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Abstract

In the context of computer vision, matching can be done usingcorrelation
measures. This paper presents the classification of fifty measures into five
families. In addition, eighteen new measures based on robust statistics are
presented to deal with the problem of occlusions. An evaluation protocol is
proposed and the results show that robust measures (one of the five families),
including the new measures, give the best results near occlusions.

1 Introduction
One of the goals of stereovision is to find the third dimensionfrom two images taken from
two different angles. While searching for the third dimension, two other problems occur:
calibration and matching. Matching is an important task in computer vision, the accuracy
of the three-dimensional reconstruction depending on the accuracy of the matching. The
problems of matching are: intensity distortions, noises, untextured areas, foreshortening
and occlusions. A lot of matching algorithms have been proposed and compared [7, 8, 18]
to take these problems into account. The present paper only deals with matching using
correlation measures.

In this context, we consider that a correlation measure evaluates the similarity between
two data sets: two pixels and their neighbourhoods. Some of the correlation measures
(classical measures, derivative-based measures and ordinal measures) have been studied
and compared [1, 2, 7, 12, 21, 22]. However, the choice of one correlation measure
is difficult so they must first be classified. Here, we are particularly concerned with the
occlusion problems and we want to determine the most efficient measures near occlusions.

First, the commonly used correlation measures are presented and classified into five
families. The measure properties are also given. Second, eighteen new correlation mea-
sures that are robust near occlusions are proposed. In a scene, depth discontinuities in-
duce occlusion problems. Pixels with a different depth fromthe pixel being studied may
be considered as outliers. The tools of robust statistics are insensitive to outliers, so,
our measures are based on robust statistics. Third, we set upan evaluation protocol that
compares all measures. The results are discussed and conclusions drawn.

2 Taxonomy of the measures
The two grey level images are denoted byI l andI r and the following notations are used:� The size of the correlation windows is:�2n � 1� � �2m� 1� andN � �2n� 1� �2m� 1�,

n, m � IN	 andImax is the maximal grey level;
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 j andI r

x
y are the grey levels of the pixels in the left and right images of coordinates�i � j � and �x�y� and∇v
x
y are the gradient vectors at a pixel�x�y� in the imagev � l �r;� The transposed vectoru is uT , �x
 is the integer part ofx, rank�x� is the rank ofx,

card�X� is the number of elements in setX and the concatenation is noted:�;� The vectorsfv, v � l �r , contain the grey levels of the pixels in the left and right
correlation windows:fv � �� � �Iv

i� p
 j�q � � � �T � p � ��n;n�, q � ��m;m�;� If ∑n
p� �n ∑m

q� �m � ∑A then theLP norms are defined by:�fv �P � �∑A �Iv
i� p
 j�q �P�1�P

P � IN	. The Euclidean norm is noted:�fv � � �fv �2. The scalar product is defined by:
f l � fr � ∑A I l

i� p
 j�qI r
x� p
y�q. The means are noted:fv � 1�N ∑A Iv

i� p
 j�q. The variances
are defined by:var�fv� � �fv �fv �2. Elementi of vectorfv is notedf i

v ;� The Hamming distance is defined by:DHam�f l �fr � � ∑N�1
i�0 sgn�f i

l � f i
r �, with sgn�x� � 0

if x � 0, 1 if x � 0 or �1 otherwise.

The measures were classified into five families: cross-correlation-based measures,
classical statistics-based measures, derivative-based measures, ordinal measures and ro-
bust measures. In tables 1, 2, 3, 4 and 7, the invariance properties (column P) are given.
Measures without property are noted 0. The properties are with the scalarsa� b� c andd:� M �f l � a�fr � b� � M �f l �fr � (noted 1);� M �af l �bfr � � M �f l �fr � (noted 2);� M �af l � b�cfr � d� � M �f l �fr � (noted 3).

The abreviations (column ABR.), the measure type (column T): similarity (S) or dissim-
ilarity (D) and the intervals of variation (column I) are also given. These intervals are
composed of a lower and an upper bound. In the following description, when no explicit
reference is given, the reader should consult [1].

