Bibliography

[1] M. Accame and F. De Natale. Disparity estimation for stereo sequences based on adaptive size hierarchical block matching. In International Conference on Image Analysis and Processing, pages 453-458, San Remo, Italia, September 1995.
[ bib ]
[2] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden. Pyramid methods in image processing. RCA Engineer, 29(6):33-41, November 1984.
[ bib ]
[3] J. K. Aggarwal and N. Nandhakumar. On the computation of motion from sequences of images-a review. Proceedings of IEEE, 76(8):917-935, August 1988.
[ bib ]
[4] M. Agrawal and L. Davis. Window-based, discontinuity preserving stereo. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 1, pages 66-73, Washington, United States, June-July 2004.
[ bib ]
[5] J. Agulló, C. Croux, and S. Van Aelst. The multivariate least trimmed squares estimator. Technical report, Katholieke Universiteit Leuven, Belgium, 2002.
[ bib ]
[6] U. Ahlvers, U. Zoelzer, and S. Rechmeier. FFT-based disparity estimation for stereo image coding. In IEEE International Conference on Image Processing, Barcelona, Spain, September 2003.
[ bib ]
[7] H. S. Alhichri and M. Kamel. Multi-resolution image registration using multi-class hausdorff fraction. Pattern Recognition Letters, 23(1-3):279-286, January 2002.
[ bib ]
[8] S. Alibhai and S. W. Zucker. Contour-based correspondence for stereo. In European Conference on Computer Vision, volume 1, pages 314-330, Dublin, Ireland, June-July 2000.
[ bib ]
[9] L. Alvarez, R. Deriche, T. Papadopoulos, and J. Sánchez. Symmetrical dense optical flow estimation with occlusions detection. In European Conference on Computer Vision, volume 1, pages 721-735, Copenhagen, Denmark, May 2002.
[ bib ]
[10] L. Alvarez, R. Deriche, J. Sánchez, and J. Weickert. Dense disparity map estimation respecting image discontinuities: A PDE and scale-space based approach. Research report RR-3874, Institut National de Recherche en Informatique et en Automatique, January 2000.
[ bib ]
[11] N. Amenta, M. Berne, D. Eppstein, and S.-H. Teng. Regression depth and center points. Discrete and Computational Geometry, 23(3):305-323, 2000.
[ bib ]
[12] P. Anandan. A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer Vision, 2(3):283-310, January 1989.
[ bib ]
[13] P. Arcara, L. Di Stefano, S. Mattocia, C. Melchiorri, and G. Vassura. Perception of depth information by means of a wire-actuated haptic interface. In International Conference on Robotic and Automation, San Francisco, United States, April 2000.
[ bib ]
[14] M. Arif, T. Brouard, and N. Vincent. A new fusion methodology for edge detection in a colour image. In International Conference on Complex Systems, Intelligence and Modern Technology, pages 317-322, Cherbourg, France, September 2004.
[ bib ]
[15] X. Armangué and J. Salvi. Overall view regarding fundamental matrix estimation. International Journal of Image and Vision Computing, 21(2):205-220, February 2003.
[ bib ]
[16] P. Aschwanden and W. Guggenbül. Experimental results from a comparative study on correlation type registration algorithms. In W. Förstner and S. Ruwiedel, editors, Robust computer vision: Quality of Vision Algorithms, pages 268-282. Wichmann, Karlsruhe, Germany, March 1992.
[ bib ]
[17] M. Aurnhammer and R. Mayoral. Improving seismic horizon matching by ordinal measures. In International Conference on Pattern Recognition, volume 3, pages 642-645, Cambridge, United Kingdom, August 2004.
[ bib ]
[18] N. Ayache. Un système de vision bidimensionnelle en robotique industrielle. Thesis, Université de Paris-Sud Centre d'Orsay, France, June 1983.
[ bib ]
[19] N. Ayache. Vision stéréoscopique et perception multisensorielle - Applications à la robotique mobile. Science informatique. InterEditions, Paris, France, May 1989.
[ bib ]
[20] A. Bab-Hadiashar and D. Suter. Motion segmentation using robust statistics and spatial continuity. In International Workshop on Image Analysis and Information Fusion, pages 271-280, Adelaide, Australia, November 1997.
[ bib ]
[21] A. Bab-Hadiashar and D. Suter. Optic flow calculation using robust statistics. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 988-993, San Juan, Porto Rico, June 1997.
[ bib ]
[22] A. Bab-Hadiashar and D. Suter. Robust optic flow computation. International Journal of Computer Vision, 29(1):59-77, August 1998.
[ bib ]
[23] A. Bab-Hadiashar and D. Suter. Robust total least squares based optic flow computation. In Asian Conference on Computer Vision, pages 556-573, Hong-Kong, January 1998.
[ bib ]
[24] C. Baillard and O. Dissard. A stereo matching algorithm for urban digital elevation models. Photogrammetric Engineering and Remote Sensing, 66(9):1119-1128, 2000.
[ bib ]
[25] S. Baker, R.Szeliski, and P. Anandan. A layered approach to stereo reconstruction. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 434-441, Santa Barbara, United States, June 1998.
[ bib ]
[26] J. Banks and M. Bennamoun. Reliability analysis of the rank transform for stereo matching. IEEE Transactions on Systems, Man and Cybernetics, 31(6):870-880, December 2001.
[ bib ]
[27] S. T. Barnard. Stochastic stereo matching over scale. International Journal of Computer Vision, 3(1):17-32, May 1989.
[ bib ]
[28] A. Bartoli. Piecwise planar segmentation for automatic scene modeling. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, pages 283-289, Kauai, United States, December 2001.
[ bib ]
[29] P. N. Belhumeur and D. Mumford. A bayesian treatment of the stereo correspondence problem using half-occluded regions. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 506-512, Urbana, United States, June 1992.
[ bib ]
[30] T. Belli, M. Cord, and S. Philipp-Foliguet. Colour contribution for stereo image matching. In International Conference on Color in Graphics and Image Processing, pages 317-322, Saint-Étienne, France, October 2000.
[ bib ]
[31] R. E. Bellman and S. E. Dreyfus. La programmation dynamique et ses applications. Dunod, Paris, France, 1962.
[ bib ]
[32] S. Benhimane and E. Malis. Mise en correspondance d'images à différentes résolutions à l'aide d'invariants aux paramètres intrinsèques. In actes du Congrès AFRIF-AFIA Reconnaissance des Formes et Intelligence Artificielle, RFIA, volume 2, pages 585-594, Toulouse, France, January 2004.
[ bib ]
[33] D. N. Bhat and S. K. Nayar. Ordinal measures for visual correspondence. Research report CUCS-009-96, Columbia University, New-York, United States, March 1997.
[ bib ]
[34] D. N. Bhat and S. K. Nayar. Ordinal measures for image correspondence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(4):415-423, April 1998.
[ bib ]
[35] F. Billy, L. David, and G. Pineau. Single pixel resolution correlation applied to unsteady flow measurements. Measurement Science and Technology, 15(6):1039-1045, June 2004.
[ bib ]
[36] S. Birchfield. Depth and motion discontinuities. PhD thesis, Stanford University, United States, June 1999.
[ bib ]
[37] S. Birchfield and C. Tomasi. Depth discontinuities by pixel-to-pixel stereo. In IEEE International Conference on Computer Vision, pages 1073-1080, Bombay, India, January 1998.
[ bib ]
[38] S. Birchfield and C. Tomasi. A pixel dissimilarity measure that is insensitive to image sampling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(4):401-406, April 1998.
[ bib ]
[39] S. Birchfield and C. Tomasi. Multiway cut for stereo and motion with slanted surfaces. In IEEE International Conference on Computer Vision, volume 1, pages 489-495, Kerkyra, Greece, September 1999.
[ bib ]
[40] H. Bischof, E. Bertin, and P. Bertolline. Voronoi pyramids and hopfield networks. In International Conference on Pattern Recognition, volume 3, pages 330-333, Jerusalem, Israël, October 1994.
[ bib ]
[41] M. J. Black and P. Anandan. A framework for the robust estimation of optical flow. In IEEE International Conference on Computer Vision, pages 231-236, Berlin, Germany, May 1993.
[ bib ]
[42] M. J. Black and A. Rangarajan. One the unification of line processes, outlier rejection, and robust statistics with applications in early vision. International Journal of Computer Vision, 19(1):57-91, July 1996.
[ bib ]
[43] A. Blake and M.Isard. Active Contours: The Application of Techniques from Graphics,Vision,Control Theory and Statistics to Visual Tracking of Shapes in Motion. Springer-Verlag, New-York, United States, 1998.
[ bib ]
[44] M. Bleyer and M. Gelautz. A layered stereo algorithm using image segmentation and global visibility constraints. In IEEE International Conference on Image Processing, volume 5, pages 2997-3000, Singapour, October 2004.
[ bib ]
[45] M. Bleyer and M. Gelautz. Graph-based surface reconstruction from stereo pairs using image segmentation. In Videometrics VIII, volume SPIE-5665, pages 288-299, San Jose, United States, January 2005.
[ bib ]
[46] A. F. Bobick and S. S. Intille. Large occlusion stereo. International Journal of Computer Vision, 33(3):181-200, September 1999.
[ bib ]
[47] B. Bocquillon. Obtention de la vérité terrain pour la mise en correspondance stéréoscopique. Dea report, Université Paul Sabatier, Toulouse, France, June 2004.
[ bib ]
[48] B. Bocquillon, S. Chambon, and A. Crouzil. Segmentation semi-automatique en plans pour la génération de cartes denses de disparités. In Actes du congrès francophone de Vision par Ordinateur, ORASIS, pages CD-ROM, Fournol, France, May 2005.
[ bib ]
[49] R. C. Bolles, H. H. Baker, and M. J. Hannah. The jisct stereo evaluation. In ARPA Image Understanding Workshop, pages 263-274, Washington, United States, April 1993.
