-36 

Rollin/Charenton) were regulated by traffic lights, while crossroads C3 (Championnet/Poteau) was not. 

The annual mean traffic at these intersections is 7595 vehicles/day at C1, 7185 at C2 and 4183 at C3. Five 38 

clips from Crossroads C1 were selected for the habituation phase of the experiment, and 18 clips were 

selected of each of C2 and C3. 40 
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Experimental Protocol 

Thirty-two participants took part in this experiment. All participants were recruited at the IFSTTAR, and 2 

reported that they had no visual, hearing, or vestibular deficiencies. They all signed an informed consent 

form. Still, technical problems emerged during the experiment due to voice recording issues (n = 8) and a 4 

clip presentation issue (n = 1). As a result, 23 participants were included in the data analyses, 15 men and 

8 women (mean age: M=35.17; SD=12.88). A short questionnaire at the end of the experiment revealed 6 

that all participants were unfamiliar with the experimental crossroads. 

 8 

(a)      (b) 

FIGURE 1 Virtual reality acquisition (a) and display setup of 162° videos, at scale 1 (b) 10 

 The experiment took place in a Virtual Reality room at the IFSTTAR at Paris (France). The 

subjects faced 6 vertical screens of 2 meters high each, in order to display the 162° panoramic videos at 12 

scale 1 (see Figure 1b). The screens were joined together in order to form a half-circle. The video-

projectors were linked with VGA cables to a PC equipped with 3 Go of RAM and a 3 GHz Intel® Core 14 

Duo processor. Their resolution was 1,400×1,050 pixels each, therefore the projected video on the 6 

vertical screens had a resolution of 6,300×1,400 pixels. In order to stretch out this banner in full screen 16 

mode, we used the VLC free display software (www.videolan.org). Further, two Matrox® M9140 graphic 

cards were linked together, and the use of Matrox® Powerdesk software extended the PC desktop to 6 HD 18 

screens vertically flipped. Finally, the projection room was equipped with a Dolby 5.1 sound system. 

 The participants were instructed to “pay attention to each projected clip, because just after the 20 

projection (they) will have to answer to some questions about it”. They were also told that a picture, 

irrelevant to the experiment (clouds in the sky), would appear on the screens between two clips, and 22 

would stay there till they finished answering the questions, without any time limit to do so. Then, the 

participants were equipped with a digital voice recorder and a tie-pin style microphone. The digital voice 24 

recorder was an Olympus® DS 2000, equipped with a 64MB SmartMedia card. The experimenter 

generated a playlist via the computer, made up of the five training clips in a fixed order, and of the 36 26 

experimental clips in a random order. In consequence, each participant watched a unique combination of 

the experimental clips. After each clip, questions were asked, in order to capture the subject‟s crossing 28 

decision at the moment when the clip stops, and to collect verbal data about the visual stimuli relevant to 

their decision. Altogether, the experiment lasted about 1 hour per participant.  30 

The participants‟ verbatim were transferred to a PC via an appropriate card reader. Then, the experimenter 

listened to the audio files with the DSS Player software. Data were processed via the Statistica and PASW 32 

Statistics softwares. 
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Coding of The Video Clips 

The 36 video clips of crossroads C2 and C3 were coded by an experimenter, independent of the verbal 2 

data collection. This coding used The Observer XT software (Noldus Information Technology).  

The a priori classification of relevant visual items included various theoretical framework. First, due to 4 

potential conflicts (including the gap theory), the vehicles were coded if they could be considered as 

having a potential conflict with the subject, that is, if the vehicle was moving and could possibly cross the 6 

pedestrian‟s trajectory. Then, attention and workload were taken into account by coding the origin of the 

vehicles (from the left vs. from the right), as well as the vehicle‟s position at the end of the clip. The type 8 

of vehicles was coded: car, bus, truck, commercial vehicles, powered two wheels and bicycle. Due to 

social influence on crossing decision, the pedestrians crossing at the same pedestrian crossing than the 10 

participant, as well as their movement (crossing vs. static) and their crossing direction (same vs. opposite 

of the subject‟s direction) were also coded. Finally, to take rule compliance into account, the colour of 12 

pedestrian light was coded at the signalized intersection. 