Cross-correlation-based measures Three measures use the scalar product (Table 1).

NAME ABR. DEFINITION I T P

Normalised Cross-Correlation NCC �f l � fr �� �f l ��fr � �0;1 S 2

Zero mean Normalised Cross-Correlation ZNCC NCC�f l � f l 
fr � fr � ��1;1 S 3

Moravec MOR 2�f l � f l � � �fr � fr ����f l � f l �2 � �fr � fr �2� ��1;1 S 0

Table 1: Cross-correlation-based measures.

Classical statistics-based measuresEight measures use the distances (can be nor-
malised, centered or locally scaled), the variances [3] andthe kurtosis [17] (Table 2).

NAME ABR. DEFINITION I T P

Distances DP �f l � fr �P
P �0;Imax

PN D 0

Normalised Distances NDP DP �f l 
fr �� ! �f l �P
P �fr �P

P �0;Imax
PN D 0

Zero mean Distances ZDP DP�f l � f l 
fr � fr � �0;Imax
PN D 1

Zero mean Normalised Distances ZNDP NDP �f l � f l 
fr � fr � �0;Imax
PN D 1

Locally Scaled Distances LSDP �f l � �f l �fr �fr �P
P �0;Imax

PN D 0

Variance of Differences VD var�f l � fr � �0;Imax
2 D 0

Variance of AbsoluteP-powered
Differences

VADP var� "f l � fr "P� �0;Imax
2P D 0

Kurtosis K4 "�f l � fr �4 � 3�f l � fr �2 " �0;Imax
4 D 0

Table 2: Classical statistics-based measures.

Derivative-based measures Eight measures (Table 3) use the following filters to com-
pute the image derivatives:



� The Pratt [13], Shen-Castan [4], Sobel, Kirsh and Laplacianof Gaussian filters;� An extension of the Roberts filter:
Rr �Ii 
 j � � �Ii�1
 j � Ii�1
 j � � �Ii 
 j�1 � Ii 
 j �1 � � �Ii�1
 j �1 � Ii �1
 j�1 � � �Ii�1
 j�1 � Ii�1
 j �1 �
The filtered image is binarised using an adaptive threshold such that 15% of the
region of interest (section 3) are greater than this threshold;� Orientation Code Matching, OCM [19]:ci 
 j � # �θi $ j

∆θ

 �∇Ii 
 j � � Γ

L otherwise
with θi 
 j the gra-

dient vector orientation at�i � j � andci 
 j lies between 1 andN% � 2π
∆θ

(N%, the number
of the levels with a constant width∆θ ). The termΓ is a pre-specified threshold level
to ignore the low contrast pixels andL is a large value assigned as a code for them.
In our tests, the constants are:∆θ � π

8 , Γ � 10 andL � 255and the distance used is:

Docm�f l �fr � � ∑N�1
i�0 d� f i

l � f i
r � with d�a�b� � #min& �a � b��N% � �a � b�' if �a � b� ( N%

N% �2 otherwise.

The vectorsRs�fv �, Rk �fv�, Rl �fv�, Rp �fv�, Rr �fv� andRocm�fv� are obtained after using
the Sobel, Kirsch, Laplacian of Gaussian , Pratt, Roberts filters or the OCM respectively.

NAME ABR. DEFINITION I T P

Seitz 1 SESP �Rs�f l � � Rs�fr � �P
P �0;Imax

PN D 3

Seitz 2 SEKP �Rk �f l � � Rk �fr � �P
P �0;Imax

PN D 0

Nishihara NIS Rl �f l � �Rl �fr � �0;N S 0

Nack 1 NA1 Rr �f l � �Rr �fr ��NRr �fr � �0;1 S 0

Nack 2 NA2 NA1�f l 
fr �� �NRr �f l � � Rr �f l � �Rr �fr �� �0;1 S 0

Pratt PRATT ZNCC�Rp �f l � 
Rp �fr �� ��1;1 S 0

Orientation code matching OCM �1�N� Docm�Rocm�f l � 
Rocm�fr �� �0; N)
2  S 0

Gradient field correlation GC 1 � 2∑A �∇l
i* p$ j*q � ∇r

k* p$l*q �� ∑A ��∇l
i* p$ j*q � � �∇r

k* p$l *q ��  �∞;1 S 1

Table 3: Derivative-based measures.

