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Abstract

Diagnosis and therapy planning in oncology applications often rely on the joint ex-
ploitation of two complementary imaging modalities, namely Computerized Tomography
(CT) and Positron Emission Tomography (PET). While recent technical advancements
in combined CT/PET scanners provide 3D CT and PET data of the thoracic region with
the patient in the same global position, current image data registration methods do not
account for breathing-induced anatomical changes in the thoracic region, which remains
an important limitation. This paper deals with the problem of 3D registration of CT
thoracic image volumes acquired at two different instants of the breathing cycle and PET
volumes of thoracic regions. In order to guarantee physiologically-plausible deformations,
we present a novel method to incorporate a breathing model in a non-linear registration
procedure. The approach is based on simulating intermediate lung shapes between the
two 3D lung surfaces segmented on the CT volumes and finding the one most resembling
lung surface segmented on the PET data. To compare lung surfaces, a shape registration
method is used, aligning anatomical landmark points automatically selected based on lo-
cal surface curvature. PET image data are then deformed to match one of the CT data
sets based on the deformation field provided by surface matching and surface deformation
across the breathing cycle. For pathological cases with lung tumors, specific rigidity con-
straints in the deformation process are included to preserve the shape of the tumor, while
guaranteeing a continuous deformation.

Keywords: CT, PET, volume registration, thorax, lung, breathing model, landmark points
selection, rigidity constraints
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1 Introduction

Lung radiotherapy has been shown to be effective for the treatment of lung cancer. This tech-
nique requires a precise localization of the pathology and a good knowledge of its spatial extent
to monitor and control the dose delivered inside the body, on both pathological and healthy
tissues. Radiotherapy planning is usually based on two types of complementary image data:
Positron Emission Tomography (PET) image, which provides a good sensitivity in tumor de-
tection and are a reference to compute relevant indices such as SUV (Standardized Uptake
Value), but does not provide a precise localization of the pathology and Computerized Tomog-
raphy (CT) image, which provides precise information on the size and shape of the lesion and
surrounding anatomical structures but provides reduced information about malignancy. Joint
exploitation of the two imaging modalities has a significant impact on improving medical de-
cisions for diagnosis and therapy [1, 2, 3], while requiring registration of the image data. The
registration is important for radiotherapy, additionally to segmentation, given that none of the
two provide all the necessary information. Finally, to visualize the overall pathology in the
lungs, it is required to register the whole volume and not only regions of interest like tumor or
heart regions. In this paper, we investigate the case of thoracic images with lung tumors. An
example of CT and PET images is shown in Figure 1.

(a) (b) (c)

Figure 1: CT images (a,b) corresponding to two different instants of the breathing cycle, end-
expiration (a) and end-inspiration (b), and PET image (c) of the same patient (coronal views)
(patient A of our tests).

Combined CT/PET scanners, which provide rigidly registered images, have significantly
reduced the problem of registering these two modalities [4]. However, even with combined
scanners, non-linear registration remains necessary to compensate for cardiac and respiratory
motions [5]. The most popular approaches are: elastic registration [6], fluid registration [7] and
the demons algorithm [8]. More complete surveys on image registration can be found in the
literature [9, 10, 11].

In the particular case of lungs and lung tumors, the difficulty of the problem is increased as a
result of the breathing and the induced displacement of the tumor. The tumor does not undergo
the same type of deformation as the normal lung tissues; for instance, the tumor is not dilated
during the inspiration phase. As a first approximation, its movement can be considered as rigid.
Unfortunately, most of the existing non-linear registration methods do not take into account
any knowledge of the physiology of the human body nor of the tumors. Some methods have
been proposed to introduce local constraints based on FFD [12], variational and probabilistic
approaches [13], landmark points [14, 15] and local rigidity constraints [16]. Except for the last
one, all these methods do not really take into account the shape of the tumor. Consequently,
all these non-linear methods provide an accurate estimation of the deformation of the surface of
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the lungs, but rigid structures, such as tumors, are artificially deformed at the same time and
the valuable information in the area of the pathology may be lost. This limitation is illustrated
in Figure 2: the tumor suffers non realistic deformations when a global non-linear registration
is applied.

(a) (b) (c)

Figure 2: Non-linear registration without tumor-based constraints. (a) A slice of the original
CT image. (b) Corresponding slice in the PET image. (c) Registered PET. The absence of
constraints on the tumor deformation leads to undesired and irrelevant deformations of the
pathology. In the image in (a), the cursor is positioned on the tumor localization in CT data,
and in the images in (b-c), the cursor points on the same coordinates. This example shows an
erroneous positioning of the tumor and illustrates the importance of tumor segmentation and
the use of tumor-specific constraints during the registration in (c).

In this paper, we propose to overcome these limitations by developing a non-linear registration
method with two key features: a breathing model is used in order to ensure physiologically-
plausible deformations during the registration, and the specific deformations of the tumors
are taken into account, while preserving the continuity of the deformations around them. In
the context of radiotherapy treatment planning, precision requirements for registration, and
delineation of lung and tumor borders, are somewhat alleviated by the use of a security margin
around the tumor. As a consequence, a millimetric precision is not required and it is possible
to work on the PET data without having to cope specifically with its limited resolution and
induced partial volume effects. A precision of 1 or 2 centimeters is typically considered as being
sufficient for such applications.