[ bib ]
[50] M. Borga. Canonical correlation a Tutorial. Course, January 2001.
[ bib ]
[51] S. Bouchafa and B. Zavidovique. Stratégie de vote pour la mise en correspondance de lignes de niveaux. In actes du Congrès AFRIF-AFIA Reconnaissance des Formes et Intelligence Artificielle, RFIA, volume 2, pages 605-614, Toulouse, France, January 2004.
[ bib ]
[52] B. S. Boufama. Using geometry towards stereo dense matching. The Journal of the Pattern Recognition Society, 33(5):871-873, May 2000.
[ bib ]
[53] B. S. Boufama and D. O'Connell. Region segmentation and matching of planes in a pair of uncalibrated images. In International Conference on Pattern Recognition, volume 3, pages 631-634, Quebec, Canada, August 2002.
[ bib ]
[54] F. Boughorbel, A. Koschan, B. Abidi, and M. Abidi. Gaussian energy functions for registration without correspondences. In International Conference on Pattern Recognition, volume 3, pages 24-27, Cambridge, United Kingdom, August 2004.
[ bib ]
[55] S. Bourgeois, S. Naudet-Collette, and M. Dhome. Recalage d'un modèle CAO à partir de descripteurs locaux de contours. In actes du Congrès AFRIF-AFIA Reconnaissance des Formes et Intelligence Artificielle, RFIA, Tours, France, January 2006. to appear.
[ bib ]
[56] A. Bovyrin, V. Eruhimov, S. Molinov, V. Mosyagin, and V. Pisarevsky. Fast and robust dense stereo correspondence by column segmentation. In IEEE International Conference on Image Processing, pages 1033-1036, Barcelona, Spain, September 2003.
[ bib ]
[57] E. Boyer and M. O. Berger. 3D surface reconstruction using occluding contours. International Journal of Computer Vision, 22(3):219-233, March 1997.
[ bib ]
[58] Y. Boykov, O. Veksler, and R. Zabih. Disparity component matching for visual correspondence. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 470-475, San Juan, Porto Rico, June 1997.
[ bib ]
[59] Y. Boykov, O. Veksler, and R. Zabih. A variable window approach to early vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12):1283-1294, December 1998.
[ bib ]
[60] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222-1239, November 2001.
[ bib ]
[61] J. P. Braquelaire and L. Brun. Comparison and optimization of methods of color image quantization. IEEE Transactions on Image Processing, 6(7):1048-1052, July 1997.
[ bib ]
[62] P. Brigger, F. Müller, K. Illgner, and M. Unser. Centered pyramids. IEEE Transactions on Image Processing, 8(9):1254-1264, September 1999.
[ bib ]
[63] R. Brockers, M. Hund, and B. Mertsching. A fast cost relaxation stereo algorithm with occlusion detection for mobile robot applications. In Vision, Modeling and Vizualisation, pages 47-53, Stanford, United States, November 2004.
[ bib ]
[64] R. Brockers, M. Hund, and B. Mertsching. Fast stereo vision for mobile robots by global minima of cost functions. In International Workshop on Vision, Modeling and Visualization, pages 85-89, Stanford, United States, November 2004.
[ bib ]
[65] M. Z. Brown, D. Burschka, and G. D. Hager. Advances in computational stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(8):993-1008, August 2003.
[ bib ]
[66] L. Brun. Segmentation d'images à base topologique. Thesis, Université Bordeaux I, France, December 1996.
[ bib ]
[67] L. Brun. Traitement d'images couleur et Pyramides combinatoires. Thesis, Université de Reims, École doctorale de Sciences Exactes et Biologie, France, December 2002.
[ bib ]
[68] R. Brunelli and S. Messelodi. Robust estimation of correlation with applications to computer vision. The Journal of the Pattern Recognition Society, 28(6):833-841, June 1995.
[ bib ]
[69] J.-L. Buessler, J.-P. Urban, G. Hermann, and H. Kihl. Colour histogram similarity for robot-arm guiding. In International Conference on Complex Systems, Intelligence and Modern Technology, pages 515-520, Cherbourg, France, September 2004.
[ bib ]
[70] J.-L. Buessler, J.-P. Urban, G. Hermann, and H. Kihl. Colour histogram algorithms for visual robot control. International Journal of Robotics and Automation, 20(2), 2005.
[ bib ]
[71] P. J. Burt and E. H. Adelson. The laplacian pyramid as a compact image code. IEEE Transactions on Communications, 31(4):532-540, April 1983.
[ bib ]
[72] L. Busin, N. Vandenbroucke, L. Macaire, and J.-G. Postaire. Color space selection for unsupervised color image segmentation by analysis of connectedness properties. In International Conference on Complex Systems, Intelligence and Modern Technology, pages 311-316, Cherbourg, France, September 2004.
[ bib ]
[73] L. Busin, N. Vandenbroucke, L. Macaire, and J.-G. Postaire. Color space selection for unsupervised colour image segmentation by analysis of connectedness properties. International Journal of Robotics and Automation, 20(2):70-77, 2005.
[ bib ]
[74] J. F. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6):679-698, November 1986.
[ bib ]
[75] G. Carneiro and A. D. Jepson. Pruning local feature correspondences using shape context. In International Conference on Pattern Recognition, volume 3, pages 16-19, Cambridge, United Kingdom, August 2004.
[ bib ]
[76] T. Carron. Segmentation d'images couleur dans la base Teinte Luminance Saturation : approche numérique et symbolique. Thesis, Université de la Savoie, France, December 1995.
[ bib ]
[77] S. Chabrier, B. Emile, H. Laurent, C. Rosenberger, and P. Marché. Unsupervised evaluation of image segmentation application to multi-spectral images. In International Conference on Pattern Recognition, volume 1, pages 576-579, Cambridge, United Kingdom, August 2004.
[ bib ]
[78] M. Chambah. Analyse et traitement de données chromatiques d'images numérisées à haute résolution. Application à la restauration numérique des couleurs des films cinématographiques. Thesis, Université de La Rochelle, France, December 2001.
[ bib ]
[79] S. Chambon. Comparaison et évaluation des mesures de corrélation en présence d'occultations. Dea report, Université Paul Sabatier, Toulouse, France, June 2002.
[ bib ]
[80] S. Chambon and A. Crouzil. Évaluation et comparaison de mesures de corrélation robustes aux occultations. Research report 2002-34-R, IRIT, Institut de Recherche en Informatique de Toulouse, Université Paul Sabatier, France, December 2002.
[ bib | .ps.gz ]
[81] S. Chambon and A. Crouzil. Dense matching using correlation: new measures that are robust near occlusions. In British Machine Vision Conference, volume 1, pages 143-152, Norwich, United Kingdom, September 2003.
[ bib | .ps.gz ]
[82] S. Chambon and A. Crouzil. Mesures de corrélation robustes aux occultations. In Actes du congrès francophone de Vision par Ordinateur, ORASIS, pages 239-248, Gérardmer, France, May 2003.
[ bib | .ps.gz ]
[83] S. Chambon and A. Crouzil. Color stereo matching using correlation measures. In International Conference on Complex Systems, Intelligence and Modern Technology, pages 520-525, Cherbourg, France, September 2004.
[ bib ]
[84] S. Chambon and A. Crouzil. Mesures de corrélation pour des images couleur. Traitement du signal, 21(6):635-659, 2004.
[ bib ]
[85] S. Chambon and A. Crouzil. Mise en correspondance par corrélation avec détection des zones d'occultation. Research report 2004-31-R, IRIT, Institut de Recherche en Informatique de Toulouse, Université Paul Sabatier, France, December 2004.
[ bib ]
[86] S. Chambon and A. Crouzil. Towards correlation-based matching algorithms that are robust near occlusions. In International Conference on Pattern Recognition, volume 3, pages 20-23, Cambridge, United Kingdom, August 2004.
[ bib ]
[87] S. Chambon and A. Crouzil. Colour correlation-based matching. International Journal of Robotics and Automation, 20(2):78-87, 2005.
[ bib ]
[88] J. Chanussot. Approches vectorielles ou marginales pour le traitement d'images multi-composantes. Thesis, Université de la Savoie, France, November 1998.
[ bib ]
[89] J. Chanussot and P. Lambert. Bit mixing paradigm for multivalued morphological filters. In International Conference on Image Processing and its Applications, pages 804-808, Dublin, Irlande, July 1997.
[ bib ]
[90] N. Chehata. Interprétation de scènes urbaines à partir d'images satellitaires THR : reconstruction de facettes 3D et optimisation globale 3D. Bulletin d'information scientifique et technique de l'IGN, 75:29-40, January 2005.
[ bib ]
[91] C. Chen, Y. Hung, and J. Cheng. Ransac-based darces: A new approach to fast automatic registration of partially overlapping range images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(11):1229-1234, November 1999.
[ bib ]
[92] H. Chen and P. Meer. Robust computer vision trough kernel density estimation. In European Conference on Computer Vision, volume 2, pages 294-308, Copenhagen, Denmark, May 2002.
[ bib ]
[93] H. Chen and P. Meer. Robust regression with projection based m-estimators. In IEEE International Conference on Computer Vision, volume 2, pages 878-885, Nice, France, October 2003.
[ bib ]
[94] J.-H. Chen, C.-S. Chen, and Y.-S. Chen. Fast algorithm for robust template matching with m-estimator. IEEE Transactions on Signal Processing, 51(1):230-243, January 2003.
[ bib ]
[95] Q. Chen and G. Medioni. A volumetric stereo matching method: Application to image-based modeling. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 1, pages 1029-1034, Fort Collins, United States, June 1999.
[ bib ]
[96] S.-C. Cheng and S.-C. Hsia. Fast algorithms for color image processing by principal component analysis. Journal of Visual Communication and Image Representation, 14(2):184-203, June 2003.
[ bib ]
[97] D. Chetverikov and J. Matas. Periodic textures as distinguished regions for wide-baseline stereo correspondence. In Texture 2002, International workshop on texture analysis and synthesis, pages 25-29, Copenhagen, Denmark, June 2002.
