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Abstract

In the context of computer vision, matching can be done usorgelation
measures. This paper presents the classification of fiftysorea into five
families. In addition, eighteen new measures based on rabatistics are
presented to deal with the problem of occlusions. An evalogirotocol is
proposed and the results show that robust measures (orefofafamilies),
including the new measures, give the best results neargonkst

1 Introduction

One of the goals of stereovision is to find the third dimen&iom two images taken from
two different angles. While searching for the third dimemsitwo other problems occur:
calibration and matching. Matching is an important taskamputer vision, the accuracy
of the three-dimensional reconstruction depending on ¢eeracy of the matching. The
problems of matching are: intensity distortions, noisedextured areas, foreshortening
and occlusions. A lot of matching algorithms have been psed@nd compared [7, 8, 18]
to take these problems into account. The present paper ealg evith matching using
correlation measures.

In this context, we consider that a correlation measurauet@s the similarity between
two data sets: two pixels and their neighbourhoods. Sombeotorrelation measures
(classical measures, derivative-based measures andibna@asures) have been studied
and compared [1, 2, 7, 12, 21, 22]. However, the choice of areelation measure
is difficult so they must first be classified. Here, we are paléirly concerned with the
occlusion problems and we want to determine the most effinieasures near occlusions.

First, the commonly used correlation measures are prasantt classified into five
families. The measure properties are also given. Secoghtesin new correlation mea-
sures that are robust near occlusions are proposed. In a,stepth discontinuities in-
duce occlusion problems. Pixels with a different depth ftbmpixel being studied may
be considered as outliers. The tools of robust statistiesiragensitive to outliers, so,
our measures are based on robust statistics. Third, we set apaluation protocol that
compares all measures. The results are discussed and sionsldrawn.

2 Taxonomy of the measures

The two grey level images are denotedibgndi” and the following notations are used:
e The size of the correlation windows i&€n+ 1) x (2m+1) andN = (2n+ 1)(2m+ 1),
n, me IN* andlimayx is the maximal grey level;



. Ii',j andi; , are the grey levels of the pixels in the left and right imadesoordinates
(i,j) and(x,y) andl, are the gradient vectors at a pixgly) in the image/=1,r;

e The transposed vectaris u', |x| is the integer part of, rankx) is the rank of,

cardX) is the number of elements in s¢tand the concatenation is notegt;

e The vectordy, v = I,r, contain the grey levels of the pixels in the left and right

correlation windowsty = (-1 o " )T, pe[—nn], g€ [-mm|;

o If 57 S0 m=ya then theLp norms are defined byjify|lp = (Sall¥,p1ql")*"

P < IN*. The Euclidean normis noteftfy|| = ||fv||2. The scalar productis defined by:
fi-fr = Sallip jrqlxtpy+q- The means are notet:= 1/N YAl p,jtq- The variances
are defined byvar(fy) = (,.—%.,)2. Element of vectorfy is notedf, ;

e The Hamming distance is defined am(fi, fr) = 3Nt sgn| f{ — fi|, with sgr(x) =0

if x>0, 1if x=0o0r—1 otherwise.

The measures were classified into five families: cross-tadioa-based measures,
classical statistics-based measures, derivative-basedures, ordinal measures and ro-
bust measures. In tables 1, 2, 3, 4 and 7, the invariance piegpécolumn P) are given.
Measures without property are noted 0. The properties atetheé scalars, b, c andd:

o M(fi+af +b)=M(f,f) (noted 1);

o M(af},bfr) = M(fi,f) (noted 2);

e M(af| +b,cf, +d) =M(f,,fr)  (noted 3).

The abreviations (column #R.), the measure type (column T): similarity (S) or dissim-
ilarity (D) and the intervals of variation (column I) are algiven. These intervals are
composed of a lower and an upper bound. In the following digtson, when no explicit
reference is given, the reader should consult [1].

Cross-correlation-based measures Three measures use the scalar product (Table 1).

NAME ABR. DEFINITION | T P

Normalised Cross-Correlation NCC (fi-f) NI [0;7 S 2
Zero mean Normalised Cross-Correlation ZNCC NGC T, fr —fr) -1y s 3
Moravec MOR  Zfi—f)-(f =F)/(If =RI2+If =F1>) [~ S ©

Table 1: Cross-correlation-based measures.