 14 
FIGURE 2 The near (in red) and far (green) coding areas, 

from the pedestrian’s point of view (in green) 16 

 The coding was done in two steps. First, all a priori variables were coded, which resulted in 22 

objective variables, describing the last second of each video clip. Then, a first data analysis helped us to 18 

merge some variables and dismiss some other, in order to improve the expected explaining power of the 

resulting variables over the Crossing decision variable. From the 22 variables in the first coding, 3 were 20 

dismissed because no occurrence was found in the available data (number of trucks, number of buses and 

number of vehicles situated on the road crossing at the end of the clip). The vehicle‟s position was 22 

simplified, with only two positions in the final coding: Near (already engaged in the crossroads, or 

coming from the right) and Far (not yet engaged) from the pedestrian crossing (see Figure 2). The 24 

pedestrians were distinguished only in terms of motion (static vs. crossing pedestrians). 
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 Finally, the 11 selected objective binary variables were the following: No traffic light, Colour of 

pedestrian‟s light (only in the signalized crossroads), Vehicles on the Left, Vehicles on the right, Vehicles 2 

in the Far area, Vehicles in the Near area, Cars, Two wheels, Commercial vehicles, Static pedestrians, 

Crossing pedestrians. Note that some parameters were not taken into account, while they were expected to 4 

be relevant, because no tool was available in our lab for the coding. It is the case, for instance, for the 

vehicle‟s speed. 6 

Coding Of The Subject’s Answers 

A first series of predictor variables were defined on the basis of the content analysis of the verbal 8 

justifications. To do so, all visual landmarks mentioned by the participants were extracted from their 

verbal productions. Some were then grouped together, on the basis of their identity or identical meanings 10 

in order to form a category (cognitive landmarks, in the sense of Sorrows and Hirtle, 18). Eventually, we 

counted a total of 15 categories to justify one‟s crossing decision. Five visual cues were specific to the 12 

signalized crossroads and addressed the traffic light: Red man, Green man, Red light, Amber light and 

Green light. One was specific to the unsignalized crossroads, and explicitly mentioned the absence of 14 

traffic lights to explain the Crossing decision. Two concerned the pedestrians: Single Pedestrian, and 

Group of pedestrians. Five items referred to the traffic, either directly (Traffic) or in terms of vehicle type 16 

(Truck/Bus, Car, Powered two wheeler, Bicycle). More variables were included, one for Infrastructure 

(Crosswalk, Road surface, etc.), and one for Sounds.  18 

 Finally after a similar analysis for the first coding of the video clips, the coding was merged into 8 

independent variables: Crossing signals (Green man, red light), Not crossing signals (Red man, green 20 

light, orange light), Group of Pedestrians, Single pedestrian, Single vehicle, Traffic, Absence of 

signalization (in the unsignalized crossroads) and Infrastructure. 22 

RESULTS 
One preliminary result concerns the rule compliance in experimental environments. The rate of illegal 24 

behaviour at the signalized crossroads (crossing when the traffic light is green) was 26%. Although the 

video clips are not supposed to be representative of crossroads situations, this value can be compared to  26 

non-compliance rates of 10 to 25% in old observations in France (19), 7 to 14% in recent observations on 

sites with two lanes in Montreal, Canada (20) and 13% in recent observations in Israel (21). This 28 

comparison is interesting with respect to the desirability bias, which is common bias in experimental 

psychology: subjects tend to answer what they expect the experimenter wants to hear. In the current 30 

experiment, we could fear that people would be more compliant than they are in real life. The high non-

compliance rate cited above suggests that this is not the case, and that the experimental setup is relevant 32 

to investigate crossing decisions. 

Statistical Analysis 34 
The experimental data finally included 23 subjects and 36 clips, which results in 828 Decisions (414 for 

the signalized, and 414 for the unsignalized crossroads). Statistical analyses used the Crossing decision as 36 

the dependent variable (to be explained). The first series of analyses considered the objective (video 

coding) variables as independent variables, and is referred to as the “objective” model. The second series 38 

considered the verbal justifications as independent variables, and is referred to as the “subjective” model.  

To explain the Crossing decision, two binary logistic regressions were computed for the two sets of 40 

explaining variables (objective and subjective). The models were computed with the SPSS software, 

using the likelihood descendent algorithm for selecting the variables which increase the discriminatory 42 

power of the model about the Crossing decision. The main output indexes were the model‟s prediction 

(from the confusion matrix), and Nagelkerke‟s R2 estimate, and Wald‟s p-value. 44 
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 Table 1 shows the model‟s selected variables, along with their coefficient and their p-values. This 

model leads to 70.3% of correct predictions. The estimated R2=0.285 is quite low. Surprisingly, the global 2 

model based on subjective variables (Table 2), which was expected to be closer to the actual decisions, 

only predicts 58.0% of the crossing decisions (with an estimated R2=0.051, which is very small, and even 4 

smaller than the “objective” model). This result could be explained by the number of variables involved 

in the models (8 for the objective model and 4 for the subjective model). 6 

TABLE 1 Model Computed from the Objective Variables, from a Binary Logistic Regression. 