Ordinal measures Six measures (Table 4) use ordered grey levels of the pixels of the
correlation window. This family contains three subfamilies:� The Kaneko measures [10, 11]:bv � �� � �bi

v � � � �T andc � �� � �ci � � � �T , i � 0 � �N � 2

with bi
v � #1 if f i�1

v + f i
v

0 otherwise
andci � #1 � �bi

l � bi
r � if i � 0 or i even

ci �1 otherwise
.

The matrixC has the weightsci on its diagonal and 0 elsewhere;� The Zabih measures [21]:Rrank�fv � � card�& f i
v � f i

v ( f N�2
v � i � �0;N � 1�'� and

Rτ �fv � � , i ξ � f N�2
v � f i

v� with ξ �x�y� � 1 if y ( x or 0 otherwise.� The Bhat measures [2]:πv is a permutation withπ i
v � rank� f i

v�, i � �0;N � 1� and
v � l �r. A permutation compositions is defined bysi � πk

r , k � �π �1
l �i , whereπ �1

l is
the inverse ofπl . This inverse is defined by: ifπ i

l � j then �π �1
l � j � i. The deviation

di
m for si is: di

m � ∑i
j�0 J�sj � i � whereJ�B� � 1 if B is true or0 otherwise.

NAME ABR. DEFINITION I T P

Increment Sign Correlation ISC �1� �N � 1�� �bl �br � �1 � bl � � �1 � br �� �0;1 S 3

Selective Coefficient Correlation SCC C�f l � f l � � �fr � fr �� �C�f l � f l � ��C�fr � fr � � �0;1 S 3

Zabih (LP norm) RANKP �Rrank�f l � � Rrank�fr � �P
P �0;NP*1 D 3

Zabih (Hamming) CENSUS DHam�Rτ �f l � 
Rτ �fr �� �0;N S 3

Bhat and Nayar 1 κ 1 � � max
i-0..N/1

di
m�� 0N�21 ��1;1 S 3

Bhat and Nayar 2 χ 1 � �2dN22
m �� 0N�21 ��1;1 S 3

Table 4: Ordinal measures.



Robust measures Twenty four measures (Table 7) use the tools from robust statistics.
Among these measures, there are:� Four partial correlation measures:

– The Zoghlami measures [23]: The matricesAv have, on their diagonals, the
weightswi

v, applied tof i
v and 0 elsewhere. The transformation used is:Rα �fv� �

Avfv andRα �fv � � 1�Nv ∑N�1
i�0 Ri

α � fv� with Nv � ∑N�1
i�0 wi

v andα � F1 �F2. ZNCC
is used to obtain a map of the maximal scores. With a threshold, the binarisa-
tion of this map gives an occlusion map and finally, ZNCC is used again, with
the weights of the occlusion map (F1). The threshold is the mean of the image
grey levels. The authors proposed other weights:1�2�ZNCC�f l �fr � � 1� (F2).

– The Lan measures [12]: The matricesAα , α � LMS�MVE, have on their diago-
nals, the weightswi

α applied to f i
v and 0 elsewhere. The transformation used

is: Rα �fv� � Aα fv andRα �fv � � 1
Nα

∑N�1
i�0 Ri

α � fv� with Nα � ∑N�1
i�0 wi

α . They use
a robust line fitting ofN data of two dimensions (X � & � f i

l f i
r �T '

i�0��N�1) and
the least median of squares (LMS, the smallest median of the squared residu-
als) or the Minimum Volume Ellipsoid (MVE, the ellipsoid with the smallest
volume that containsh � �N�2
 � 1 points ofX);� The quadrant correlation [9]:Rq �fv � � sgn��fv � med�fv ��� med�fv � med�fv � ��;� The pseudo-norms [6]: the distances (Table 2) with0 ( P ( 1.