[ bib ]
[98] D. Chetverikov, Z. Megyesi, and Z. Jankó. Finding region correspondences for wide baseline stereo. In International Conference on Pattern Recognition, volume 4, pages 276-279, Cambridge, United Kingdom, August 2004.
[ bib ]
[99] D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek. The trimmed iterative closest point algorithm. In International Conference on Pattern Recognition, volume 3, pages 545-548, Quebec, Canada, August 2002.
[ bib ]
[100] P. B. Chou and C. M. Brown. The theory and practice of bayesian image labeling. International Journal of Computer Vision, 4(3):185-210, June 1990.
[ bib ]
[101] Cie 15.2. Colorimetry, second edition. Technical report, Commission Internationale de l'Éclairage, Vienne, Autriche, 1986.
[ bib ]
[102] L. Cinque, S. Levialdi, and A. Rosenfeld. Fast pyramidal algorithms for image thresholding. The Journal of the Pattern Recognition Society, 28(6):901-906, June 1995.
[ bib ]
[103] S. D. Cochran and G. Médioni. 3-D surface description from binocular stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(10):981-994, October 1992.
[ bib ]
[104] R. T. Collins. A space-sweep approach to true multi-image matching. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 358-363, San Francisco, United States, June 1996.
[ bib ]
[105] D. Comaniciu and P. Meer. Distribution free decomposition of multivariate data. Pattern Analysis and Applications, 2(1):22-30, April 1999.
[ bib ]
[106] D. Comaniciu, P. Meer, and D. Tyler. Dissimilarity computation trough low rank corrections. In Workshop on Content-based Access of Image and Video Libraries, pages 50-54, Fort Collins, United States, June 1999.
[ bib ]
[107] D. Coquin, P. Bolon, and B. Ionescu. Dissimilarity measures in color spaces. In International Conference on Pattern Recognition, volume 1, pages 612-615, Quebec, Canada, August 2002.
[ bib ]
[108] M. Cord, N. Paparoditis, and M. Jordan. Dense, reliable and depth discontinuity preserving dem computation from hrv urban stereopairs. International Archives of Photogrammetry and Remote Sensing, 32(2):57-63, 1998.
[ bib ]
[109] V. Coutance. La couleur en vision par ordinateur. Application à la robotique. Thesis, Université Paul Sabatier, Toulouse, France, December 1990.
[ bib ]
[110] G. S. Cox. Template matching and measures of match in image processing. Technical report, University of Cape Town, South Africa, July 1995.
[ bib | http ]
[111] I. J. Cox. Stereo without disparity gradient smoothing: a bayesian sensor fusion solution. In British Machine Vision Conference, pages 337-346, Leeds, United Kingdom, September 1992.
[ bib ]
[112] I. J. Cox, S. Hingorani, B. M. Maggs, and S. B. Rao. Stereo without regularization. Technical report, NEC Research Institute, 4 Independence Way, Princeton, NJ 08540, United States, October 1992.
[ bib ]
[113] I. J. Cox, S. L. Hingorani, S. B. Rao, and B. M. Maggs. A maximum likelihood stereo algorithm. Computer Vision and Image Understanding, 63(3):1271-1281, May 1996.
[ bib ]
[114] A. Criminisi, J. Shotton, A. Blake, C. Rother, and P. H. S. Torr. Efficient dense-stereo and novel-view synthesis for gaze manipulation in one-to-one teleconferencing. Technical report MSR-TR-2003-59, MicroSoft Research, Cambridge, United Kingdom, September 2003.
[ bib ]
[115] A. Criminisi, J. Shotton, A. Blake, C. Rother, and P. H. S. Torr. Efficient dense-stereo with occlusions and new view synthesis by four state dp for gaze correction. International Journal of Computer Vision, 2005. submitted.
[ bib ]
[116] C. Croux and C. Dehon. Estimators of the multiple correlation coefficient: local robustness and confidence intervals. Statistical Papers, 2003. to appear.
[ bib ]
[117] C. Croux, P. J. Rousseeuw, and O. Hössjer. Generalized s-estimators. Journal of the American Statistical Association, 78:1271-1281, December 1994.
[ bib ]
[118] C. Croux, P. J. Rousseeuw, and A. Van Bael. Positive-breakdown regression by minimizing nested scale estimators. Journal of Statistical Planning and inference, 53(2):197-235, August 1996.
[ bib ]
[119] A. Crouzil. Perception du relief et du mouvement par analyse d'une séquence stéréoscopique d'images. Thesis, Université Paul Sabatier, Toulouse, France, September 1997.
[ bib ]
[120] A. Crouzil, X. Descombes, and J.-D. Durou. A multiresolution approach for shape from shading coupling deterministic and stochastic optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(11):1416-1421, November 2003.
[ bib ]
[121] A. Crouzil, L. Massip-Pailhes, and S. Castan. Mise en correspondance par corrélation de gradients. In actes du Congrès AFCET Reconnaissance des Formes et Intelligence Artificielle, RFIA, volume 2, pages 695-704, Rennes, France, January 1996.
[ bib ]
[122] A. Crouzil, L. Massip-Pailhes, and S. Castan. A new correlation criterion based on gradient fields similarity. In International Conference on Pattern Recognition, volume 1, pages 632-636, Vienna, Austria, August 1996.
[ bib ]
[123] R. Cucchiara, C. Grana, G. Tardini, and R. Vezzani. Probabilistic people tracking for occlusion handling. In International Conference on Pattern Recognition, volume 1, pages 132-135, Cambridge, United Kingdom, August 2004.
[ bib ]
[124] B. Cyganek and J. Borgosz. A comparative study of performance and implementation of some area-based stereo algorithms. In International Conference on Computer Analysis of Images and Patterns, pages 709-716, Warsaw, Poland, September 2001.
[ bib ]
[125] B. Cyganek and J. Borgosz. An improved variogram analysis of the maximum expected disparity in stereo images. In Scandinavian Conference on Image Analysis, pages 640-645, Göteborg, Sweden, June 2003.
[ bib ]
[126] A. Dante, M. Brookes, and A. G. Constantinides. Robust multi-body segmentation. In British Machine Vision Conference, volume 2, pages 669-678, Norwich, United Kingdom, September 2003.
[ bib ]
[127] T. Darrell. A radial cumulative similarity transform for robust image correspondence. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 656-662, Santa Barbara, United States, June 1998.
[ bib ]
[128] C. Q. Davis, Z. Z. Karu, and D. M. Freeman. Equivalence of subpixel motion estimators based on optical flow and block matching. In IEEE Symposium on Computer Vision, pages 7-12, Coral Gables, United States, November 1995.
[ bib ]
[129] L. S. Davis and A. Rosenfeld. Cooperating processes for low-level vision: A survey. Artificial Intelligence, 17(1-3):245-263, August 1981.
[ bib ]
[130] O. De Joinville, G. Maillet, H. Maître, and M. Roux. Évaluation a priori de la qualité d'un MNS. In Actes du congrès francophone de Vision par Ordinateur, ORASIS, pages 67-76, Cahors, France, June 2001.
[ bib ]
[131] O. De Joinville, H. Maître, D. Piquet Pellorce, and M. Roux. How to design dem assessment maps. In International Workshop on Pattern recognition in Remote Sensing, Andorra-La-Vella, Andorra, September 2000.
[ bib ]
[132] F. De la Torre and M. J. Black. Robust principal component analysis for computer vision. In IEEE International Conference on Computer Vision, volume 1, pages 362-369, Vancouver, Canada, July 2001.
[ bib ]
[133] J. Delon and B. Rougé. Le phénomène d'adhérence en stéréoscopie dépend du critère de corrélation. In colloque GRETSI sur le traitement du signal et des images, Toulouse, France, September 2001.
[ bib ]
[134] D. Demirdjian and R. Horaud. Motion-egomotion discrimination and motion segmentation from image-pair streams. Computer Vision and Image Understanding, 78(1):53-68, April 2000.
[ bib ]
[135] Y. Deng, Q. Yang, X. Lin, and X. Tang. A symmetric patch-based correspondence model for occlusion handling. In IEEE International Conference on Computer Vision, Beijing, China, October 2005. to appear.
[ bib ]
[136] X. Descombes. Méthodes stochastiques en analyse d'image : des champs de Markov aux processus ponctuels marqués. Thesis, Université de Nice - Sophia Antipolis, France, February 2004.
[ bib ]
[137] S. Devasenathipathy, J. G. Santiago, S. T. Wereley, C. D. Meinhart, and K. Takehara. Particle imaging techniques for microfabricated fluidic systems. Experiments in Fluids, 34(4):504-514, April 2003.
[ bib ]
[138] F. Devernay. Vision stéréoscopique et propriétés différentielles des surfaces. Thesis, Institut National Polytechnique, Grenoble, France, February 1997.
[ bib ]
[139] F. Devernay, O. Bantiche, and E. Coste. Structured light on dynamic scenes using standard stereoscopy algorithms. Research report RR-4477, Institut National de Recherche en Informatique et en Automatique, June 2002.
[ bib ]
[140] F. Devernay and O. Faugeras. Shape from stereo using fine correlation: Method and error analysis. International Journal of Image and Vision Computing, 2005. submitted.
[ bib ]
[141] U. R. Dhond and J. K. Aggarwal. Stereo matching in the presence of narrow occluding objects using dynamic disparity search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(7):719-724, July 1995.
[ bib ]
[142] L. Di Stefano, M. Marchionni, S. Mattocia, and G. Neri. A fast area-based stereo matching algorithm. In International Conference on Vision Interface, pages 146-153, Calgary, Canada, May 2002.
[ bib ]
[143] L. Di Stefano and S. Mattocia. Fast template matching using bounded partial correlation. Journal of Machine Vision and Applications, 13(4):213-221, February 2003.