The proposed method involves first a series of surface registrations and then image volume
registration. Its main components can be summarized as follows:

1. A physiologically driven breathing model is introduced into a 3D non-linear surface regis-
tration process. This model computes realistic deformations of the lung surface. Whereas
several breathing models have been built for medical visualization, for correcting artifacts
in images or for estimating lung motion for radiotherapy applications, few papers exploit
such models in a registration process.

2. Physiology is further taken into account with a landmark-based surface registration, by
selecting anatomical points of interest and by forcing homologous points to match.

3. Volume registration is based on the displacement field identified during surface registra-
tion, combined with rigidity constraints that help preserving the size and shape of the
tumors, as an extension of the method proposed by Little et al. [16]. Constraints on the
heart are introduced as well.
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Figure 3: Registration of CT and PET volumes using a breathing model. Segmentations
are performed on the volumes whereas simulation of lung shapes is based on surface meshes.
Consequently, the first two steps of the registration process are performed on meshes, while the
final step about PET deformations, is computed on the volumes: we obtain a dense registration
of the PET volume to the original CT volume.

This paper is an extended version of our previous work [17]. Moreover, new steps are pro-
posed, in particular the introduction of rigidity constraints on the heart and a quantitative
evaluation of the proposed method. Figure 3 shows the complete computational workflow.
After describing previous works exploiting breathing models for radiotherapy applications in
section 2, each component of the proposed registration method is detailed: segmentation in
section 3, the breathing model and its adaptation to a specific patient in section 4, and the
non-linear registration based on landmark points and rigidity constraints in section 5. Finally,
clinical evaluation and a discussion are presented in section 6.
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2 Overview of Breathing Models and Registration

Currently, respiration-gated radiotherapies are being developed to improve radiation dose de-
livery for lung and abdominal tumors [18]. Movements induced by breathing can be taken into
account at two different levels: during the reconstruction of the 3D volumes and/or during
the treatment. In the case of reconstruction of volumes, the methods depend on the equip-
ment [19, 20]: the respiration signal must be acquired and synchronized with the acquisitions.

In order to take into account breathing during the treatment, three types of techniques
have been proposed so far: active techniques [21], passive or empirical techniques [22, 23, 24,
25, 26], and model-based techniques [27]. We are particularly concerned with the model-based
techniques because the deformations of the surfaces of the lungs can be precisely computed with
these methods and, in opposition to passive methods, a specific equipment is not necessary. Two
main kinds of models can be used: geometrical or physical.

For geometrical models, the most popular technique is based on Non-Uniform Rational
B-Spline (NURBS) surfaces that are bidirectional parametric representations of an object.
NURBS surfaces were used to correct for respiratory artifacts of cardiac SPECT images [28].
A multi-resolution registration approach for 4D Magnetic Resonance Imaging (MRI) was pro-
posed [29] in order to evaluate amplitudes of the movement caused by respiration. A 4D phan-
tom and an original CT image were also recently used to generate a 4D CT and to compute
registration [30].

Physically-based models describe the important role of airflow inside the lungs, which requires
a respiration signal to be acquired. Moreover, these models can be based on Active Breathing
Coordinator (ABC), which allows clinicians to pause the patient’s breathing at a precise lung
volume. Some methods are also based on volume preservation [31, 32, 33, 34, 35].

Only few works really employ a breathing model in a registration process. Segmented MRI
data was used to simulate PET volumes at different instants of the breathing cycle [36]. These
estimated PET volumes were used to evaluate different PET/MRI registration processes. Au-
thors of [29, 37] used pre-registered MRI to estimate a breathing model. CT registration to
assess reproducibility of breath-holding with ABC was recently presented [27]. In another
method, the respiratory motion is estimated with a variational approach that combines reg-
istration and segmentation of CT images of the liver [38]. Overall, previous works used and
estimated breathing models for visualization, simulation, or medical studies, but none intro-
duced the use of such models for multi-modal registration in radiotherapy applications. From
a modeling and simulation point of view, physically-based models are better suited for simulat-
ing lung dynamics and are easy to adapt to individual patients, without the need for external
physical controls.

3 Segmentation

As shown in numerous papers, and for instance by our group [39], the registration of multi-
modal images in strongly deformable regions such as the thorax highly benefits from a control
of the transformations applied to the different organs. This control can rely on a previous
segmentation of homologous structures that can be seen in both images. In the thorax, the
problem is exemplified by the fact that the organs may undergo different types of deformations
during breathing and patient’s movements. Therefore, the proposed method relies on the
segmentation of different anatomical structures:
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• Surface of the lungs – The generation of meshes at different instants of the breathing
cycle is based on instances of the lung surface geometry.

• Tumors inside the lungs – To take into account the specific deformations of the tumors,
we need to locate and segment the pathologies.

• Heart – In this work, we do not deal with the difficult problem of heart registration.
However, the lung deformations must not affect this organ and, for this reason and as a
first approximation, we consider the heart as a rigid structure in our method.