First, we suggest to normalise and/or center, like for distances (Table 1), the pseudo-
norms (Table 7) in order to make them more invariant. Second,we propose eighteen new
measures using the following tools from robust statistics (Table 7):� The median absolute deviation,MAD;� The least median of squares, the least trimmed squares [15] and the smooth me-

dian absolute deviation [14]. We replace the squared differences by theP-powered
absolute differences. The ordered values ofx are noted:�x�1:N�1 3 4 4 4 3 �x�N�1:N�1;� Six R-estimators [15, 20] (Table 5):Rk � ∑N�1

i�0 ak �rank� f i
l � f i

r �� � f i
l � f i

r �.
The functionak is monotonous with:ak �0� 3 4 4 4 3 ak �N � 1 �, ∑N�1

i�0 ak �i � � 0 and
ak �i � � Jk ��i � 1�� �N � 1�� with �i � 1�� �N � 1� � �0�1� and5 1

0 Jk �t � dt � 0.

NAME FUNCTION NAME FUNCTION

Wilcoxon J1 �t � � t � 1
2

Optimal
B-robust
estimator

J5�t � � 67879�1:4634 if 0 ; t ; 0:39
1:47φ /1 �t � if 0 :39 ; t ; 0:61
1:4634 if 0:61 ; t ; 1Bounded normal J2 � min�1:4634
max�φ /1 �t � 
 �1:4634��

Median J3�t � � sgn�t � �1�2��
Minimax J6�t � � 67879�1:14 if 0 ; t ; 0:48

φ /1� 1
2 � t/0<5

t/0<1 � if 0 :48 ; t ; 0:52
1:14 if 0:52 ; t ; 1Van der Waerden J4�t � � φ /1 �t �

Table 5: TheJ-functions:φ is the= �0�1� distribution function.� Eight M-estimators [15, 16, 22] (Table 6):Mk �f l �fr � � ∑N�1
i�0 ρk � f i

l � f i
r �.

NAME FUNCTION NAME FUNCTION

L1 � L2 ρ1 �x� � >1 � x2�2 � 1�2 Cauchy ρ5�x� � log�1 � x2�
Fair ρ2 �x� � "x" � log�1� "x"� Welsh ρ6�x� � �1 � e/x2 �

Tukey ρ3�x� � ?�1 � �1 � x2�6� if "x" ; 1
1 otherwise

Huber ρ7�x� � ?x2�2 if "x" ; 1:35
1:35� "x" � 0:67� otherwise

Geman-McClure ρ4�x� � �x2�2�� �1� x2� Rousseeuw ρ8 �x� � �ex � 1�� �ex � 1�
Table 6: Theρ-functions.



NAME ABR. DEFINITION I T P

Zoghlami and Faugeras 1 ZNCC2 ZNCC�RF1 �f l � 
RF1�fr �� ��1;1 S 3

Zoghlami and Faugeras 2 ZNCC3 ZNCC�RF2 �f l � 
RF2�fr �� ��1;1 S 3

Reweigthed Zero mean Sum of Squared
Differences

RZSSD ZD2 �RLMS�f l � 
RLMS�fr �� �0;Imax
2N D 1

Reweigthed Zero mean Normalised
Cross-Correlation

RZNCC ZNCC�RMVE �f l � 
RMVE �fr �� ��1;1 S 3

Quadrant correlation QUAD ZNCC�Rq �f l � 
Rq �fr �� �0;1 S 3

Pseudo-norm PSEUDOP DP �f l 
fr �, 0 @ P @ 1 �0;Imax
PN D 0

Median Absolute Deviation MAD med"�f l � fr � � med�f l � fr � " �0;Imax D 3

Least Median of Powers LMPP med� "f l � fr "P� �0;Imax
P D 3

Least Trimmed Powers LTPP ∑h/1
i-0 � "f l � fr "P�i:N/1 �0
Imax

Ph D 3

Smooth Median Powered Deviation SMPDP ∑h/1
i-0 � "f l � fr � med�f l � fr � "P�i:N/1 �0
Imax