[ bib ]
[144] L. Di Stefano, S. Mattocia, G. Neri, and D. Piccinini. Temporal filtering of diparity measurements. In International Conference on Image Analysis and Processing, pages 145-150, Palerme, Italia, September 2001.
[ bib ]
[145] S. Di Zenzo. A note on the gradient of a multi-image. Computer Vision, Graphics, and Image Processing, 33(1):116-125, January 1986.
[ bib ]
[146] S. Douglas and T. Kirkpatrick. Do color models really make a difference ? In Conference on Human Factors in Computers Systems, pages 399-405, Vancouver, Canada, April 1996.
[ bib ]
[147] F. Duculty, M. Dhome, and F. Jurie. Suivi efficace d'objets 3D basé sur l'apparence. Traitement du signal, 18(5-6):403-417, 2001.
[ bib ]
[148] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience Publication, November 2000.
[ bib ]
[149] N. Duffy and G. Lacey. Colour profiling using multiple colour spaces. In British Machine Vision Conference, pages 245-256, Southampton, United Kingdom, September 1998.
[ bib ]
[150] Y. Dufournaud, C. Schmid, and R. Horaud. Appariement d'images à des échelles différentes. In actes du Congrès AFRIF-AFIA Reconnaissance des Formes et Intelligence Artificielle, RFIA, pages 327-336, Paris, France, February 2000.
[ bib ]
[151] Y. Dufournaud, C. Schmid, and R. Horaud. Matching images with different resolutions. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 1, pages 612-618, Hilton Head Island, United States, June 2000.
[ bib ]
[152] Y. Dufournaud, C. Schmid, and R. Horaud. Image matching with scale adjustment. Computer Vision and Image Understanding, 93(2):175-194, February 2004.
[ bib ]
[153] G. Egnal, M. Mintz, and K. Daniilidis. Limiting the search range of correlation stereo using silhouettes. In International Conference on Vision Interface, pages 170-177, Calgary, Canada, May 2002.
[ bib ]
[154] G. Egnal, M. Mintz, and P. Wildes. A stereo confidence metric using single view imagery. In International Conference on Vision Interface, pages 162-169, Calgary, Canada, May 2002.
[ bib ]
[155] G. Egnal and R. P. Wildes. Detecting binocular half-occlusions : Empirical comparisons of four approaches. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, pages 466-473, Hilton Head Island, United States, June 2000.
[ bib ]
[156] G. Egnal and R. P. Wildes. Detecting binocular half-occlusions : Empirical comparisons of five approaches. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(8):1127-1133, August 2002.
[ bib ]
[157] M. Ehlers and R. Welch. Stereo-correlation of landsat-tm images. Photogrammetric Engineering and Remote Sensing, 53(9):1321-1237, 1986.
[ bib ]
[158] M. P. Eklund. Robust correspondence techniques for stereo vision. Master's thesis, University of Louisville, United States, May 2002.
[ bib ]
[159] M. P. Eklund and A. A. Farag. Robust correspondence methods for stereo vision. International Journal of Pattern Recognition and Artificial Intelligence, 17(7):1059-1079, November 2003.
[ bib ]
[160] Y. El-Sonbaty and M. A. Ismail. Matching occluded objects invariant to rotations, translations, reflections and scale changes. In Scandinavian Conference on Image Analysis, pages 836-843, Göteborg, Sweden, June 2003.
[ bib ]
[161] R. Faghihi. Mise en correspondance SPECT-CT par conditions de consistance. Thesis, Université Joseph Fourier, La Tronche, France, November 2002.
[ bib ]
[162] L. Falkenhagen. Hierarchical block-based disparity estimation considering neighbourhood constraints. In International Workshop on Synthetic-Natural Hybrid Coding and 3D Imaging, Rhodes, Greece, September 1997.
[ bib ]
[163] M. Farenzena, A. Busti, A. Fusiello, and A. Benedetti. Rigourous accuracy bounds for calibrated stereo reconstruction. In International Conference on Pattern Recognition, volume 4, pages 288-292, Cambridge, United Kingdom, August 2004.
[ bib ]
[164] O. Faugeras. Digital color image processing within the framework of a human visual model. IEEE Transactions on Acoustics, Speech and Signal Processing, 27(4):380-393, August 1979.
[ bib ]
[165] O. Faugeras, P. Fua, B. Hotz, R. Ma, L. Robert, M. Thonnat, and Z. Zhang. Quantitative and qualitative comparison of some area and feature-based stereo algorithms. In Förstner and Ruwiedel, editors, Robust computer vision: Quality of Vision Algorithms, pages 1-26. Wichmann, Karlsruhe, Germany, March 1992.
[ bib ]
[166] O. Faugeras, B. Hotz, Z. Zhang, and P. Fua. Real time correlation-based stereo : Algorithm, implementation and applications. Research report RR-2013, Institut National de Recherche en Informatique et en Automatique, August 1993.
[ bib ]
[167] O. Faugeras and R. Keriven. Complete dense stereovision using level set methods. In European Conference on Computer Vision, volume 1, pages 379-393, freiburg, Germany, June 1998.
[ bib ]
[168] V. Ferrari, T. Tuytelaars, and L. Van Gool. Wide-baseline multiple-view correspondences. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, pages 718-725, Madison, United States, June 2003.
[ bib ]
[169] G. Fielding and M. Kam. Weighted matchings for dense stereo correspondence. The Journal of the Pattern Recognition Society, 33(9):1511-1524, September 2000.
[ bib ]
[170] D. J. Fleet, A. D. Jepson, and M. R. M. Jenkin. Phase-based disparity measurement. Computer Vision, Graphics, and Image Processing: Image Understanding, 53(2):198-210, March 1991.
[ bib ]
[171] M. Fontaine. Segmentation non supervisée d'images couleur par analyse de la connexité des pixels. Thesis, Université des sciences et technologies de Lille 1, France, December 2001.
[ bib ]
[172] G. D. Forney. The viterbi algorithm. Proceedings of the IEEE, 61(3):268-278, March 1973.
[ bib ]
[173] S. Forstmann, Y. Kanou, J. Ohya, S. Thuering, and A. Schmitt. Real-time stereo by using dynamic programming. In Workshop on real-time 3D sensors and their use, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 3, pages 29-36, Washington, United States, June-July 2004.
[ bib ]
[174] T. Frohlinghaus and J. M. Buhmann. Regularizing phase-based stereo. In International Conference on Pattern Recognition, volume 1, pages 451-455, Vienna, Austria, August 1996.
[ bib ]
[175] P. Fua. Combining stereo and monocular information to compute dense depth maps that preserve depth discontinuities. In International Joint Conference on Artificial Intelligence, pages 1292-1298, Sydney, Australia, August 1991.
[ bib ]
[176] P. Fua. A parallel stereo algorithm that produces dense depth maps and preserves image features. Journal of Machine Vision and Applications, 6(1):35-49, January 1993.
[ bib ]
[177] F. Fuchs. Contribution à la reconstruction du bâti en milieu urbain, à l'aide d'images aériennes stéréoscopiques à grande échelle. Étude d'une approche structurelle. Thesis, Université Réné Descartes - Paris V, France, April 2001.
[ bib ]
[178] K. Fujimura, Y. Oue, and T. Terauchi. Improved 3D head reconstruction system based on combining shape-from-silhouette with two-stage stereo algorithm. In International Conference on Pattern Recognition, volume 3, pages 23-26, Cambridge, United Kingdom, August 2004.
[ bib ]
[179] A. Fusiello, V. Roberto, and E. Trucco. Efficient stereo with multiple windowing. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 858-863, San Juan, Porto Rico, June 1997.
[ bib ]
[180] A. Fusiello, V. Roberto, and E. Trucco. Experiments with a new area-based stereo algorithm. In International Conference on Image Analysis and Processing, volume 2, pages 669-676, Florence, Italia, September 1997.
[ bib ]
[181] A. Fusiello, E. Trucco, T. Tommasini, and V. Roberto. Improving feature tracking with robust statistics. Pattern Analysis and Applications, 2(4):312-320, November 1999.
[ bib ]
[182] A. Fusiello, E. Trucco, and A. Verri. A compact algorithm for rectification of stereo pairs. Journal of Machine Vision and Applications, 12(1):16-22, July 2000.
[ bib ]
[183] C. Garbay. Modélisation de la couleur dans le cadre de l'analyse d'images et de son application à la cytologie automatique. Thesis, Institut National Polytechnique, Grenoble, France, December 1979.
[ bib ]
[184] C. Garbay, F. Brugal, and C. Choquet. Application of colored image analysis to bone marrow cell recognition. Analytical and Quantitative Cytology, 3(4):272-280, July 1981.
[ bib ]
[185] D. Garcia. Mesures de formes et de champs de déplacements tridimensionnels par stéréo-corrélation d'images. Thesis, École des Mines d'Albi, France, December 2001.
[ bib ]
[186] D. Garcia and J.J. Orteu. 3D deformation measurement using stereo-correlation applied to experimental mechanics. In International Symposium on Deformation Measurements, pages 50-60, Orange, United States, March 2001.
[ bib ]
[187] D. Garcia, J.J. Orteu, and L. Penazzi. A combined temporal tracking and stereo-correlation technique for accurate measurement of 3d displacements: Application to sheet metal forming. Journal of Materials Processing Technology, 2002(125-126):736-742, September 2002.
[ bib ]
[188] R. Garcia, X. Cufi, and J. Batle. Detection of matching in a sequence of underwater images through texture analysis. In IEEE International Conference on Image Processing, volume 1, pages 361-364, Thessaloniki, Greece, October 2001.
[ bib ]
[189] D. Geiger, B. Ladendorf, and A. Yuille. Occlusions and binocular stereo. In IEEE International Conference on Image Processing, volume 14, pages 211-226, Washington, United States, October 1995.
[ bib ]
[190] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721-741, November 1984.