The segmentation of the lungs in CT images is detailed in our previous work [40]. It relies
on a classification based on grey levels. The best class is chosen according to its adequation to
general anatomical knowledge about typical volume values of the lungs. Then some refinement
steps are performed, based on mathematical morphology operations and a deformable model,
with a data fidelity term based on gradient vector flow and a classical regularization term based
on curvature. Two types of images can be acquired in PET: an emission image (in which we
can see the tumor, but the surface of the lungs is not well imaged) and a transmission image (in
which the tumor cannot be seen as well as in the emission image but the surface of the lungs is
easier to detect). In most of the acquisitions, only the emission image was stored, which is the
most significant one for diagnosis. Consequently, if it is possible, the segmentation is performed
on the transmission image, using a similar approach as in CT. If the transmission image is not
available and the PET image comes from a combined CT/PET machine, then the segmentation
of the lungs in CT is used to provide a rough localization. Otherwise, the segmentation of the
lungs in PET is performed directly on the emission images (examples are provided in Figure 4).

(a) (b)

Figure 4: Coronal views of one original CT image (a), the segmented lungs in this CT (b).

The segmentation of the tumor is semi-automatic [40] (examples are shown in Figure 5): the
user selects a seed point inside the tumor. A region growing approach is then used to segment
the tumor in the PET and CT images. It should be noted that an ultra precise delineation of
the tumor is not required. In particular we do not have to deal with the partial volume effect.
The segmentation is only used to impose a specific transformation in the region of the tumor,
which is different from the one of the lungs, and the continuity constraints imposed on the
deformation field makes the transformation evolves smoothly and slowly when the distance to
the tumor increases, thus guaranteeing that the final registration is robust to the segmentation.
The segmentation method for the lungs and the tumors has been successfully tested on more
than 20 cases, with various tumor positions and sizes.

The segmentation of the heart is a challenging and important problem. Although the ma-
jority of existing methods deal with the segmentation of the ventricles, there is a real need
in segmenting the heart as a whole. An original method [41] was proposed and is based on
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(a) (b) (c) (d)

Figure 5: Results of automatic heart segmentation (green contour) for two cases where a tumor
(red contour) is present in the right (a,b) and in the left lung (c,d).

anatomical knowledge about the heart, in particular concerning its position between the lungs.
The “between” relation can be efficiently modeled mathematically in the fuzzy set framework,
thus dealing with the intrinsic imprecision of this spatial relation [42]. Computing this relation
for the two segmented lungs leads to a fuzzy region of interest for the heart that is incorporated
in the energy functional of a deformable model. This method has been applied successfully
on more than 10 non-contrast CT images, with a good accuracy with respect to manual seg-
mentations (sensitivity of 0.84 and average distance between the two segmentation results of
6mm), and a good robustness with respect to the parameters of the method. This evaluation
is detailed in our previous work [41]. Some examples of heart segmentation are illustrated in
Figure 5. In PET images, the heart is manually segmented at this stage of development.

4 Breathing Model

4.1 Physics-Based Dynamic 3D Surface Lung Model

In this part, we briefly describe the breathing model [43, 32] used in this work. The two major
components involved in the modeling include: the parametrization of PV (Pressure-Volume)
data from a human subject, which acts as an ABC (cf. Figure 6), and the estimation of the
deformation operator from 4D CT lung data sets.

V
(m

l)

P (CmH20)

Tumor influenced
inhalation

exhalation
Normal inhalation

Normal exhalation

Tumor influenced
0.4

0.2

0

0.8

0.6

1.2

1

1 7 13 19 25 31 37 43 49 55 61 67 73 79 88 91 97

(a) (b) (c)
PV relation End-expiration End-inspiration

Figure 6: The physics-based breathing model – The pressure-volume relation (a) and two
meshes (b-c) of the breathing model obtained with the 4DCTs of reference. This is the initial
breathing model (based on a reference image), before any adaptation to a patient.

The parametrized PV curve, obtained from a human subject, is used as a driver for simulating
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the 3D lung shapes at different lung volumes [32]. For the estimation, a subject specific 3D
deformation operator, which represents the elastic properties for the deforming 3D lung surface
model, is estimated. The computation takes as input the 3D nodal displacements of the 3D lung
surfaces meshes and the estimated amount of force applied on the nodes of the meshes (which
are on the surface of the lungs). Displacements are obtained from 4D CT data of a human
subject. The directions and magnitudes of the lung surface points’ displacements are computed
for the 4D CT both using the volume linearity constraint, i.e. the fact that the expansion of
lung tissues is related to the increase in lung volume and the cardiac motion. The amount of
applied force on each node, which represents the air-flow inside the lungs, is estimated based
on a PV curve and on the lungs’ orientation with respect to gravity, which controls the air flow.
Given these inputs, a physics-based deformation approach based on Green’s function (GF)
formulation is estimated to deform the 3D lung surface meshes. Specifically, the GF is defined
in terms of a physiological factor, the regional alveolar expandability (elastic properties), and
a structural factor, the inter-nodal distance of the 3D surface lung model. To compute the
coefficients of these two factors, an iterative approach is employed and, at each step, the force
applied on a node is shared with its neighboring nodes, based on local normalization of the
alveolar expandability, coupled with inter-nodal distance. The process stops when this sharing
of the applied force reaches equilibrium. For validation purposes, a 4D CT data set of a normal
human subject with four instances of deformation was considered [32]. The simulated lung
deformations matched the 4D CT data set with 2 mm average distance error.

4.2 Computation of a Patient-Specific Breathing Model

For each patient, we only have two segmented 3D CT data sets (typically at end-expiration and
end-inspiration).