Ph D 3

R-estimators Rk ∑N/1
i-0 Jk�rank� f i

l / f i
r

N/1 ��� f i
l � f i

r � IR D 3

M-estimators Mk ∑N/1
i-0 ρk � f i

l � f i
r � �0;�∞� D 0

Table 7: Robust measures.

Properties of the measures The first three families are not robust near occlusions be-
cause they use the tools of classical statistics that are very sensitive to outliers. Only
centered and/or normalised measures, SESP and GC support intensity distorsions. As
the ordinal measures use ranks, they support intensity distortions. They also tolerate
outliers. But, these measures can be ambiguous, for example, with these two vectors:
u � �0 1 22 35 46 58 61 121 189�T andv � �0 2 42 60 81 100 123 124 125�T . When the two
vectors are the same (u andu) and when they are different (u andv), the optimal score
is obtained: these measures can find erroneous correspondences. The robust measures
support intensity distortions. All the new measures are robust near occlusions because
they use robust estimators. Theρ-functions of Mk do not have a large value for a large
difference of grey level which induces the robustness of Mk. To be robust, theρ-functions
should be constant for large values and grow slowly (likef �x� � x) for small values.

3 Evaluation protocol
Five pairs of images with ground truth are used but, for spaceconstraints, only three pairs
are presented:� The random-dot stereogram: These synthetic images (256A256) contain two planes

with an occlusion on the left of the closest plane;� The “map” images (286A 216) and the “sawtooth” images (434A380) [18]: These
real images were made up piecewise of planar objects (typically posters or paint-
ings, some with cut-out edges).

In the disparity maps, the clearer the pixel is, the closer the point to the image plane
and the larger the disparity. The black pixels are occluded pixels. All the pairs of real
images can be found at:http://www.middlebury.edu/stereo/data.html .

Seventeen criteria were chosen:� Percentage of correct and false matches;� Percentage of accepted matches: if the distance between thecalculated and the true
correspondent is one pixel then the calculated correspondent is accepted. When the
percentage of correct matches is low, if this criterion is large then the measure gives
a good estimation of the disparities;



� Percentage of false positives and false negatives: the measure finds the pixel is
matched whereas it is not matched and vice versa;� Maximum and mean squared errors (in pixels): maximum or meanEuclidean norms
between the calculated matched pixels and the true matched pixels;� Percentage of correct matched pixels in occluded areas: themorphological dilation
of the set of pixels with no corresponding pixels in the otherimage of the pair is
considered. The results in the set of pixels without correspondent and in the set of
pixels near the pixels without correspondent are distinguished (Figure 1);� Maximum and mean ambiguity and maximum inaccuracy [5] (Figure 2);� Execution time and disparity maps.

Random-dot stereogram “Map” images “Sawtooth” images
(a) (b) (a) (b) (a) (b)

(c) (d) (c) (d) (c) (d)

(a) Left (b) Right (c) Disparity map (d) Occluded areas, black: pixels without corre-
spondent, grey: region around the black pixels set dilated by the correlation window.

Figure 1: Images, ground truth and occluded areas.
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Figure 2: Ambiguity and inaccuracy computations.

Our algorithm is minimal to highlight only the measure behavior. The parameters of
the algorithm are the size of the correlation window and the region of interest. A square
correlation window (the size grows from 3A 3 to 25A 25) and a region of interest limited
to the size 61A 1 (30 pixels before and 30 pixels after the pixel of interest)are chosen.
For each pixel in the left image, the algorithm is:

1. The region of interest is determined in the right image;
2. For each pixel in the region of interest, the correlation score is evaluated;
3. The pixel giving the largest score is the matched pixel.
This algorithm only uses similarity measures so each dissimilarity measure is changed

into a similarity measure by taking the opposite. Moreover,a bidirectional constraint is
added in order to try to locate the occluded pixels. The correlation is performed twice by
reversing the roles of two images. The matches for which the reverse correlation falls on
the initial point in the left image are considered as valid.