[ bib ]
[191] M. A. Gennert. Brightness-based stereo matching. In IEEE International Conference on Computer Vision, pages 138-143, Tampa, United States, December 1988.
[ bib ]
[192] B. Georgescu and P. Meer. Point matching under large image deformations and illumination changes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(6):674-688, June 2004.
[ bib ]
[193] T. Gevers. Reflectance-based classification of color edges. In IEEE International Conference on Computer Vision, volume 2, pages 856-861, Nice, France, October 2003.
[ bib ]
[194] T. Gevers, A. W. M. Smeulders, and H. Stokman. Photometric invariant region detection. In British Machine Vision Conference, pages 578-589, Southampton, United Kingdom, September 1998.
[ bib ]
[195] A. Ghafoor, R. Naveed Iqbal, and S. Shoad Khan. Image matching using distance transform. In Scandinavian Conference on Image Analysis, pages 654-660, Göteborg, Sweden, June 2003.
[ bib ]
[196] A. Giachetti. Matching techniques to compute image motion. International Journal of Image and Vision Computing, 18(3):245-258, February 2000.
[ bib ]
[197] G. Gimel'farb and J. Zhong. Matching multiple views by the least square correlation. In Multi-Image Analysis, International Workshop on the Theoretical Foundations of Computer Vision, pages 105-114, Dagstuhl Castle, Germany, March 2000.
[ bib ]
[198] B. Girod, F. Hartung, and U. Horn. Multiresolution coding of image and video signals. In European Signal Processing Conference, pages 1947-1960, Rhodes, Greece, September 1998.
[ bib ]
[199] J. Goldberger, S. Gordon, and H. Greenspan. An efficient image similarity measure based on approximations of kl-divergence between two gaussian mixtures. In IEEE International Conference on Computer Vision, volume 1, pages 487-493, Nice, France, October 2003.
[ bib ]
[200] M. Gong. Motion estimation using dynamic programming with selective path search. In International Conference on Pattern Recognition, volume 4, pages 203-206, Cambridge, United Kingdom, August 2004.
[ bib ]
[201] M. Gong and Y.-H. Yang. Genetic-based stereo algorithm and disparity map evaluation. International Journal of Computer Vision, 47(1-3):63-77, April 2002.
[ bib ]
[202] M. Gong and Y.-H. Yang. Fast stereo matching using reliability-based dynamic programming and consistency contraints. In IEEE International Conference on Computer Vision, volume 1, pages 610-617, Nice, France, October 2003.
[ bib ]
[203] M. Gong and Y.-H. Yang. Fast unambiguous stereo matching using reliability-based dynamic programming. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6):998-1003, June 2005.
[ bib ]
[204] M. Gong and Y.-H. Yang. Near real-time reliable stereo matching using programmable graphics hardware. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, United States, June 2005. to appear.
[ bib ]
[205] L. Gottesfeld Brown. A survey of image registration techniques. ACM Computing Surveys, 24(4):325-376, December 1992.
[ bib ]
[206] V. Gouet. Mise en correspondance d'images en couleur - Application à la synthèse de vues intermédiaires. Thesis, Université de Montpellier, France, October 2000.
[ bib ]
[207] V. Gouet, P. Montesinos, R. Deriche, and D. Pelé. Évaluation de détecteurs de points d'intérêt pour la couleur. In actes du Congrès AFRIF-AFIA Reconnaissance des Formes et Intelligence Artificielle, RFIA, pages 257-266, Paris, France, February 2000.
[ bib ]
[208] V. Gouet, P. Montesinos, and D. Pel. A fast matching method for color uncalibrated images using differential invariants. In British Machine Vision Conference, pages 367-376, Southampton, United Kingdom, September 1998.
[ bib ]
[209] M. Gouiffès, P. Marty-Mahé, C. Fernandez-Maloigne, A. Trémeau, P. Loisel, and D. Brossard. Comparaison de deux méthodes de segmentation couleur appliquées à la traçabilité de produits carnés. In actes du Congrès AFRIF-AFIA Reconnaissance des Formes et Intelligence Artificielle, RFIA, volume 2, pages 739-748, Toulouse, France, January 2004.
[ bib ]
[210] J. Y. Goulermas and P. Liatsis. A collective-based adaptive symbiotic model for surface reconstruction in area-based stereo. IEEE Transactions on Evolutionary Computation, 7(5):482-502, October 2003.
[ bib ]
[211] I. V. Gribkov, P. P. Kol'tsov, A. A. Kravchenko, A.S. Kutsaev, V. K. Nikolaev, and A. V. Zakharov. PICASSO-the system for evaluating edge-detection algorithms. Pattern Recognition and Image Analysis, 13(2):208-210, October 2003.
[ bib ]
[212] P. Gros, G. MacLean, R. Delon, R. Mohr, C. Schmid, and G. Mistler. Utilisation de la couleur pour l'appariement et l'indexation d'images. Research report RR-3269, Institut National de Recherche en Informatique et en Automatique, September 1997.
[ bib ]
[213] L. Guisser, R. Payrissat, and S. Castan. Pgsd: an accurate 3D vision system using a projected grid for surface descriptions. International Journal of Image and Vision Computing, 18(6-7):463-491, May 2000.
[ bib ]
[214] S. Gutiérrez and J. Luis Marroquín. Robust approach for disparity estimation in stereo vision. International Journal of Image and Vision Computing, 22(3):183-195, March 2004.
[ bib ]
[215] M. Gökstorp and C.-J. Westelius. Multiresolution differential-based disparity estimation. In Scandinavian Conference on Image Analysis, pages 67-76, Uppsala, Sweden, June 1995.
[ bib ]
[216] K.-P. Han, K.-W. Song, E.-Y. Chung, S.-J. Cho, and Y.-H. Ha. Stereo matching using genetic algorithm with adaptive chromosomes. The Journal of the Pattern Recognition Society, 34(9):1729-1740, September 2001.
[ bib ]
[217] A. Hanbury. Morphologie Mathématique sur le Cercle Unité. Thesis, École Nationale Supérieure des Mines, Paris, France, March 2002.
[ bib ]
[218] A. Hanbury. A 3D-polar coordinate colour representation well adapted to image analysis. In Scandinavian Conference on Image Analysis, pages 804-811, Göteborg, Sweden, June 2003.
[ bib ]
[219] M. E. Hansen and J. M. Carstensen. Color-based image retrieval from high-similarity image databases. In Scandinavian Conference on Image Analysis, pages 1098-1105, Göteborg, Sweden, June 2003.
[ bib ]
[220] J. Y. Hardeberg. Acquisition and reproduction of colour images: colorimetric and multispectral approaches. Thesis, École Nationale Supérieure des Télécommunications, Paris, France, January 1999.
[ bib ]
[221] J. Y. Hardeberg and F. Schmitt. Colour management: Why and how. In International Colour Conference, Colour between Art and Science, Oslo, Norway, June 1998.
[ bib ]
[222] C. Harris and M. Stephens. A combined corner and edge detector. In Alvey Vision Conference, pages 147-151, Manchester, United Kingdom, January 1988.
[ bib ]
[223] R. I Hartley. Theory and practice of projective rectification. International Journal of Computer Vision, 35(2):115-127, November-December 1999.
[ bib ]
[224] R. I Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, deuxième edition, 2004.
[ bib ]
[225] D. Hasler, L. Sbaiz, S. Süsstrunk, and M. Vetterli. Outlier modelling in image matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(3):301-315, March 2003.
[ bib ]
[226] Y. Haxhimusa and W. G. Kropatsch. Paths lengths in stochastic graph image pyramid. In Workshop of the Austrian Association for Pattern Recognition, pages 79-86, Graz, Austria, September 2002.
[ bib ]
[227] A. Heinrichs, D. Koubaroulis, B. Levienaise-Obadia, P. Rovida, and J. M. Jolion. Robust image retrieval in a statistical framework. Technical Report RR 04.99, Laboratoire Reconnaissance de Formes et Vision, April 1999.
[ bib ]
[228] B. Heisele. Motion-based object detection and tracking in color sequences. In Asian Conference on Computer Vision, volume 2, pages 1028-1033, Taïpeh, Taiwan, January 2000.
[ bib ]
[229] Y. Hel-Cor and H. Hel-Or. Real time pattern matching using projection kernels. In IEEE International Conference on Computer Vision, volume 2, pages 1486-1493, Nice, France, October 2003.
[ bib ]
[230] E. Hemayed and A. Farag. Integrating edge-based stereo and structured light for robust surface reconstruction. In IEEE International Conference on Intelligent Vehicles, Stuttgart, Germany, October 1998.
[ bib ]
[231] R. D. Henkel. Fast stereovision by coherence detection. In International Conference on Image Analysis and Processing, volume 1, pages 297-304, Florence, Italia, September 1997.
[ bib ]
[232] G. Hermosillo Valadez. Variational Methods for Multimodal Image Matching. Thesis, Université de Nice - Sophia Antipolis, France, May 2002.
[ bib ]
[233] G. Hermosillo Valadez and O. Faugeras. Dense image matching with global and local statistical criteria. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 1, pages 73-78, Kauai, United States, December 2001.
[ bib ]
[234] C. Hernández Esteban and F. Schmitt. Silhouette and stereo fusion for 3d object modeling. Computer Vision and Image Understanding, 96(3):367-392, December 2004.
[ bib ]
[235] C. Hernández Esteban and F. Schmitt. Une approche par modèle déformable pour la reconstruction 3D de haute qualité d'objets photographiés. In actes du Congrès AFRIF-AFIA Reconnaissance des Formes et Intelligence Artificielle, RFIA, volume 2, pages 905-914, Toulouse, France, January 2004.
[ bib ]
[236] H. Hirschmüller, P. R. Innocent, and J. Garibaldi. Real-time correlation-based vision with reduced border errors. International Journal of Computer Vision, 47(1-3):229-246, April-June 2002.
[ bib ]
[237] W. Hoff and N. Ahuja. Surfaces from stereo : Integrating feature matching, disparity estimation, and contour detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(2):121-136, February 1989.