Therefore, we first estimate intermediate 3D lung shapes between these two meshes and
then the displacements of lung surface points. Since only two 3D CT data sets are used, the
registration is done using a volume linearity constraint and a surface smoothness constraint that
enables us to account for large surface deformations. Thus the direction vectors for the surface
nodes are given by the mode described in section 4.1 and the surface smoothness constraint.
The direction vectors of the lung surface displacement are computed as follows: their initial
values are set based on the direction vectors computed for a 4D CT data. The volume linearity
constraint ensures the fact that the expansion of lung tissues is linearly related to the increase
in lung volume. In order to ensure surface smoothness during deformation, the lung surface
is divided into two regions, namely cardiac and non-cardiac. Of particular importance is the
registration of the lung surface in the cardiac region where the deformation is important given
the heart movements. The smoothness constraint for the cardiac region is set to minimize
the average of the smoothness operator computed for every surface node, whereas for the lung
surface in the non-cardiac region, the supremum of the smoothness operator is minimized.
The magnitudes are computed from the given 3D CT lung data sets and their directions of
displacements.

For known directions of displacement, the magnitude of the displacement is computed from
the two 3D CT lung data sets by projecting rays from the end-expiratory lung surface node along
the directions of the displacement (previously computed) to intersect with the end-inspiration
lung surface primitives (triangles). With known estimations of the applied force and “subject-
specific” displacements, the coefficients of the GF are estimated. Then, the GF operator is
used to compute the 3D lung shapes at different intermediate lung volumes. In Figure 7, an
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example of meshes for one patient is given: we can see the volume variation cause by breathing.
This estimation allows computing the intermediate 3D lung surface shapes in a physically and
physiologically accurate manner, which can then be used for registering the PET images as
further discussed in the following sections.

(a) (b) (c)

Figure 7: Three simulated CTs for one patient (patient A of our tests): two intermediate
instants (a,b) and the end-inspiration (c). The red crosses are on the same 3D points in each
volume.

4.3 Simulated CT Selection

To introduce physiological constraints and to improve the landmark points matching, we pro-
pose to simulate a CT mesh as close as possible to the original PET. A first approach could be
in simulating an average CT volume. However, in that case, we do not have the benefit of the
precise generation of CT instants during the breathing cycle and the breathing deformations
can not be introduced. We assume that, even if the PET volume represents an average volume
throughout the respiratory cycle, by using a breathing model we can compute a CT volume at
a given instant that can be closer to the PET volume than the original CT volumes.

Let us denote the CT simulated meshes M1, M2, . . . , MN with M1 and MN corresponding to
the CT in maximum exhalation and maximum inhalation, respectively. By using the breathing
model, the transformation φi,j between two instants i and j of the breathing cycle can be
computed as Mj = φi,j(Mi). By applying the continuous breathing model, we then generate
simulated CT meshes at different instants (“snapshots”) of the breathing cycle. By comparing
each CT mesh with the PET mesh (MPET , the PET mesh is simply derived from the segmented
lung surface in the PET data), we select the “closest” one (i.e. with the most similar shape).
The mesh that minimizes a measure of similarity C (root mean square distance) is denoted as
MC given as

MC = arg min
i

C(Mi,MPET ). (1)

5 Registration

To obtain physiologically realistic transformations, anatomical points of interest (landmark
points) are introduced, which are selected and then matched on the lung surfaces. Consequently,
the quality of the registration results will depend on the quality of the landmark points matching
process, which takes into account anatomical knowledge by using the surfaces meshes estimated
with the breathing model.
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5.1 Landmark Points Selection

In this section, we focus on voxel selection but more complex features can be detected [44] such
as edges or regions. The selection can be manual (as in most methods) [15], semi-automated or
automated [45]. Manual selection of landmark points is tedious and time-consuming, motivating
Hatkens et al. [14] to suggest semi-automated selection integrating expert knowledge in an
automatic process. Automatic selection decreases computational time while preserving high
accuracy and allowing anatomical constraints, relying on curvature for example [45, 46].

In this part, we use the meshes corresponding to the segmented surfaces (section 3). We
consider that anatomical points of interest correspond to points with local maximal curvature.
Gaussian and mean curvatures are both interesting because different anatomical points of inter-
est can be detected: mean curvature can help detecting points on costal surfaces whereas other
points of interest can be easily detected on the apex of the lungs by using Gaussian curvature.
In the present work, landmark points selection is automatic and based on these curvatures
following:

1. compute curvature for each voxel of the lung surface;

2. sort voxels in decreasing order of absolute curvature values;

3. select voxels based on curvature and distance criteria (detailed in the following paragraph);

4. add voxels with zero-curvature in underpopulated areas.

This algorithm is designed to select voxels that provide relevant information. In addition
to this, we need to obtain an approximately uniform spatial distribution of landmark points
to apply deformations on the entire lung surface. If no landmark point is selected in a large
flat area, large interpolation errors might arise after the registration step (cf. section 5.3) (our
interpolation allows strong deformations if it is not sufficiently controlled). Thus, in step 3, we
consider: V = {vi}i=0..NS

, the set of voxels in decreasing order of absolute value of curvature,
where NS is the number of voxels of the surface, and VL = {vLi}i=0..NL

, the set of landmark
points, where NL is the number of landmark points. For each voxel vi ∈ V, i = 0..NS , with non-
zero-curvature, we add vi in VL, if ∀ vj ∈ VL, dg(vi,vj) > T where dg is the geodesic distance
on the lung surface and T is a threshold to be chosen. The geodesic distance on the surface is
computed efficiently using a propagation method, similar to the Chamfer algorithm [47]. With
this selection process, some regions (the flattest ones) may contain no landmark point, hence
the addition of step 4: for each voxel on the surface vi ∈ V with zero-curvature, if there is no
landmark point vj ∈ VL with dg(vi,vj) < T , we add vi in VL.