4 Experimental results

In tables 8 to 10, the following abreviations are used: correct matches (COR), false
matches (FAL ), accepted matches (ACC), false positives (FPOS) , false negatives (FNEG),
maximal and mean squared errors (MASE, MSE), maximal and mean ambiguity (MAA,
MA), maximal inaccuracy (MA I), correct in the dilated part of the set of occluded pix-
els (DIL ), in the set of occluded pixels (OCC), in the set of pixels near occluded pixels
(NOCC) and execution time (TPS). The results are given for the best window size. For
each family, one measure that gives the best results is shown(for the robust measures, two
measures). In the tables, the best result is emphasised for each column.

Random-dot stereogram The first and second families give good results in non-oc-
cluded regions (the best are D1 and ZNCC). The derivative-based measures lead to the
worst results, except GC (Table 8). The robust measures (in particular RZSSD, RZNCC,
PSEUDOP, LTP2, MAD, SMPD2, LMP2, M3, M4, M6 and M8) give the best results, the
percentage of correct matches is high and the maximum and mean square errors are low
(Table 8). For the execution time, among the results shown inthe Table 8, MAD and
GC are the most expensive. In fact, the measuresκ , χ , PSEUDOP, RZSSD and RZNCC
are the most expensive. Generally, normalised and/or centered measures have a larger
execution time than the others. So, these measures should beused only when there are
intensity variations between the two images. The larger thewindow size is, the lower the
ambiguity and inaccuracy (Figure 3). In the first family, thenormalised and centered mea-
sures (ZNCC and MOR) are less ambiguous and inaccurate than the normalised measure
(NCC) because the variation interval of ZNCC and MOR is larger than that of the measure
NCC. The derivative-based measures give ambiguous and inaccurate results, except GC.
Among the ordinal measures, SCC gives good results (one of the best) whereas the other
measures give worse results than the other families. For therobust measures, with small
window (smaller than 7A7), the partial measures, MAD, LMPP and LTPP have the worst
ambiguity and inaccuracy values whereas the PSEUDOP, Mk give the best results (with
SCC).

ZNCC D1 GC RANK1 MAD LTP2

Figure 3: Disparity maps, random-dot stereogram, 7A 7.

NAME
COR

(%)
FAL

(%)
FPOS

(%)
FNEG

(%)
MASE

(pix)
MSE

(pix)
MAA
(pix)

MA
(pix)

MA I
(pix)

DIL

(%)
OCC

(%)
NOCC

(%)
TPS

(s)

ZNCC 97.6 0.7 0.2 1.4 18 0.06 54 0.11 2 81 86 59 8

D1 97.7 0.6 0.4 1.3 10 0.06 59 0.14 4 81 78 59 9

GC 96 0.8 0.3 2.9 10 0.07 59 0.15 3 83 84 60 40

RANK1 96.6 1 0.3 2.1 10 0.09 59 0.15 3 81 79 60 9

MAD 98.4 0.1 0.3 1.2 10 0 60 0.16 5 85 80 61 80

LTP2 98.4 0.1 0.4 1.1 10 0 39 0.13 8 83 73 61 43

Table 8: Random-dot stereogram results, 7A 7.



“Map” images The results of the first three families are poor near occludedareas. The
ordinal measures lead to good results near occlusions but give the worst disparity maps.
The new robust measures provide satisfactory results (Table 9) and are not always more
expensive than the others (e.g. M1E3E4E7). They have the best results near occlusions (Fig-
ure 4, the occluded area in the left of the first plane). The measure LTPP, having very
good results and a clear disparity map, gives the worst results for ambiguity and inaccu-
racy, with small windows, because it can attribute a high score (close to the maximum
score) to two non-correspondent pixels.