Incentive variables are in Green, Inhibitive Variables are in Orange 

 Coefficients p 

Constant 4.347 0.000 

Pedestrian red light -4.314 0.000 

No traffic light -3.152 0.000 

Cars -0.939 0.000 

2 wheels -0.837 0.000 

Vehicles from the right -0.518 0.004 

Static pedestrians -0.387 0.009 

Vehicles in the far area 0.922 0.001 

Crossing pedestrians 0.282 0.003 

 

TABLE 2 Model Computed from the Subjective Variables, from a Binary Logistic Regression 

 Coefficients p 

Constant -0.500 0.008 

Single pedestrian -0.686 0.015 

„No cross‟ signal  -0.266 0.081 

Single car 0.300 0.003 

Group of pedestrians 0.436 0.006 

 8 

 The low quality of these models and the weight of visual cues only present at signalized crossroad 

suggest that better models for Crossing decisions should emerge by distinguishing analysis for signalized 10 

and unsignalized crossroads. 

Separated Objective Models 12 
Separate data analyses were performed on signalized and unsignalized crossroads. As only one site of 

each crossroad type was present in our data, difference between the two situations could be related to the 14 

site specificity (including the level of traffic) or to the presence of traffic light. However, for practical 

applications in urban planning, these two factors (site and signalization) are not independent; conversely, 16 

the selected sites were selected with the criteria that they were typical (in the sense of urban planning) of 

signalized and unsignalized crossroads in Paris.  18 

 First, binary logistic regressions were performed on the data with decision to cross as the 

dependent variable and variables from the video coding as predictor variables. Two separate regressions 20 

were computed separately, for the signalized crossroads, and for the unsignalized one.  
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Signalized Crossroads 

For the signalized crossroads, 6 from the 10 explicative variables are significant predictors of  the 2 

computed “objective” model of Crossing decision (Table 3): Crossing pedestrians is the only incentive 

variable, while Pedestrian red light, 2 wheels, Static pedestrians, Near position, and Cars are all inhibitive 4 

variables. The model‟s variables and p-values are given in Table 3. The R2 value is 0.456, meaning that 

the model better explains the probability of the Crossing decision than the previous global model. From 6 

the confusion matrix, the predictive power of this model is 80.4 %, which is also much better than 

previously. 8 

 The polarity of the variables in Table 3 is as expected, and the traffic light appears as the main 

quantitative variable. Static pedestrians inhibit the Crossing decision, while pedestrians crossing in the 10 

same time encourage it.  

TABLE 3 Model Computed from the Objective Variables at the Signalized Crossroads 

 Coefficients p 

Constant 4.678 0.000 

Pedestrian red light -4.286 0.000 

2 wheels  -0.918 0.004 

Static pedestrians -0.865 0.001 

Near position  -0.715 0.011 

Cars -0.454 0.044 

Crossing pedestrians 0.472 0.001 

 12 

Unsignalized Crossroads 

For the unsignalized crossroads, 5 from the 9 explicative variables are significant predictors of Crossing 14 

decision in the computed model (see Table 4): Cars, 2 wheels and vehicles coming from the right are 

inhibitive variables, while Vehicles in the Near and the Far areas are incentive variables. There is no 16 

paradox here: a vehicle in the Far area brings a positive coefficient (+2.688), but consider it‟s a car and it 

comes from right, it also brings two negative coefficients (-2.154 and -1.149), with a negative (inhibitive) 18 

result.  

TABLE 4 Model Computed from the Objective Variables at the Unsignalized Crossroads 

 Coefficients p 

Constant 1.367 0.000 

Cars -2.154 0.000 

2 wheels -1.127 0.001 

Vehicles coming from the right -1.149 0.000 

Vehicles in the near Area 0.756 0.015 

Vehicles in the far area 2.688 0.000 

The R² value is 0.134, meaning that the model weakly explains the probability of the Crossing decision. 20 

The predictive power of this model is 57 %, which is poor, even compared to the Global objective model. 