[ bib ]
[238] J. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and, Artificial Intelligence. The Massachusetts Institute of Technology, MIT Press, 1975.
[ bib ]
[239] P. Holloway. Réalité augmentée automatique à partir d'une séquence vidéo et utilisant la stéréoscopie dense. Master report, University of Montreal, Canada, June 2003.
[ bib ]
[240] L. Hong and G. Chen. Segment-based stereo matching using graph cuts. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 1, pages 74-81, Washington, United States, June-July 2004.
[ bib ]
[241] J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences,, 79:2254-2258, April 1982.
[ bib ]
[242] R. Horaud and O. Monga. Vision par ordinateur, outils fondamentaux. Traité des nouvelles technologies, série Informatique. Hermes, Paris, France, 1993.
[ bib ]
[243] R. Horaud and T. Skordas. Stereo correspondence trough feature grouping and maximal cliques. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(11):1168-1180, November 1989.
[ bib ]
[244] F. Horowitz, D. Bone, and P. Vedkamp. Karhunen-loeve based iterated function systeme encodings. In International Picture Coding Symposium, volume 2, pages 409-413, Melbourne, Australia, March 1996.
[ bib ]
[245] J. Hu and P. Siy. Stereo correspondence through multiple constraint neural networks. In IEEE International Conference on Neural Networks, volume 2, pages 332-342, San Francisco, United States, March 1993.
[ bib ]
[246] M. Hu, W. Hu, and T. Tan. Tracking people through occlusions. In International Conference on Pattern Recognition, volume 2, pages 724-727, Cambridge, United Kingdom, August 2004.
[ bib ]
[247] P. J. Huber. Robust statistics, chapter 8, pages 204-205. J. Wiley & Sons, New-York, United States, 1981.
[ bib ]
[248] S. S. Intille and A. F. Bobick. Disparity-space images and large occlusion stereo. In European Conference on Computer Vision, volume 1, pages 179-186, Stockholm, Sweden, May 1994.
[ bib ]
[249] M. Irani, P. Anandan, and M. Cohen. Direct recovery of planar-parallax from multiple frames. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(11):1528-1534, November 2002.
[ bib ]
[250] M. Irani, P. Anandan, and S. Hsu. Mosaic based representations of video sequences and their applications. In IEEE International Conference on Computer Vision, pages 605-611, Cambridge, United States, June 1995.
[ bib ]
[251] H. Ishikawa. Global Optimization Using Embedded Graphs. PhD thesis, New-York University, United States, May 2000.
[ bib ]
[252] H. Ishikawa and D. Geiger. Occlusions, discontinuities, and epipolar lines in stereo. In European Conference on Computer Vision, volume 1, pages 232-248, freiburg, Germany, June 1998.
[ bib ]
[253] G. Jaffré and A. Crouzil. Utilisation de la procédure mean-shift pour le problème du suivi de joueurs dans des séquences d'images d'activités sportives. Research report 2002-33-R, IRIT, Institut de Recherche en Informatique de Toulouse, Université Paul Sabatier, France, 2002.
[ bib ]
[254] A. Jagmohan, M. Singh, and N. Ahuja. Dense stereo matching using kernel maximum likelihood estimation. In International Conference on Pattern Recognition, volume 3, pages 28-31, Cambridge, United Kingdom, August 2004.
[ bib ]
[255] H. Jahn. Binocular stereo matching by local attraction. In International Conference on Computer Analysis of Images and Patterns, pages 676-683, Warsaw, Poland, September 2001.
[ bib ]
[256] C. V. Jawahar and P. J. Narayanan. Generalised correlation for multi-feature correspondence. The Journal of the Pattern Recognition Society, 35(6):1303-1313, June 2002.
[ bib ]
[257] H. Jibrini, M. Pierrot-Deseilligny, N. Paparoditis, and H. Maître. Détermination d'une surface polyédrique continue optimale à partir d'un fouillis de plans. In actes du Congrès AFRIF-AFIA Reconnaissance des Formes et Intelligence Artificielle, RFIA, volume 1, pages 175-183, Toulouse, France, January 2004.
[ bib ]
[258] J. M. Jolion. Stochastic pyramid revisited. Pattern Recognition Letters, 24(8):1335-1342, May 2003.
[ bib ]
[259] D. G. Jones and J. Malik. A computational framework for determining stereo correspondence from a set of linear spatial filters. International Journal of Image and Vision Computing, 10(10):699-708, December 1992.
[ bib ]
[260] G. A. Jones. Constraint, optimization, and hierarchy: Reviewing stereoscopic correspondence of complex features. International Journal of Computer Vision, 65(1):57-58, January 1997.
[ bib ]
[261] P. M. Jorge, J. S. Marques, and A. J. Abrantes. Estimation of the bayesian network architecture for object tracking in video sequences. In International Conference on Pattern Recognition, volume 2, pages 732-735, Cambridge, United Kingdom, August 2004.
[ bib ]
[262] X. Ju, T. Boyling, J. P. Siebert, N. McFarlane, J. Wu, and R. Tillett. Integration of range images in a multi-view stereo system. In International Conference on Pattern Recognition, volume 4, pages 280-283, Cambridge, United Kingdom, August 2004.
[ bib ]
[263] I.-K. Jung and S. Lacroix. A robust interest points matching algorithm. In IEEE International Conference on Computer Vision, volume 2, pages 538-543, Vancouver, Canada, July 2001.
[ bib ]
[264] F. Jurie. Robust hypothesis verification: Application to model based object. The Journal of the Pattern Recognition Society, 32(6):1069-1081, June 1999.
[ bib ]
[265] F. Jurie. Solution of the simultaneous pose and correspondence problem using gaussian error model. Computer Vision and Image Understanding, 73(3):357-373, March 1999.
[ bib ]
[266] F. Jurie. Reconnaissance d'objets volumiques par mise en correspondance d'indices visuels. Traitement du signal, 18(5-6):321-345, 2001.
[ bib ]
[267] F. Jurie and M. Dhome. Hyperplane approximation for template matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7):996-1000, July 2002.
[ bib ]
[268] F. Jurie and M. Dhome. Real time tracking of 3D objects: a robust approach. The Journal of the Pattern Recognition Society, 35(2):317-328, February 2002.
[ bib ]
[269] T. Kanade and M. Okutomi. A stereo matching algorithm with an adaptive window : Theory and experiment. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(9):920-932, September 1994.
[ bib ]
[270] T. Kanade, A. Yoshida, K. Oda, H. Kano, and M. Tanaka. A stereo machine for video-rate dense depth mapping and its new applications. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 196-202, San Francisco, United States, June 1996.
[ bib ]
[271] K. Kanatani and N. Ohta. Accuracy bounds and optimal computation of homography for image mosaicing applications. In IEEE International Conference on Computer Vision, volume 1, pages 73-78, Kerkyra, Greece, September 1999.
[ bib ]
[272] S. Kaneko, I. Murase, and S. Igarashi. Robust image registration by increment sign correlation. The Journal of the Pattern Recognition Society, 35(10):2223-2234, October 2002.
[ bib ]
[273] S. Kaneko, Y. Satoh, and S. Igarashi. Using selective correlation coefficient for robust image registration. The Journal of the Pattern Recognition Society, 36(5):1165-1173, May 2003.
[ bib ]
[274] S. B. Kang, R. Szeliski, and J. Chai. Handling occlusions in dense multi-view stereo. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 1, pages 103-110, Kauai, United States, December 2001.
[ bib ]
[275] S. B. Kang, C. L. Zitnick, and T. Kanade. A multibaseline stereo system with active illumination and real-time image acquisition. In IEEE International Conference on Computer Vision, volume 1, pages 88-93, Massachusetts, United States, June 1995.
[ bib ]
[276] A. Kaplan and E. Rivlin. Robust feature matching across widely separated color images. In International Conference on Pattern Recognition, volume 2, pages 136-139, Cambridge, United Kingdom, August 2004.
[ bib ]
[277] T. Kawanishi, T. Kurozumi, K. Kashino, and S. Takagi. A fast template matching algorithm with adaptive skipping using inner-subtemplates' distances. In International Conference on Pattern Recognition, volume 3, pages 654-657, Cambridge, United Kingdom, August 2004.
[ bib ]
[278] Y. Keller, A. Averbuch, and O. Miller. Robust phase correlation. In International Conference on Pattern Recognition, volume 2, pages 740-743, Cambridge, United Kingdom, August 2004.
[ bib ]
[279] Y. Keller, Y. Shkolnisky, and A. Averbuch. The angular difference function and its application to image registration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6):969-976, June 2005.
[ bib ]
[280] C. Kim, K. M. Lee, B. T. Choi, and S. U. Lee. A dense stereo matching using two-pass dynamic programming with generalized ground control points. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, pages 1075-1082, San Diego, United States, June 2005.
[ bib ]
[281] J. Kim, V. Kolmogorov, and R. Zabih. Visual correspondence using energy minimization and mutual information. In IEEE International Conference on Computer Vision, volume 2, pages 1033-1040, Nice, France, October 2003.
[ bib ]
[282] N. Kiryati and A. M. Bruckstein. Heteroscedastic hough transform (htht) : An efficient method for robust line fitting in the `errors in the variables' problem. Computer Vision and Image Understanding, 78(1):69-83, apr 2000.
[ bib ]
[283] H. Klank, G. Goranovic, J. P. Kutter, H. Gjelstrup, and C. H. Westergaard. PIV measurements in a microfluidic 3d-sheating structure with three-dimensional flow behaviour. Micromechanics and Microengineering, 12(6):862-869, November 2002.
[ bib ]
[284] R. Klette, H. S. Stiehl, M. A. Viergever, and K. L. Vincken, editors. Performance Characterization in Computer Vision, volume 17 of Computational Imaging and Vision. Kluwer academic publishers, Dordrecht, Pays-Bas, 2000.