Classical statistics-based measuresEight measures use the distances (can be nor-
malised, centered or locally scaled), the variances [3]thadkurtosis [17] (Table 2).

NAME ABR. DEFINITION I T P

Distances B [Ifi =f]1p" [0;lmax”N] D 0
Normalised Distances ND De(fi, ) /A/IIfi 1T I l1o© [0;1max"N] D 0
Zero mean Distances zD Dp(f =T, = T7) [0:Imax"N] D 1

Zero mean Normalised Distances ZND NDp(f; = fi,fr — ;) [0;Imax”N] D 1
Locally Scaled Distances LSD (If = G /)l [0;Imax”N] D 0
Variance of Differences VD véfi —f;) [0;Imax?] D 0
Variance clg‘i?:rsec;lg;e:—powered VADp var(|f; —f, |P) [0 1max™] D o
Kurtosis Kq [(F=f)*—3(f =f,)2| [0;1max’] D 0

Table 2: Classical statistics-based measures.

Derivative-based measures Eight measures (Table 3) use the following filters to com-
pute the image derivatives:



e The Pratt [13], Shen-Castan [4], Sobel, Kirsh and LaplaofgBaussian filters;
¢ An extension of the Roberts filter:
Re(lii)=lit1,j — ligjl + [l j41 — lij—1] + Mg jo1 — liczjaa] + Mizgj1 — licpj-1l
The filtered image is binarised using an adaptive threshaotth $hat 15% of the
region of interest (section 3) are greater than ghis thriesho
¢ Orientation Code Matching, OCM [19¢; j = {LA_;J 1 ,> r
L otherwise
dient vector orientation dt, j) andc; ; lies between 1 anty’ = i—’; (N, the number
of the levels with a constant widtky). The termT is a pre-specified threshold level
to ignore the low contrast pixels amnds a large value assigned as a code for them.
In our tests, the constants amg = §, I = 10andL = 255and the distance used is:
min{la—b|,N'—|a—b|} if |a—b] <N
N'/2 otherwise.
The vectorRs(fy), Re(fv), Ri(fv), Rp(fv), Rr(fv) andRoen(fy) are obtained after using
the Sobel, Kirsch, Laplacian of Gaussian , Pratt, Robetésdibr the OCM respectively.

with 6 ; the gra-

Docn(f1,fr) = SNoHd(f, fi) with d(a,b) = {

NAME ABR. DEFINITION | T P

Seitz 1 SES IRs(f1) = Rs(fe)|lp" [0/lma’N] D 3

Seitz 2 SEK IR«(f1) = Ru(fe)[lp" [0/lma’N] D 0O
Nishihara NIS R(fi)-Ri(fr) [O;N] S 0

Nack 1 NA R (f) - R (fr)/NR. (Fr) [0;1 S 0

Nack 2 NA NA1(fi, ) /(NR:(f) = Re (F1) - Re(fr)) [0;1] S 0

Pratt PRATT ZNCQRy(f1),Rp(fr)) -1 s o
Orientation code matching ~ OCM (1/N) Docm(Roem(fi), Roem(fr)) [0; NT’] S 0
Gradient field correlation GC l_ZZA”D=+p,j+q_DL+p,|+q”/ZA(HDL—D,HQH+”DL+p,I+q”) ]—;1] S 1

Table 3: Derivative-based measures.

Ordinal measures Six measures (Table 4) use ordered grey levels of the pixeleo
correlation window. This family contains three subfanslie
e The Kaneko measures [10, 18y = (---b,---)T andc=(---¢---)T,i=0--N—2
1 0f it > f) i J1-|bj bl ifi=0o0rieven
0 otherwise “T et otherwise '
The matrixC has the weights' on its diagonal and 0 elsewhere;

e The Zabih measures [21fRank(fv) = card {fi | fi < f1/2, i € [0;N — 1]}) and
Re(fy) = ®; E(F0V2, i) with £(x,y) = 1if y < x or 0 otherwise.

e The Bhat measures [2], is a permutation withr, = rank(f), i € [O;N — 1] and
v=1,r. A permutation compositiosis defined bys = 7, k= (1), wherer ! is
the inverse ofg. This inverse is defined by: if = j then(r~*)} =i. The deviation
dr, for s'is: di, = 3j_oJ(8) > i) whereJ(B) = 1if Bis true or0 otherwise.