ZNCC D1 GC κ SMPD2 R3

Figure 4: Disparity maps, “map”, 9A 9.

NAME
COR

(%)
ACC

(%)
FAL

(%)
FPOS

(%)
FNEG

(%)
MASE

(pix)
MSE

(pix)
MAA
(pix)

MA
(pix)

MA I
(pix)

DIL

(%)
OCC

(%)
NOCC

(%)
TPS

(s)

ZNCC 33 58 58 0.9 8.4 24 0.68 60 0.63 36 67 86 51 11

D1 33 58 59 0.7 7.7 24 0.67 53 1.6 46 70 89 54 11

GC 33 59 60 1 6.8 24 0.74 60 0.38 5 70 82 62 56

κ 32 49 50 0.5 19 55 0.53 59 0.63 18 70 92 50 419

SMPD2 35 56 56 0.4 8 23 0.6 60 6.02 60 77 93 64 131

R3 33 58 58 0.7 7.7 24 0.67 54 1.82 46 70 89 54 120

Table 9: “Map” results, 9A 9.

“Sawtooth” images Near occlusions, the robust measures are again the most efficient
(Figure 5, the occluded area in the left of the “sawtooth”). .

ZNCC D1 GC SCC LTP2 M3

Figure 5: Disparity maps, “sawtooth”, 9A 9.

NAME
COR

(%)
ACC

(%)
FAL

(%)
FPOS

(%)
FNEG

(%)
MASE

(pix)
MSE

(pix)
MAA
(pix)

MA
(pix)

MA I
(pix)

DIL

(%)
OCC

(%)
NOCC

(%)
TPS

(s)

ZNCC 53 37 40 1.2 6 38 0.5 59 0.56 42 61 69 55 29

D1 54 37 40 1 6 28 0.5 60 2.27 58 64 76 54 29

GC 55 37 39 1.5 4 26 0.5 59 0.16 11 62 62 61 155

SCC 53 37 40 1.2 6 38 0.5 60 0.58 41 61 69 55 235

LTP2 54 35 38 0.6 8 30 0.4 60 6.11 60 73 86 64 225

M3 54 38 39 0.8 6 27 0.5 60 0.82 50 68 81 58 276

Table 10: “Sawtooth” results, 9A 9.

Summary of the results Among all the measures studied, those of the two first fam-
ilies, GC (derivative-based measure) and SCC (ordinal measure) give good results. In
contrast, derivative-based measures are not efficient. Ordinal measures that are efficient
in occluded regions are not really efficient in non-occludedareas. Robust measures are the
most efficient particularly partial correlations, PSEUDOP, MAD, LMPP, LTPP, SMPDP,



Rk and Mk. However, some of these measures are not as efficient as classical measures in
non-occluded areas: the partial correlations, MAD and LMPP. If the execution time, the
ambiguity and the inaccuracy are taken into account, the measures MAD, LMPP, LTPP,
SMPDP and Rk are less efficient. Finally, with all the tests that have beendone, the M-
estimator-based measures lead to the best results, the bestdisparity maps and a reasonable
execution time.

5 Conclusion
Firstly, this work classifies correlation measures into fivefamilies. The description of
the properties of these measures can help in the choice of a correlation measure. Then,
eighteen new robust measures are proposed. The results showthe most efficient measures:
the robust measures and in particular, all the M-estimator-based measures. Among the
proposed measures, some points might be improved: some measures (LTPP, Rk, MAD
and LMPP) have a high execution time. In fact, the measure implementation was not
optimised so the execution times are not the best that can be obtained. A lot of methods
can be used to improve this implementation. Moreover, the eighteen new measures can
be integrated in a matching algorithm. In fact, robust measures are very efficient near
occlusions but some measures, like GC, are more efficient than robust measures in non-
occluded areas. So, our future work will be to develop a robust matching algorithm that
will use both robust and non-robust measures.
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