[ bib ]
[285] R. Koch. Surface segmentation and modeling of 3-D polygonal objects from stereoscopic image pairs. In International Conference on Pattern Recognition, volume 1, pages 233-237, Vienna, Austria, June 1996.
[ bib ]
[286] R. Koch, M. Pollefeys, and L. Van Gool. Multi viewpoint stereo from uncalibrated video sequences. In European Conference on Computer Vision, volume 1, pages 55-71, freiburg, Germany, June 1998.
[ bib ]
[287] V. Kolmogorov and R. Zabih. Computing visual correspondence with occlusions using graph cuts. In IEEE International Conference on Computer Vision, volume 2, pages 508-515, Vancouver, Canada, July 2001.
[ bib ]
[288] V. Kolmogorov and R. Zabih. Multi-camera scene reconstruction via graph cuts. In European Conference on Computer Vision, volume 2, pages 82-96, Copenhagen, Denmark, May 2002.
[ bib ]
[289] D. Kong, H. Tao, and H. H. Gonzalez-Banos. Sparse IBR using range space rendering. In British Machine Vision Conference, volume 1, pages 181-190, Norwich, United Kingdom, September 2003.
[ bib ]
[290] A. Koschan. Dense stereo correspondence using polychromatic block matching. In International Conference on Computer Analysis of Images and Patterns, volume 719 of Lecture Notes in Computer Science, pages 538-542, Budapest, Hungary, September 1993.
[ bib ]
[291] A. Koschan. What is new in computational stereo since 1989: A survey of current stereo papers. Research report 93-22, Columbia University, Germany, August 1993.
[ bib ]
[292] A. Koschan. Using perceptual attributes to obtain dense depth maps. In IEEE Southwest Symposium on Image Analysis and Interpretation, pages 155-159, San Antonio, United States, April 1996.
[ bib ]
[293] A. Koschan and V. Rodehorst. Dense depth maps by active color illumination and image pyramids. In F. Solina, W. G. Kropatsch, R. Klette, and R. Bajcsy, editors, Advances in Computer Vision, pages 137-148. Springer-Verlag, New-York, October 1997.
[ bib ]
[294] J. Kostková, J. Cech, and R. Sára. Dense stereomatching algorithm performance for view prediction and structure reconstruction. In Scandinavian Conference on Image Analysis, pages 101-107, Göteborg, Sweden, June 2003.
[ bib ]
[295] J. Kostková and R. Sára. Stable matching based on disparity components. In Computer Vision Winter Workshop, pages 140-148, Bad Ausse, Austria, February 2002.
[ bib ]
[296] J. Kostková and R. Sára. Stratified dense matching for stereopsis in complex scenes. In British Machine Vision Conference, volume 1, pages 339-348, Norwich, United Kingdom, September 2003.
[ bib ]
[297] W. G. Kropatsch. Building irregular pyramids by dual graph contraction. IEE Proceedings Vision, Image and Signal Processing Journal, 142(6):366-374, December 1995.
[ bib ]
[298] J. S. Ku and S. U. Lee K. M. Lee. Multi-image matching for a general motion stereo camera model. The Journal of the Pattern Recognition Society, 34(9):1701-1712, September 2001.
[ bib ]
[299] H. Kubota, M. Ono, M. Takeshi, and H. Saito. 3D shape and pose estimation of deformable tapes from multiple views. In British Machine Vision Conference, volume 1, pages 133-142, Norwich, United Kingdom, September 2003.
[ bib ]
[300] S. Lai. Robust image matching under partial occlusion and spatially varying illumination change. Computer Vision and Image Understanding, 78(1):84-98, April 2000.
[ bib ]
[301] P. Lambert. Études méthodologiques du filtrage et de la segmentation d'images multi-composantes. Thesis, Université de la Savoie, France, July 2002.
[ bib ]
[302] P. Lambert and T. Carron. Symbolic fusion of luminance-hue-chroma features for region segmentation. The Journal of the Pattern Recognition Society, 32(11):1857-1872, November 1999.
[ bib ]
[303] Z. D. Lan. Méthodes robustes en vision : application aux appariements visuels. Thesis, Institut National Polytechnique, Grenoble, France, May 1997.
[ bib ]
[304] Z. D. Lan and R. Mohr. Robust matching by partial correlation. Research report RR-2643, Institut National de Recherche en Informatique et en Automatique, August 1995.
[ bib ]
[305] Z. D. Lan and R. Mohr. Robust matching by partial correlation. In British Machine Vision Conference, pages 651-660, Birmingham, United Kingdom, September 1995.
[ bib ]
[306] Z. D. Lan and R. Mohr. Appariement robuste par corrélation partielle. In Actes du congrès francophone de Vision par Ordinateur, ORASIS, pages 99-104, Clermont-Ferrand, France, May 1996.
[ bib ]
[307] Z. D. Lan and R. Mohr. Robust location based partial correlation. Research report RR-3186, Institut National de Recherche en Informatique et en Automatique, June 1997.
[ bib ]
[308] R. A. Lane and N. A. Thacker. Tutorial: Overview of stereo matching research. Course, December 1998.
[ bib ]
[309] M. Lantagne, M. Parizeau, and R. Bergevin. VIP : Vision tool for comparing images of people. Vision Interface, 2003.
[ bib ]
[310] L. Laurence. Navigation sous-marine référencée terrain par mise en correspondance de cartes bathymétriques. Thesis, Université de Nice - Sophia Antipolis, France, January 1998.
[ bib ]
[311] G. Le Besnerais and H. Oriot. Disparity estimation for high resolution stereoscopic reconstruction using GNC approach. In IEEE International Conference on Image Processing, volume 2, pages 594-597, Chicago, United States, October 1998.
[ bib ]
[312] Y. G. Leclerc, Q. Luong, and P. Fua. Measuring the self-consistency of stereo algorithms. In European Conference on Computer Vision, volume 1, pages 282-298, Dublin, Ireland, June-July 2000.
[ bib ]
[313] H.-C. Lee and D. R. Cok. Detecting boundaries in a vector field. IEEE Transactions on Signal Processing, 39(5):1181-1194, May 1991.
[ bib ]
[314] S. H. Lee, Y. Kanatsugu, and J.-I Park. MAP-based stochastic diffusion for stereo matching and line fields estimation. International Journal of Computer Vision, 47(1-3):195-218, April 2002.
[ bib ]
[315] S. H. Lee, S. Y. Park, N. I. Cho, Y. Kanatsugu, and J.-I Park. Occlusion detection and stereo matching in a stochastic method. In IEEE International Conference on Image Processing, Barcelona, Spain, September 2003.
[ bib ]
[316] V. Lefèvre, Y. Pollet, S. Philipp, and S. Brunessaux. Un système multi-agents pour la fusion de données en analyse d'images. Traitement du signal, 13(1):100-111, January 1996.
[ bib ]
[317] V. Lepetit, J. Pilet, and P. Fua. Point matching as a classification problem for fast and robust object pose estimation. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, pages 244-250, Washington, United States, June-July 2004.
[ bib ]
[318] C. Leung, B. Appleton, B. C. Lovell, and C. Sun. An energy minimisation approach to stereo-temporal dense reconstruction. In International Conference on Pattern Recognition, volume 4, pages 72-75, Cambridge, United Kingdom, August 2004.
[ bib ]
[319] C. Leung, B. Appleton, and C. Sun. Fast stereo matching by iterated dynamic programming and quadtree subregioning. In British Machine Vision Conference, volume 4, pages 97-106, London, United Kingdom, August 2004.
[ bib ]
[320] D. Levesque and F. Deschênes. Sparse scene structure recovery from atmospheric degradation. In International Conference on Pattern Recognition, volume 1, pages 84-87, Cambridge, United Kingdom, August 2004.
[ bib ]
[321] M. D. Levine. Vision in man and machine. McGraw-Hill Book Company, 1985.
[ bib ]
[322] A. Levy and M. Lindenbaum. Sequential karhunen-loeve basis extraction and its application to images. IEEE Transactions on Image Processing, 9(8):1371-1374, August 2000.
[ bib ]
[323] J. P. Lewis. Fast template matching. Vision Interface, pages 120-123, 1995.
[ bib ]
[324] O. Lezoray, A. Elmoataz, and H. Cardot. A color object recognition scheme: application to cellular sorting. Journal of Machine Vision and Applications, 14(3):166-176, July 2003.
[ bib ]
[325] M. Lhuillier and L. Quan. Robust dense matching using local ang global geometric constraints. In International Conference on Pattern Recognition, volume 1, pages 968-972, Barcelona, Spain, September 2000.
[ bib ]
[326] M. Lhuillier and L. Quan. Reconstruction quasi-dense de modèles 3d à partir d'une séquence d'images. In actes du Congrès AFRIF-AFIA Reconnaissance des Formes et Intelligence Artificielle, RFIA, volume 2, pages 895-904, Toulouse, France, January 2004.
[ bib ]
[327] M. H. Lin. Surfaces with Occlusions from Layered Stereo. PhD thesis, Stanford University, United States, 2002.
[ bib ]
[328] J. Little. Accurate early detection of discontinuities. In International Conference on Vision Interface, pages 97-102, Vancouver, Canada, May 1992.
[ bib ]
[329] J. L. Lotti and G. Giraudon. Correlation algorithm with adaptive window for aerial image in stereo vision. In European Symposium on Satellite Remote Sensing, pages 2315-2325, Rome, Italia, September 1994.
[ bib ]
[330] M. I. A. Lourakis, A. A. Argyros, and K. Marias. A graph-based approach to corner matching using mutual information as a local similarity measure. In International Conference on Pattern Recognition, volume 2, pages 827-830, Cambridge, United Kingdom, August 2004.
[ bib ]
[331] R. Lundqvist, E. Bengtsson, and L. Thurfjell. A combined intensity and gradient-based similarity criterion for interindividual spect brain scan registration. EURASIP Journal on Applied Signal Processing, 2003(5):461-469, April 2003.