with bl, =

NAME ABR. DEFINITION I T P

Increment Sign Correlation ISC (1/(N=12))(by-br +(1—by) - (1—by)) [0:1] S 3
Selective Coefficient Correlation scc  C(fi—f) - (fr —T)/lICH —T)IICE —T)I 01 S 3
Zabih (Lp norm) RANKp [IRrank(f1) — Reank(fr)[lp" [O;NP+] D 3

Zabih (Hamming) CENSUS (R (f1),Re (1)) [O;N] S 3

Bhat and Nayar 1 K 1- (i:fg_‘_%{ld%)/[N/zJ | S 3

Bhat and Nayar 2 X 1-(2dw/?)/IN/2] 17 S 3

Table 4: Ordinal measures.



Robust measures Twenty four measures (Table 7) use the tools from robudsttat
Among these measures, there are:
e Four partial correlation measures:
— The Zoghlami measures [23]: The matriggshave, on their diagonals, the

weightswi,, applied tof} and 0 elsewhere. The transformation use®igf,) =
Avfy andRq (fy) = 1/Ny T NGERG (fv) with Ny = SNotwi, anda = Fi,F. ZNCC
is used to obtain a map of the maximal scores. With a thresttwddinarisa-
tion of this map gives an occlusion map and finally, ZNCC isegain, with
the weights of the occlusion mapJ. The threshold is the mean of the image
grey levels. The authors proposed other weight&ZNCC(f),f;) + 1) (F).

— The Lan measures [12]: The matricks, a = Lms,MvE, have on their diago-
nals, the weightsi, applied tof} and 0 elsewhere. The transformation used
is: Ra(fy) = Aafy andRa(fy) = g 31t Ry (fu) with Ny = s 5'w,. They use
a robust line fitting of\ data of two dimensions«(= {(f )T }izo.n—1) and
the least median of squares (LMS, the smallest median ofhi@red residu-
als) or the Minimum Volume Ellipsoid (MVE, the ellipsoid withe smallest
volume that contains= |N/2| + 1 points ofX);

e The quadrant correlation [9Rq(fv) = sgn((fy — medfy))/ med|fy — medfy)|);

e The pseudo-norms [6]: the distances (Table 2) withP < 1.

First, we suggest to normalise and/or center, like for dista (Table 1), the pseudo-
norms (Table 7) in order to make them more invariant. Secardropose eighteen new
measures using the following tools from robust statisfieble 7):

e The median absolute deviatia AD;

e The least median of squares, the least trimmed squares fitisih@ smooth me-
dian absolute deviation [14]. We replace the squared diffees by thé-powered
absolute differences. The ordered values afe noted{x)1n-1 < ... < (X)N—1:N-1;

e Six R-estimators [15, 20] (Table SR = Nt a(rank(f{ — 1) (f] — ).

The functionay is monotonous witha,(0) < ... < a (N — 1), 3N ac(i)=0and
a(i) = K((i+1)/(N+1)) with (i +1)/(N+1) € [0,1] and f3 k(t) dt = 0.

NAME FUNCTION NAME FUNCTION

Wilcoxon 1) =t Optimal -14634  if0<t<0.39
B-robust  3.(1) = { 1.479-1(t) f0.39<t <061
Bounded normal  J, = min(1.4634 max(¢~1(t),-1.4634) estimator 1.4634 ifoe1<t<1
Median J5(t) = sgrt — (1/2)) . -114 if0<t<048
Minimax  35(t) = { @=1(1+ 28) if0.48<t < 0.52
Van der Waerden Ja(t) = @ (1) 114 if0.52<t<1

Table 5: TheJ-functions:g is the.#(0,1) distribution function.
e Eight M-estimators [15, 16, 22] (Table @)ty (fi,f;) = SR oe(fl = f1).

NAME FUNCTION NAME FUNCTION
Li—Lp pu(X) =vV1+x2[2-1/2 Cauchy ps(x) = log(1+x2)
Fair 02(X) = |X| — log(1+[x]) Welsh Ps(X) = (1—e?)
_Ja-@-x% if|x<1 _xe2 if |x < 1.35
Tukey Pa(X) = {1 otherwise Huber prx) = 1.35(|x| —0.67) otherwise
Geman-McClure pa(xX) = (x2/2)/(14+x?) Rousseeuw ps(x) = (e*—1)/(e*"+1)

Table 6: Thep-functions.