For this landmark points selection process, four variants have been tested:

1. Mea – Mean curvature without step 4;

2. Gau – Gaussian curvature without step 4;

3. Mea-Gau – Using mean and Gaussian curvatures without step 4;

4. Mea-Gau-Uni – Using mean and Gaussian curvatures with step 4.

When mean and Gaussian curvatures are both employed (Mea-Gau and Mea-Gau-Uni),
the set V merges the set of voxels in decreasing order of mean curvature and the set of voxels
in decreasing order of Gaussian curvature, by taking alternatively a value in each set. These
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strategies for landmark points selection are compared in Figure 8. Results given by the Mea
and Gau methods are different, and it is interesting to combine them (see the results obtained
with the Mea-Gau method). The Mea-Gau-Uni method permits to add some points in
locally flat regions. The influence of the choice of the strategy on the respiration results will be
further studied in section 6.

VL = 3431 VL = 2885 VL = 3484 VL = 3794

(a) (b) (c) (d)

Figure 8: Selection of landmark points on the same axial view of the lung (patient B of our
tests) – In each image, two regions of interest are identified with two rectangles. In the large
rectangle, there is no landmark point with gau method (b) whereas there are four landmark
points with the mea method (a). In the fusion mea-gau method (c), these landmark points
are selected. In the small rectangle, no landmark point is selected with the mean and/or the
Gaussian curvatures (a-c). However, a landmark point is added in this area with the mea-
gau-uni method (d). This example illustrates the selected landmark points on one slice but
the selection has been computed on the volume. For this reason, no voxel has been selected in
the left flat region, i.e. a voxel has been selected in a close slice.

5.2 Landmark Points Matching

We now discuss the steps taken in the computation of patient-specific breathing models, which
will be used for the PET-CT registration. The landmark points are selected on the original CT
lung surface mesh MN (cf. section 5.1) and we compute the matching of the landmark points
with the original PET mesh MPET (all the nodes of the PET mesh are tested).

A direct matching, denoted fRd, can be computed (dashed line in Figure 9):

MRd
PET (N) = fRd(MN ,MPET ), (2)

where MRd
PET (N) is the result of matching MPET directly to MN (note that this could be done

with another instant of the breathing cycle Mi). Most of the matching methods give good
results when the two volumes are quite similar or quite near each other. Therefore, when the
original CT lungs volume is very different from the original PET lungs volume, the matching
may be inaccurate. In order to alleviate this problem, we propose to exploit the breathing model
and to introduce a breathing-based matching based on the Iterative Closest Point (ICP) [48].

The transformation caused by the breathing is used to match the landmark points (continuous
line in Figure 9) incorporating the transformation between MN and MC (the CT mesh closest
to MPET ) given by the breathing model:

ΦN,C = φC+1,C ◦ φC+2,C+1 ◦ . . . ◦ φN,N−1. (3)
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We apply ΦN,C to MN to obtain the corresponding landmark points on MC , where MC =
ΦN,C(MN). Then, we compute the matching f r of the landmark points in MC with the MPET

as:
M r

PET (C) = f r(MC ,MPET ), (4)

where M r
PET (C) denotes the corresponding nodes on the MPET . As MC is the closest mesh to

MPET , the inaccuracy of ICP (used in this stage), introduced by important distances between
the objects, is minimized. Therefore, the final matching is given by:

MRbm
PET (N) = f r(ΦN,C(MN),MPET ), (5)

where MRbm
PET (N) denotes the corresponding nodes on the PET mesh using the breathing model.

MPET

f r

CT mesh and

PET mesh

superimposed

. . .. . .
φN,N−1φC+1,C

M1 M2 MC MN−1

(closest)

φC,C−1

MN

fRd

Breathing

model

(CT meshes)

(acquired)

φ2,1

(acquired)

Matching of CT

closest mesh to PET

(Iterative Closest Point)

Matching of CT

original mesh to PET

(Iterative Closest Point)

Matching of CT original mesh

to CT closest mesh using the

breathing model-based deformations

Figure 9: Matching framework of the PET (MPET ) and the original CT (MN) – The MC mesh
is the closest to the MPET mesh. We can match landmark points between MPET and MN

following one of the two paths. The proposed method corresponds to the bold line.

5.3 PET Deformation

The final step of the multi-modality registration process consists in computing the deformation
of the whole PET image volume, and not only the segmented lung surface. This task is based
on the previous results from landmark points correspondences and lung segmentation. We
take into account the presence of tumors in the registration process by introducing rigidity
constraints and by enforcing continuous deformations [49]. Tumors are compact pathological

12



Breathing Model for Registration – Moreno

tissues and we can assume that their deformations are different from the alveolar expandability.
As a first approximation, rigid deformation of the tumors has been validated by physicians.