This result suggests that the Crossing decisions at the unsignalized are hard to explain from a rough 22 

description of the pedestrian‟s environment only. 
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Discussion on Objective Models 

Predictive model on crossing decision at signalized crossroads shows that crossing pedestrians encourage 2 

decision to cross. This may be due to social influence (people tend to follow each other, or to mimic other 

people when they don‟t cross), but another explanation is possible: as the model is descriptive rather than 4 

explicative, it may happen that Crossing decision of all the pedestrians depends on the same variables. In 

this case, a correlation would also be expected. The statistical analysis of the subjective data, below, will 6 

show that the pedestrians influence the Crossing decision  since the other pedestrians behaviour is cited 

among the visual cues relevant to take a Crossing decision in the case of signalized and unsignalized 8 

crossraods (see below Table 6). 

 For the predictive model of Crossing decision at unsignalized crossroads, it should be noted that, 10 

although the model is not very predictive, the other pedestrians are not included in the model‟s variable. 

This may be seen as an unexpected result, as one could have guessed that in the absence of mandatory 12 

rule (due to the traffic lights), the crossing decisions could more depend on the other‟s behaviour (social 

influence). 14 

 When comparing the explaining variables for the two “objective” models, it is clear that these two 

kinds of crossroads do not lead to the same Crossing decision mechanisms: only two variables (Cars and 16 

2 wheels) play the same role at both crossroads. This result confirms the fact that looking for a global 

Crossing decision model, irrespective of the crossroad type, is not realistic. 18 

 From the above data, the quantitative model of the Crossing decision is not very useful for 

microscopic simulations of the unsignalized crossroads, due to the low predictive power of the model. 20 

The situation is better on the signalized crossroads, where the normative behaviour (negative correlation 

with the pedestrian red light) leads to a much better prediction. 22 

 Our understanding of these results is twofold. First, one may think that the individual Crossing 

decision cannot be derived only from the objective description of the surrounding environment, and 24 

individual factors are expected to play a role as well. This is obvious, looking at the Crossing decision 

data: on each video clip, a certain amount of subjects decide to cross, while the remaining does not. 26 

Hence, their decision cannot be explained by their environment alone, as they experienced the very same 

traffic scenes (subjects should cross at 46% (+/- 13%) of the crossroads).  28 

 The second observation is that one may discuss the relevance of the proposed explaining 

variables, and suggest new and more relevant variables. For instance, we have mentioned earlier the 30 

vehicle‟s speed, which was not available in the present study, and which may have contributed to the 

subject‟s Crossing decision. Such new objective variables may be included in a future work, and image 32 

processing techniques would help here, in order to estimate the cars and pedestrian‟s speeds from the 

video clips. 34 

Separated Subjective Models 

Signalized Crossroads 36 

Binary logistic regressions were computed from the verbal justification of the Crossing decision at the 

signalized and unsignalized crossroads separately. Table 5 shows the model computed for the signalized 38 

crossroads. The R² value is 0.103, meaning that the model weakly explains the Decision to cross. From 

the confusion matrix, the predictive power of this model is 65.2 %, which is a little better than using the 40 

previous global subjective model, however not much.  

 42 
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TABLE 5 Model computed from the subjective variables at the signalized crossroads 

 Coefficients p 

Constant -0.671 0.000 

Single pedestrian -1.535 0.014 

No cross signal  -0.383 0.083 

Infrastructure 0.459 0.062 

Single vehicle 0.535 0.000 

 

 Four factors are significant to explain the Crossing decision: the mention of a single pedestrian 2 

and the pedestrian red light are inhibitive factors, while infrastructure elements and presence of a single 

vehicle are incentive factors. The polarity of these factors suggests that the participants mentioned the 4 

presence of another pedestrian in order to explain their Decision not to cross, and mentioned specific cars 

in the videos in order to explain their Decision to cross (e.g. about its low speed, etc.). Unfortunately, the 6 

classification of the subjective coding does not allow testing these hypotheses at this stage. 

 Looking at the model itself, the most striking result is that the “No cross signal” (red man or 8 

green light) is included in the model, however with a small contribution (-0.383) and a p-value above 

0.05. The “Cross signal” (green man, red light) is not included. This can be compared to objective data, 10 

where the traffic light‟s colour is the main predictor of the crossing Decision. The comparison suggests 

that the Crossing decision actually depends on the colour of the traffic light, whereas the participants 12 

focused on other factors. 