NAME ABR. DEFINITION | T P

Zoghlami and Faugeras 1 ZNGC ZNCC(Re1(f1),Re1(fr)) =11 S
Zoghlami and Faugeras 2 ZNGC ZNCC(Re2(f1),Rea(fr)) =11 S
Reweigthed Zero mean Sum of Squared
9 Difforonaes q RZSSD ZD(Ruws(f), Ruws(fr)) [Oilma®N] D 1
Reweigthed Zero mean Normalised
’ Cross-Correlation RZNCC ZNCQRuve(ft), Ruve(fr)) 14 S 3
Quadrant correlation QUAD ZNQ®y(f1),Rqy(fr)) [0;7] S 3
Pseudo-norm PSEUDO Dp(fi,fr),0<P< 1 [0)lmax™N] D O
Median Absolute Deviation MAD meldf, — f,) —medf; —f;)| [0;1max] D 3
Least Median of Powers LMP med(|f, —f;|F) [Olmax”] D 3
Least Trimmed Powers LFP SR — £ P)inet [0ma’] D 3
Smooth Median Powered Deviation SMPD  SM2(|fi —fr — medfi — ) [P)in-1 [0max’h] D 3
) i_gi o
R-estimators R Sieo! J(rank fyl\l,flr N = f) R D 3
M-estimators M s e(fi = ) 04 D 0

Table 7: Robust measures.

Properties of the measures The first three families are not robust near occlusions be-
cause they use the tools of classical statistics that ane sersitive to outliers. Only
centered and/or normalised measures, S&% GC support intensity distorsions. As
the ordinal measures use ranks, they support intensitgrdists. They also tolerate
outliers. But, these measures can be ambiguous, for examjttethese two vectors:
u=(0122354658 61121 189 andv = (0 2 42 60 81 100 123 124 1¥5. When the two
vectors are the same @ndu) and when they are differenti @ndv), the optimal score
is obtained: these measures can find erroneous correspmsdenhe robust measures
support intensity distortions. All the new measures araisbinear occlusions because
they use robust estimators. Tpefunctions of M do not have a large value for a large
difference of grey level which induces the robustness pf & be robust, the-functions
should be constant for large values and grow slowly (fiké = x) for small values.

3 Evaluation protocol

Five pairs of images with ground truth are used but, for sgaostraints, only three pairs

are presented: o _
e Therandom-dot stereogram: These syntheticimages{256) contain two planes

with an occlusion on the left of the closest plane;
e The “map”images (28& 216) and the “sawtooth” images (43480) [18]: These
real images were made up piecewise of planar objects (tjypizasters or paint-

ings, some with cut-out edges). o _ _
In the disparity maps, the clearer the pixel is, the closemtbint to the image plane

and the larger the disparity. The black pixels are occludrelq All the pairs of real
images can be found dtt t p: / / www. mi ddl ebury. edu/ stereo/ data. html .

Seventeen criteria were chosen:

e Percentage of correct and false matches;

e Percentage of accepted matches: if the distance betweealth#ated and the true
correspondent is one pixel then the calculated correspaiglaccepted. When the
percentage of correct matches is low, if this criterion igésthen the measure gives
a good estimation of the disparities;



e Percentage of false positives and false negatives: theureefinds the pixel is
matched whereas it is not matched and vice versa;

¢ Maximum and mean squared errors (in pixels): maximum or reeefidean norms
between the calculated matched pixels and the true matékeld;p

e Percentage of correct matched pixels in occluded areasadinghological dilation
of the set of pixels with no corresponding pixels in the otineage of the pair is
considered. The results in the set of pixels without comadent and in the set of
pixels near the pixels without correspondent are dististged (Figure 1);

e Maximum and mean ambiguity and maximum inaccuracy [5] (Fédl);

e Execution time and disparity maps.

Random-dot stereogram “Map” images “Sawtooth” images
(a) (b)

b

(@) (b
2

(©) (d) (d)

nr /10

(a) Left (b) Right (c) Disparity map (d) Occluded areas, klggixels without corre-
spondent, grey: region around the black pixels set dilayethd correlation window.