Deformations for the whole PET image volume are estimated based on correspondences
between anatomical landmark points (cf. sections 5.1 and 5.2): at each voxel location, the
displacement is computed as an interpolation of the landmark correspondence displacement
field. The interpolation takes into account the distance between the voxel and each landmark
point, while guaranteeing a continuous deformation field and constraining rigid structures. More
precisely, the vector of displacements f(t) of the voxel t is given by:

f(t) = L(t)
︸︷︷︸

Linear term

+

NL∑

j=1

bj σ(t, tj)

︸ ︷︷ ︸

Non-linear term

. (6)

where tj are the NL landmark points in the source image that we want to transform to new sites
uj (the homologous landmarks points) in the target image. This is imposed by the constraints:

∀j, uj = tj + f(tj). (7)

The first term of Equation (6) represents the linear transformation and the second term
represents the non-linear transformation of every point t in the source image.

The linear term – When N0 rigid objects (O1, O2, . . . , ON0
) are present, the linear term

is a weighted sum of each object’s linear transformation. The weights wi(t) are inversely
proportional to the distance from t to each structure and, for any point t:

L(t) =

N0∑

i=1

wi(t) Li (8)

where Li, i = 1, . . . , N0 are the linear transformations of the rigid objects (the tumors and the
heart). The weights wi(t) depend on a measure of distance d(t, Oi) from the point t to the
object Oi:

wi(t) =







1 if t ∈ Oi

0 if t ∈ Oj, j 6= i
qi(t)

PN0

j=1
qj(t)

otherwise

(9)

where qi(t) = 1
d(t,Oi)µ and µ = 1.5 for the work illustrated here. The smoothness of the

interpolation is controlled by the choice of this parameter. A value of µ > 1 ensures that the
first derivative is continuous.

The non-linear term – The non-linear transformation is, for a point t, the sum of NL terms,
one for each landmark point. Each term is the product of the coefficients of a matrix B (that
will be computed in order to satisfy the constraints on the landmark points) with a function
σ(t, tj) that introduces rigidity constraints corresponding to the rigid structures, which do not
have to follow the transformation associated to the lung surface. This is the main contribution
of the registration method. This function σ(t, tj) is defined as:

σ(t, tj) = d(t, O0) d(tj, O0) |t − tj| (10)
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where d(t, O0) is the distance from point t to the union of rigid objects O0 = O1∪O2∪ . . .∪ON0
.

It is equal to zero for t ∈ O0 (inside any of the rigid structures) and takes small values when
t is near one of the structures. This measure of the distance is continuous and it weights the
|t − tj| function [50]. Note that this formalism could be more general by replacing d(t, O0)
by any function of the distance to O0 that characterizes more accurately the behavior of the
surrounding regions. We have used a linear (normalized) distance function as a first approach.

Finally, with the constraints given by Equation (7), we can calculate the coefficients bj of the
non-linear term by expressing Equation (6) for t = ti. The transformation can then be defined
in a matricial way as

ΣB + L = U (11)

where U is the matrix of the landmark points ui in the target image (the constraints), Σij =
σ(ti, tj) (given by Equation (10)), B is the matrix of the coefficients of the non-linear term bi

and L represents the application of the linear transformations to the landmark points in the
source image, ti. >From Equation (11), the matrix B is obtained as:

B = Σ−1(U − L). (12)

Once the coefficients bi of B are found, we can calculate the general interpolation solution for
every point as shown in Equation (6).

The importance of the non-linear deformation is controlled by the distance to the rigid objects
in the following manner (cf. Figure 10):

• d(t, O0) makes σ(t, tj) tend towards zero when the point for which we are calculating the
transformation is close to one of the rigid objects;

• d(tj, O0) makes σ(t, tj) tend towards zero when the landmark point tj is near one of the
rigid objects. This condition means that the landmark points close to the rigid structures
hardly contribute to the non-linear transformation computation;

• When both t and tj are far from the rigid objects, then σ(t, tj) ≃ |t − tj|.

6 Experimental Validation

6.1 Data

We have applied our algorithm on a normal case (noted patient A) and on four pathological
cases with tumors (noted B to E). In all cases, we have one PET (of size 144× 144× 230 with
resolution of 4 × 4 × 4 mm3 or 168 × 168 × 329 with resolution of 4 × 4 × 3 mm3) and two
CT volumes (of size 256 × 256 × 55 with resolution of 1.42 × 1.42 × 5 mm3 to 512 × 512 × 138
with resolution of 0.98 × 0.98 × 5 mm3), acquired during breath-hold in maximum inspiration
and in intermediate inspiration, from individual scanners. For the breathing model, ten meshes
(corresponding to regularly distributed instants) are generated and compared with the PET.
Each mesh contains more than 40, 000 nodes. Here all the results are illustrated in 2D but the
algorithm is computed in 3D. In Figure 11, we compare the PET volume and two CT volumes:
the closest simulated CT and the CT at end-inspiration.
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d(tj, O0)

O0 = O1 ∪ O2 ∪ . . . ∪ ON0

|t − tj|

tj

t
tk

d(tk, O0)
d(t, O0)

d(t, O0)

t

Figure 10: Illustration of the influence of the distance to the rigid objects (black ellipses) in
the non-linear deformation. Two different positions of a point t (one close and one far from
the rigid objects) are shown and two points of interest are represented by tj and tk. When a
point of interest is close to a rigid object, as tk, it has little influence in the non-linear term in
Equation (6) (cf. Equation (10)). When the point t is close to one of the rigid objects (position
of t in the bottom of the figure), its influence in the non-linear term is also reduced.