Unsignalized Crossroads 14 

For the unsignalized crossroads, only 3 factors were significant (Table 6), all incentive of the Decision to 

cross: Absence of signal (allowing crossing, because it is not forbidden), Traffic and Single pedestrian. 16 

Note that pedestrians are used here to explain the Crossing decision, while they were used to explain the 

not crossing decision at the signalized crossroads.  18 

TABLE 6 Model computed from the subjective variables at the unsignalized crossroads 

 Coefficients p 

Constant -0.456 0.004 

Absence of signal 0.820 0.020 

Traffic 0.408 0.050 

Single Pedestrian  1.185 0.000 

 

 The R² value is 0.108, meaning that the model weakly explains the Decision to cross. The 20 

predictive power of this model is 62.3 %. These values are higher than with the global subjective model, 

and of the same order of magnitude as for the signalized crossroads. This is another unexpected result: 22 

while the regression model is much better, with objective data, at the signalized crossroads, this difference 

does not hold with the subjective data. 24 

 Comparing the two subjective models, the striking result is that no variable have the same 

contribution in the two models. This definitely confirms our hypothesis that the Crossing Decision does 26 

not use the same kind of visual cues at the two kinds of crossroads, or does not use them in the same way.  
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DISCUSSION 
Several results emerge from this work. First, quantitative models are proposed in order to predict the 2 

pedestrian‟s crossing decision at a crossroads, for people unfamiliar with this crossroads. The so-called 

“objective” models, based on a description of the pedestrian‟s environment, allow an easy implementation 4 

in a microscopic traffic simulation. The “subjective” ones, based on the subjective report of the subject‟s 

motivation to cross, are not so easy to implement, because no model of information selection is proposed 6 

here, and this is the subject of a future work. The first step in this direction would be to understand what 

items are present in the environment, and not reported in the Decision‟s motivation. 8 

 Second, both approaches show a strong difference between signalized and unsignalized 

crossroads. Of course, traffic lights explain this difference, being a major explaining variable in both the 10 

objective and subjective models. However, one cannot say that the difference is only due to traffic light. 

As the selected crossroads were typical of signalized and unsignalized crossroads in Paris, the difference 12 

may describe the urban crossroads typology rather than the presence/absence of traffic lights, and further 

studies are needed with more crossroads, in different cities and countries. 14 

 The signalized crossroads leads much better predictive models of Crossing decision, both by 

objective and subjective variables, than the unsignalized one. The fact that objective variables can hardly 16 

explain the decision at unsignalized crossroad is related to the absence of normative behaviour with 

respect to the traffic lights, but it also shows that no socially shared implicit rules replace the explicit legal 18 

rules. Thus, one may guess that the subjects are more likely to use individual strategies. Moreover, these 

strategies seem unavailable through the verbal data, as the justification people give to explain their 20 

behaviour is weakly correlated to the effective Crossing decision. This second and important result 

suggests that the crossing strategy, at unsignalized intersections, is mostly automatic and non conscious, 22 

compared to what happens at signalized crossroads. 

 The objective models are always better, in terms of behaviour prediction and for fitting the real 24 

probabilities but also more complex (as there are more variables). This result is puzzling, and one 

explanation may be that verbal justification, posterior to the crossing decision, is more a re-construction 26 

of the decision than the decision itself. This result needs further research, because it suggests (as we have 

just proposed) that the Crossing decision is mainly non conscious, that is, guided by automatic processes, 28 

even in an experimental setup such as the one which is used here. 

 Our work in the present paper may also be seen as a direct contribution to traffic simulation 30 

models, which is one of our initial objectives, as it includes a quantitative implementation of the crossing 

decision, with the regression models. Our results suggest separated models between two situations, 32 

signalized and unsignalized crossings. The so-called “objective” models seems more useful than the 

“subjective” models for a first practical implementation. Indeed, the structure of the objective models is 34 

easier to implement, as the objective variables can be computed from the pedestrian‟s spatial 

environment. But the perception of the environment by a simulated pedestrian with the objective model 36 

could be considered as determinist (visual cues are present or not). Moreover, many research show that 

perception is an individual process, and in this way the subjective model allows us to build a non 38 

determinist model. 

 For a practical implementation, it should be noted however that Lobjois and Cavallo‟s results (22) 40 

suggest that the decision to cross may be overestimated in our model, due to the fact that the subjects did 

not actually cross the virtual street in the experimental condition. A quantitative evaluation of this possible 42 

overestimation would need new experiments. 

 Future work is also needed for a better understanding of the decision to cross. Of course, our 44 

results need to be confirmed in more situations, with various kinds of traffic lights and road crossing 

designs. This would lead to a classification of road crossings, on the basis of the visual landmarks 46 
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pedestrians use in order to make their crossing decision. Another important issue would be to propose a 

new methodology to understand the relevant visual landmarks, given that verbal data were very weakly 2 

correlated to the Crossing decision. 
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