Figure 1: Images, ground truth and occluded areas.

acy

O \/ 1 1 O \/ \/
P2_075Pl P, =P;=0.75P
15

Coordlnates of pixels of region of interest Coordlnates of pixels of region of interest

Correlation scores
Correlation scores

Figure 2: Ambiguity and inaccuracy computations.

Our algorithm is minimal to highlight only the measure bebavThe parameters of
the algorithm are the size of the correlation window and #dggan of interest. A square
correlation window (the size grows from33 to 25x 25) and a region of interest limited
to the size 6X 1 (30 pixels before and 30 pixels after the pixel of interes§ chosen.
For each pixel in the left image, the algorithm is:

1. Theregion of interest is determined in the right image;

2. For each pixel in the region of interest, the correlatioors is evaluated,

3. The pixel giving the largest score is the matched pixel.

This algorithm only uses similarity measures so each ditaiity measure is changed
into a similarity measure by taking the opposite. Moreoadsjdirectional constraint is
added in order to try to locate the occluded pixels. The tatita is performed twice by
reversing the roles of two images. The matches for whichekierse correlation falls on
the initial point in the left image are considered as valid.



4 Experimental results

In tables 8 to 10, the following abreviations are used: adrreatches (OR), false
matches (KL), accepted matches (&), false positives (FBS) , false negatives (FhL),
maximal and mean squared errorsABE, MSE), maximal and mean ambiguity (MA,
MA), maximal inaccuracy (M), correct in the dilated part of the set of occluded pix-
els (DiL), in the set of occluded pixels ), in the set of pixels near occluded pixels
(NOcc) and execution time (#s). The results are given for the best window size. For
each family, one measure that gives the best results is sffonthe robust measures, two
measures). In the tables, the best result is emphasiseddbroalumn.

Random-dot stereogram The first and second families give good results in non-oc-
cluded regions (the best arg Bnd ZNCC). The derivative-based measures lead to the
worst results, except GC (Table 8). The robust measures(ticplar RZSSD, RZNCC,
PSEUD®, LTP,, MAD, SMPD,, LMP,, M3, M4, Mg and M) give the best results, the
percentage of correct matches is high and the maximum and stweare errors are low
(Table 8). For the execution time, among the results showthenTable 8, MAD and
GC are the most expensive. In fact, the measyres PSEUDG, RZSSD and RZNCC
are the most expensive. Generally, normalised and/or m@htaeasures have a larger
execution time than the others. So, these measures shoukskldeonly when there are
intensity variations between the two images. The largeniineow size is, the lower the
ambiguity and inaccuracy (Figure 3). In the first family, tte@malised and centered mea-
sures (ZNCC and MOR) are less ambiguous and inaccuratetibarotmalised measure
(NCC) because the variation interval of ZNCC and MOR is latigan that of the measure
NCC. The derivative-based measures give ambiguous andurete results, except GC.
Among the ordinal measures, SCC gives good results (onesdfdht) whereas the other
measures give worse results than the other families. Faothest measures, with small
window (smaller than % 7), the partial measures, MAD, LMFRand LTR> have the worst
ambiguity and inaccuracy values whereas the PSERIIMY give the best results (with
SCC).

ZNCC RANK; LTP,

Figure 3: Disparity maps, random-dot stereogram,77

CoR FAL FPos FNEG MASE MsE MAA MA MaAl DiL Occ NOcc Tps
%) () ) ) (pix)  (pix)  (pix)  (pix)  (piX) (%) (%) (%)  (9)

ZNCC 97.6 0.7 0.2 14 18 0.06 54 011 2 81 86 59 8

NAME

D, 97.7 0.6 0.4 1.3 10 0.06 59 0.14 4 81 78 59 9

GC 96 0.8 0.3 2.9 10 0.07 59 0.15 3 83 84 60 40
RANK; 96.6 1 0.3 2.1 10 0.09 59 0.15 3 81 79 60 9
MAD 98.4 01 03 1.2 10 0 60 0.16 5 85 80 61 80
LTP; 98.4 01 04 11 10 0 39 0.13 8 83 73 61 43

Table 8: Random-dot stereogram results, 7.