(a) (b)

C(MC , MPET ) = 12.1 mm C(MN , MPET ) = 24.2 mm

Figure 11: Superimposition of the contours for the same coronal slice in the PET (black contour)
and in two CTs (grey contour) at two instants of the breathing cycle (patient B): (a) the closest
to the PET (MC) and (b) end-inspiration (MN). The criterion C corresponds to the root mean
square distance.

6.2 Criteria

To quantify the quality of the results, the volumes and surfaces of the segmented lungs in
the original CT and in the registered PET are compared. The original volume (or surface)
of the CT is noted O, and R corresponds to the registered PET. The term |x| represents the
cardinality of the set x. The volumes are compared using some classical measures:

• Percentage of false positives, noted FP, and false negatives, noted FN – It corresponds
to a percent number of voxels inside the lungs (respectively not inside the lungs) in the
registered volume, which are not (respectively which are) inside the lungs in the original

CT: FP(O,R) = |R|−|O∩R|
|R|

and FN(O,R) = |O|−|O∩R|
|O|

. These criteria evaluate the accuracy
of the registration. Thus, for a correct result, FP and FN will take low values.

• Intersection/union ratio, noted IUR – It gives the ratio between corresponding volumes
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(correctly registered) and volumes that differ (false negatives and false positives): IUR(O,R) =
|O∩R|
|O∪R|

. The higher this ratio, the higher the quality of the registration.

• Similarity index, noted SIM – It is defined by: SIM(O,R) = 2|O∩R|
|O|+|R|

. This criteria must be
as high as possible.

• Sensitivity, noted SEN – It measures the difference in volume between the original volume
and the registered volume that has been correctly registered: SEN(O,R) = |O∩R|

|O|
. If the

registration is efficient, this criteria tends to 1.

• Specificity, noted SPE – It measures the difference in volume between the registered
volume and a correctly registered volume: SPE(O,R) = |O∩R|

|R|
. If the registration is

performant, this criteria tends to 1

The surfaces are compared with:

• Mean distance, noted MEAN – It is given by: MEAN(O,R) = 1
2
[dmean(O,R) + dmean(R,O)]

with dmean(O,R) = 1
|O|

∑

o∈O D(o,R) where D(o,R) = [minr∈R d(o, r)] and d the Eu-
clidean distance.

• Root mean square distance, noted RMS – It is defined by:

RMS(O,R) =
√

1
2
[dRMS(O,R)2 + dRMS(R,O)2] with dRMS(O,R) =

√
1
|O|

∑

o∈O D(o,R)2 .

6.3 Results and discussion

The complexity of each step of the proposed algorithm is as follows (N denotes the number of
voxels):

• For the segmentation steps: the complexity is linear for each segmentation, except when
the “between” relation is used (segmentation of the heart). Its complexity is 0(N2). How-
ever in practice we noticed that the relation can be computed with a sufficient precision
by reducing the size of the image, thus reducing N and the computation time.

• For the estimation of the breathing model: the complexity can be decomposed into three
parts: (i) the complexity of computing the displacement using the deformation kernel is
0(n2), where n is the number of surface nodes of the breathing model, (ii) the complexity
of registering the end-expiration lung model with the end-inspiration lung model is 0(n2),
and (iii) the complexity of estimating the deformation parameters is 0(n log n)). Finally,
the selection of the closest instant has a linear complexity.

• For the registration : the complexity of the selection of the landmarks is linear, the
complexity of the matching and the deformation depends on the number of landmarks
NL and is respectively given by 0(NNL) and 0(N(NL + NO)) where NO is the number of
rigid objects.

In our tests, computation time for the whole process can reach two hours: few seconds for the
segmentations, few minutes for the landmark point selection, and about ninety minutes for the
image volume registration process. Although this is not a constraint because we do not deal
with a real-time applications (for therapy planning it is not necessary), the computation time
will be optimized in the future.
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As illustrated in Figs. 12 and 13 (one normal case and one pathological case), correspondences
between landmark points on the original CT data set and on the PET data set are more accurate
with the breathing model (images (e) and (f)) than without (images (b) and (c)). Using the
model, the corresponding points represent the same anatomical structures and the uniqueness
constraint of the deformation field is enforced. In Table 1, quantitative results are given and
we can see that the PET volume is best registered with the proposed method BM-Uni. The
quality of the results can be visually validated (f,i). In particular, the lower part of the lungs is
better registered using the model: the lung contour in the registered PET data is closer to the
lung contour in the original CT data as shown in Figure 12(j–l). In the pathological case, the
tumor is well registered and not deformed, as illustrated in Figure 13. Here, it can be observed
that the registration using the breathing model avoids unrealistic deformations in the region
between the lungs. In addition, distances between the registered PET lung surfaces and the
original CT lung surfaces are lower using the breathing model than using the direct approach
(cf. Table 1).