“Map” images The results of the first three families are poor near occludeds. The
ordinal measures lead to good results near occlusions beitige worst disparity maps.
The new robust measures provide satisfactory results¢Tband are not always more
expensive than the others (e.gq bk 7). They have the best results near occlusions (Fig-
ure 4, the occluded area in the left of the first plane). Theswmeal TR, having very
good results and a clear disparity map, gives the worsttsefarl ambiguity and inaccu-
racy, with small windows, because it can attribute a highres¢olose to the maximum
score) to two non-correspondent pixels.

GC K

ZNCC SMPD;

Dy

;‘ﬁ‘

Figure 4: Disparity maps, “map”, 9 9.

NAME CorR Acc FaL FPos FNEG M_ASE M_SE MAA M_A M_AI DiL Occ NOcc Tps
(%) () () () (%) (X)) (ix) (X)) (Pix) (pix) (%) (%) (%) (s)

ZNCC 33 58 58 09 84 24 068 60 063 36 67 8 5111

Dy 33 58 59 07 77 24 067 53 16 46 70 89 54 11

GC 33 59 60 1 68 24 074 60 038 5 70 8 62 56

K 32 49 50 05 19 55 053 59 063 18 70 92 50 419
SMPD, 35 56 56 04 8 23 06 60 602 60 77 93 64 131

Rs 33 58 58 07 77 24 067 54 18 46 70 89 54 120

Table 9: “Map” results, % 9.

“Sawtooth” images Near occlusions, the robust measures are again the mogtmffic
(Figure 5, the occluded area in the left of the “sawtooth”). .

ZNCC GC SCC LTR

M3

Favim AL . it

Figure 5: Disparity maps, “sawtooth”,>99.

NAME Cor Acc FAaL FPos FNEG M_ASE M_SE M{-\A M_A M_AI DiL Occ NOcc Tps
() (%) () (%) (%) (x) (Ex)  (ix) (X)) (PX) (%) ) (%) (5)
ZNCC 53 37 40 12 6 3 05 59 056 42 61 69 55 29
Dy 54 37 40 1 6 28 05 60 227 58 64 76 54 29
GC 55 37 39 15 4 26 05 59 016 11 62 62 61 155
sCC 53 37 40 12 6 38 05 60 058 41 61 69 55 235
LT, 54 35 38 06 8 30 04 60 611 60 73 8 64 225
M3 54 38 39 0.8 6 27 05 60 082 50 68 8L 58 276

Table 10: “Sawtooth” results, 9 9.

Summary of the results Among all the measures studied, those of the two first fam-
ilies, GC (derivative-based measure) and SCC (ordinal oreagiive good results. In
contrast, derivative-based measures are not efficientin@roheasures that are efficient
in occluded regions are not really efficientin non-occludezhs. Robust measures are the
most efficient particularly partial correlations, PSEURMAD, LMPp, LTPp, SMPDs,



Ry and M. However, some of these measures are not as efficient acalassasures in
non-occluded areas: the partial correlations, MAD and kMIPthe execution time, the
ambiguity and the inaccuracy are taken into account, thesarea MAD, LMP, LTPp,
SMPD» and R are less efficient. Finally, with all the tests that have béene, the M-
estimator-based measures lead to the best results, theityeestity maps and a reasonable
execution time.

5 Conclusion

Firstly, this work classifies correlation measures into famnilies. The description of
the properties of these measures can help in the choice afelation measure. Then,
eighteen new robust measures are proposed. The resultsishowest efficient measures:
the robust measures and in particular, all the M-estimba#sed measures. Among the
proposed measures, some points might be improved: somaireed&Th, Ry, MAD
and LMP) have a high execution time. In fact, the measure implentientavas not
optimised so the execution times are not the best that cabtaed. A lot of methods
can be used to improve this implementation. Moreover, thhteen new measures can
be integrated in a matching algorithm. In fact, robust messare very efficient near
occlusions but some measures, like GC, are more efficientribtaust measures in non-
occluded areas. So, our future work will be to develop a romegching algorithm that
will use both robust and non-robust measures.

References

[1] P. Aschwanden and W. Guggenbil. Experimental resttisifa comparative study
on correlation type registration algorithms. In Forstaed Ruwiedel, editordRo-
bust computer vision: Quality of Vision Algorithm#&/ichmann, Karlsruhe, Ger-
many, March 1992.

[2] D. N. Bhat and S. K. Nayar. Ordinal measures for imageespondencelEEE
Transactions on Pattern Analysis and Machine Intelligerz¥{4):415-423, April
1998.

[3] G. S. Cox. Template matching and measures of match in émpigpcess-
ing. Technical report, University of Cape Town, South AdicJuly 1995.
http://ww. di p. ee. uct. ac. za/ i mageproc/ pattern/.

[4] A. Crouzil, L. Massip-Pailhes, and S. Castan. A new datien criterion based
on gradient fields similarity. Ihnternational Conference on Pattern Recognition
volume 1, pages 632—636, Vienna, Austria, August 1996.

[5] O. De Joinville, H. Maitre, D. Piquet Pellorce, and M. & How to design DEM
assessment maps. Rattern recognition in Remote Sensing WorkshAapdorra La
Vella, Andorra, September 2000.

[6] J. Delon and B. Rougé. Le phénomene d'adhérence @éacopie dépend du
critere de corrélation. IGRETS] Toulouse, France, September 2001. (in French).

[7] A. Giachetti. Matching techniques to compute image ot Image and Vision
Computing 18(3):245-258, February 2000.



[8] L. Gottesfeld Brown. A survey of image registration tadues. ACM Computing
Surveys24(4):325-376, December 1992.

[9] P.J. Huber.Robust statisticschapter 8, pages 204—-205. John Wiley & Sons, New-
York, USA, 1981.

[10] S. Kaneko, I. Murase, and S. Igarashi. Robust imagestiegion by increment sign
correlation.Pattern Recognitioy35(10):2223—-2234, October 2002.

[11] S. Kaneko, Y. Satoh, and S. lgarashi. Using selectiveetation coefficient for
robust image registratiofRattern Recognition36(5):1165-1173, May 2003.

[12] Z. D. Lan and R. Mohr. Robust matching by partial cortiela. In British Machine
Vision Conferencgpages 651-660, Birmingham, England, September 1995.

[13] W. K. Pratt. Digital image processingchapter 20, pages 666-667. Wiley-
Interscience Publication, 1978.

[14] P. J. Rousseeuw and C. Croux.-Statistical Analysis and Related Methpgages
77-92. Yadolah Dodge, Amsterdam, Holland, 1999.

[15] P.J. Rousseeuw and A. M. Lerdyobust regression and outlier detectiah Wiley
& Sons, New-York, USA, 1987.

[16] P.J. Rousseeuw and S. Verboven. Robust estimationrjnsrmeall samplesCom-
putational Statistics and Data Analysi#0(4):741-846, October 2002.

[17] M. Rziza, D. Aboutajdine, L. Morin, and A. Tamtaoui. Sha multirésolution
d’estimation d’'un champ de disparités dense sous cotgrapipolaire pour les im-
ages bruitées. IGRETS] Toulouse, France, September 2001. (in French).

[18] D. Scharstein and R. Szeliski. A taxonomy and evaluatioddense two-frame stereo
correspondence algorithmkiternational Journal of Computer Visiod7(1):7-42,
April 2002.

[19] F. Ullah, S. Kaneko, and S. Igarashi. Orientation codsating for robust ob-
ject searchlEICE Transactions on Information and Systeis84-D(8):999-1006,
March 2001.

[20] Y. Wang and D. Wiens. Optimal, robust R-estimators a# $tatistics in the linear
model. Statistics and Probability Letterd 4:179-188, June 1992.

[21] R. Zabih and J. Woodfill. Non-parametric local transfierfor computing visual
correspondence. IRroceedings of the European Conference on Computer Vision
pages 151-158, Stockholm, Sweden, 1994.

[22] Z. Zhang. Parameter estimation techniques: A tutawish application to conic
fitting. International Journal of Image and Vision Computjrié(1):59-76, January
1997.

[23] I. Zoghlami, O. Faugeras, and R. Deriche. Traitemestatlusions pour la modi-
fication d’'objet plan dans une séquence d'imageAdtes du congrs francophone
de Vision par Ordinateur, ORASIBages 93-103, Clermont-Ferrand, France, May
1996. (in French).