Finally, in Table 1, we show that, for most of the criteria, the best results are obtained with
BM-Uni. This method did not obtain the best results for the criteria FN and SEN. However,
the variations of the values for these criteria are less than 2 × 10−2 and we can conclude that
FN and SEN are not very significant for comparing these four different methods. We also give
the results obtained when we compare directly the original CT and the PET and the closest
CT and the PET. It gives an indication of how the proposed method can improve the results.
Ideally, the results obtained with the proposed methods must be better than those obtained
for the comparison between the original CT and the PET. For the mean and RMS errors,
this hypothesis is always respected and, moreover, the results obtained are better than those
obtained for the comparison between the closest CT and the PET.

7 Conclusion

In this paper, we have described the combination of a CT/PET landmark-based registration
method and a breathing model in order to guarantee physiologically-plausible deformations of
the lung surface. The method consists in computing deformations guided by the breathing
model. The originality of the proposed approach, which combines our landmark-based reg-
istration method including rigidity constraints and a breathing model, is to strongly rely on
anatomical structures, to integrate constraints specific to these structures on the one hand
and to the pathologies on the other hand, and to account for physiological plausibility. Initial
experiments (on one normal case and four pathological cases) show promising results with sig-
nificant improvement brought by the breathing model. In particular, for the pathological cases,
it avoids undesired tumor misregistrations and preserves tumor geometry and intensity (this
being guaranteed by the rigidity constraints, a main feature of the proposed approach).

In this work, we consider the impact of the physiology on lung surface deformation, based on
reference data of normal human subjects. The methodology presented in this paper will further
benefit upon the inclusion of patho-physiology specific data once established. The use of normal
lung physiology serves to demonstrate improvements in CT/PET registration using a physics-
based 3D breathing lung model. Current work includes a deeper quantitative comparison and
evaluation on a larger database in collaboration with clinicians. The future work will also
include quantitative evaluations about the preservation of tumor geometry and intensity.

Future investigations are expected based on refining the deformation model using patho-
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Method FP FN IUR SIM SEN SPE
MEAN

(mm)
RMS

(mm)

Normal (Patient A)
Original CT/PET 0.53 0.12 0.44 0.62 0.88 0.47 18.61 28.32

noBM-NoUni 0.66 0.01 0.4 0.57 0.99 0.4 15.7 20.7

noBM-Uni 0.66 0.01 0.4 0.57 0.99 0.4 15.7 20.6

BM-NoUni 0.45 0.02 0.54 0.7 0.98 0.54 11.4 16.4

BM-Uni 0.45 0.02 0.54 0.7 0.98 0.55 11.2 16.2

Closest CT/PET 0.45 0.36 0.44 0.62 0.64 0.59 15.17 18.8

Pathological (Patient C)
Original CT/PET 0.6 0.07 0.39 0.56 0.93 0.4 18.95 27.7

noBM-NoUni 0.63 0.03 0.37 0.54 0.97 0.37 17.7 26.5

noBM-Uni 0.63 0.03 0.36 0.53 0.97 0.37 17.9 26.9

BM-NoUni 0.66 0.05 0.33 0.5 0.95 0.34 15.2 23.7

BM-Uni 0.59 0.04 0.4 0.57 0.95 0.41 13.7 21.4

Closest CT/PET 0.33 0.38 0.42 0.6 0.62 0.57 13.77 17.97

Table 1: Quantitative results with a normal case and a pathological case (FP: false positives,
FN: false negative, IUR: Intersection/union ratio, SIM: Similarity index, SEN: sensitivity, SPE:
Specificity, MEAN: Mean distance, RMS: Root mean square distance, cf. section 6.2) – We compare
the results obtained without the breathing model, with non-uniform selection, noted noBM-
NoUni, and uniform selection, noted noBM-Uni, and with the breathing model, with non-
uniform selection, noted BM-NoUni, and uniform selection, noted BM-Uni. Bold results
indicate best results for each criterion and each case. The breathing-model version with uniform-
selection provided the lowest errors based on several criteria.

physiological conditions and including a more precise characterization of the tumor movement
and its influence on the breathing model. Ultimately, validation of the breathing model in
pathological cases should be task-based performance on a clinical problem. It will also be a
great improvement if the variability of the breathing model to different patients can be taken
into account by using different typical breathing models that can account as much as possible
for all the individual differences. Moreover, future work includes the use of different criteria for
the selection of the appropriate CT (section 4.3): the RMS distance is a global criterion that
does not take into account local differences or similarities of the surfaces. Another improve-
ment would be the selection of landmarks including points undergoing important displacements
during the respiration, and making these points guide the registration procedure.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 12: Original PET (a) and CT (d,g) images in a normal case (patient A). Correspondences
between selected points in a PET image and in a end-inspiration CT image (g) are shown in
(b) for the direct method, in (e) for the method with the breathing model and a non-uniform
landmark points detection and in (h) for the method with the breathing model and a pseudo-
uniform landmark points selection (corresponding points are linked). Registered PET data is
shown in (c) with the direct method, in (f) with the method using the breathing model with
a non-uniform landmark points distribution and in (i) with the method using the breathing
model and landmark points pseudo-uniformly distributed. The fourth row shows registration
details on the bottom part of the right lung, in a normal case: (j) end inspiration CT, (k) PET
data registered without the breathing model, and (l) with the breathing model. The white
crosses correspond to the same coordinates. The method using the breathing model provides a
better registration of the lung surfaces.
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