[ bib ]
[332] A. Luo and H. Burkhardt. An intensity-based cooperative bidirectional stereo matching with simultaneous detection of discontinuities and occlusions. International Journal of Computer Vision, 15(3):171-188, July 1995.
[ bib ]
[333] J. MacLean and J. Tsotsos. Fast pattern recognition using gradient-descent search in an image pyramid. In International Conference on Pattern Recognition, volume 2, pages 873-877, Barcelona, Spain, September 2000.
[ bib ]
[334] L. MacMillan. An image-based approach to three-dimensional computer graphics. PhD thesis, University of North Carolina, United States, 1997.
[ bib ]
[335] D. Maier, A. Rössle, J. Hesser, and R. Männer. Dense disparity maps respecting occlusions and object separation using partial differential equations. In Digital Image Computing: Techniques and Applications, pages 613-622, Sydney, Australia, December 2003.
[ bib ]
[336] M. W. Mainmone and S. A. Shafer. A taxonomy for stereo computer vision experiments. In European Conference on Computer Vision, Workshop on Performance Characteristics of Vision Algorithms, pages 59-79, Cambridge, United Kingdom, April 1996.
[ bib ]
[337] R. Mandelbaum, G. Kamberova, and M. Mintz. Stereo depth estimation: a confidence interval approach. In IEEE International Conference on Computer Vision, pages 503-509, Bombay, India, January 1998.
[ bib ]
[338] R. Manduchi and C. Tomasi. Distinctiveness maps for image matching. In International Conference on Image Analysis and Processing, pages 26-31, Venice, Italia, September 1999.
[ bib ]
[339] D. Marr and T. Poggio. Cooperative computation of stereo disparity. Science, 194(4262):283-287, 1976.
[ bib ]
[340] H. Martinsson, A. Bartoli, F. Gaspard, and J.-M. Lavest. Alignement de reconstructions tridimensionnelles affines en présence de données images manquantes. In actes du Congrès AFRIF-AFIA Reconnaissance des Formes et Intelligence Artificielle, RFIA, Tours, France, January 2006. to appear.
[ bib ]
[341] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions. In British Machine Vision Conference, volume 1, pages 384-393, Cardiff, United Kingdom, September 2002.
[ bib ]
[342] I. Matthews, T. Ishikawa, and S. Baker. The template update problem. In British Machine Vision Conference, volume 2, pages 649-658, Norwich, United Kingdom, September 2003.
[ bib ]
[343] H. Mayer. Analysis of means to improve cooperative disparity estimation. In ISPRS Conference on Photogrammetric Image Analysis, pages 25-31, Technical University of Munich, Germany, September 2003.
[ bib ]
[344] R. Mayoral and M. Aurnhammer. Evaluation of correspondence errors for stereo. In International Conference on Pattern Recognition, volume 4, pages 104-107, Cambridge, United Kingdom, August 2004.
[ bib ]
[345] B. McCane, K. Novins, D. Crannitch, and B. Galvin. On benchmarking optical flow. Computer Vision and Image Understanding, 84(1):126-143, October 2001.
[ bib ]
[346] P. Meer. From a robust hierarchy to a hierarchy of robustness. In L.S. Davis, editor, Foundations of Image Analysis, pages 323-347. Kluwer, 2001.
[ bib ]
[347] P. Meer, R. Park, and K. Cho. Multiresolution adaptive image smoothing. Computer Vision, Graphics, and Image Processing : Graphical Models and Image Processing, 56(2):140-148, March 1994.
[ bib ]
[348] P. Meer, C. V. Stewart, and D. E. Tyler. Robust computer vision: An interdisciplinary challenge. Computer Vision and Image Understanding, 78(1):1-7, July 2000.
[ bib ]
[349] Z. Megyesi and D. Chetverikov. Affine propagation for surface reconstruction in wide baseline stereo. In International Conference on Pattern Recognition, volume 4, pages 76-79, Cambridge, United Kingdom, August 2004.
[ bib ]
[350] C. D. Meinhart, S. T. Wereley, and M. H. B. Gray. Volume illumination for two-dimensional particle image velocimetry. Measurement Science and Technology, 11(6):809-814, June 2000.
[ bib ]
[351] C. Menard and W. G. Kropatsch. Adaptive stereo matching in correlation scale-space. In International Conference on Image Analysis and Processing, volume 2, pages 677-684, Florence, Italia, September 1997.
[ bib ]
[352] C. Menard and A. Leonardis. Robust stereo on multiple resolutions. In International Conference on Pattern Recognition, volume 2, pages 910-914, Vienna, Austria, August 1996.
[ bib ]
[353] R. E. Mercer, J. L. Barron, A. A. Bruen, and D. Cheng. Fuzzy points: algebra and application. The Journal of the Pattern Recognition Society, 35(5):1153-1166, May 2002.
[ bib ]
[354] K. Messer, J. Kittler, M. Sadeghi, M. Hamouz, A. Kostin, F. Cardinaux, S. Marcel, S. Bengio, C. Sanderson, N. Poh, Y. Rodriguez, J. Czyz, L. Vandendorpe, C. McCool, S. Lowther, S. Sridharan, V. Chandran, R. Parades Palacios, E. Vidal, L. Bai, L. Shen, Y. Wang, Y.- H. Chiang, H.- C. Liu, Y.- P. Hung, A. Heinrichs, M. Müller, A. Tewes, C. von der Malsburg, R. Würtz, Z. Wang, F. Xue, Y. Ma, Q. Yang, C. Fang, X. Ding, S. Lucey, R. Goss, and H. Schneiderman. Face authentication test on the banca database. In International Conference on Pattern Recognition, volume 4, pages 523-532, Cambridge, United Kingdom, August 2004.
[ bib ]
[355] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller. Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087-1092, June 1953.
[ bib ]
[356] C. Meurie, O. Lezoray, C. Charrier, and A. Elmoataz. Combination of multiple pixel classifiers for microscopic image segmentation. International Journal of Robotics and Automation, 20(2):63-69, 2005.
[ bib ]
[357] C. Meurie, O. Lezoray, and A. Elmoataz. Multiple pixel classifier combination for bronchial tumors image segmentation. In International Conference on Complex Systems, Intelligence and Modern Technology, pages 305-310, Cherbourg, France, September 2004.
[ bib ]
[358] R. Mohan, G. Medioni, and R. Nevatia. Stereo error detection, correction, and evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(2):113-120, February 1989.
[ bib ]
[359] A. Montanvert, P. Meer, and A. Rosenfeld. Hierarchical image analysis using irregular tessellations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(4):307-316, April 1991.
[ bib ]
[360] H. Moravec. Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover. PhD thesis, Carnegie Mellon University, Pittsburgh, United States, September 1980.
[ bib ]
[361] H. Moravec. DARPA MARS program research progress. Technical report, Carnegie Mellon University, Pittsburgh, United States, February 2002.
[ bib ]
[362] K. Moravec, R. Harvey, and J. A. Bangham. Improving stereo performance in regions of low texture. In British Machine Vision Conference, pages 822-831, Southampton, United Kingdom, September 1998.
[ bib ]
[363] J. Mulligan and K. Daniilidis. Predicting disparity windows for real-time stereo. In European Conference on Computer Vision, volume 1, pages 220-235, Dublin, Ireland, June-July 2000.
[ bib ]
[364] J. Mulligan, V. Isler, and K. Daniilidis. Performance of stereo for tele-presence. In IEEE International Conference on Computer Vision, volume 2, pages 558-565, Vancouver, Canada, July 2001.
[ bib ]
[365] A. Muñoz Barrutia, T. Blu, and M. Unser. Non-euclidean pyramids. In Mathematical Imaging: Wavelet Applications in Signal and Image Processing, volume SPIE-4119, pages 710-720, San Diego, United States, July 2000.
[ bib ]
[366] K. Mühlmann, D. Maier, J. Hesser, and R. Männer. Calculating dense disparity maps from color stereo images, an efficient implementation. In IEEE Workshop on Stereo and Multi-Baseline Vision, pages 30-36, Kauai, United States, June 2001.
[ bib ]
[367] M. L. Nack. Temporal registration of multispectral digital satellite images using their edge images. In AAS/AIAA/Astrodynamics Specialist Conference, pages papier AAS75-104, Nassau, Bahamas, July 1975.
[ bib ]
[368] Y. Nakamura, T. Matsuura, K. Satoh, and Y. Ohta. Occlusion detectable stereo - occlusion patterns in camera matrix. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 371-378, San Francisco, United States, June 1996.
[ bib ]
[369] N. M. Nasrabadi. A stereo vision technique using curve-segments and relaxation matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(5):566-572, May 1992.
[ bib ]
[370] N. M. Nasrabadi and C. Y. Choo. Hopfield network for stereo vision correspondence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 3(1):5-13, January 1992.
[ bib ]
[371] A. V. Nefyodov. Efficient image matching algprithms based on procedures of searching for 2d taemplates. In Scandinavian Conference on Image Analysis, pages 991-997, Göteborg, Sweden, June 2003.
[ bib ]
[372] J. Nevitt and H. P. Tam. A comparison of robust and nonparametric estimators under the simple linear regression model. Multiple Linear Regression Viewpoints, 25(1):54-69, Winter 1998.
[ bib ]
[373] A. J. Newman. Model reduction via the karhunen-loeve expansion part i: An exposition. Research report 96-32, Institute for Systems Research, Maryland, United States, 1996.
[ bib ]
[374] A. J. Newman. Model reduction via the karhunen-loeve expansion part ii: Some elementary examples. Research report 96-32, Institute for Systems Research, Maryland, United States, 1996.
[ bib ]
[375] M. Ni and S. E. Reichenbach. Pattern matching by sequential subdivision of transformation space. In International Conference on Pattern Recognition, volume 2, pages 145-148, Cambridge, United Kingdom, August 2004.
[ bib ]
[376] M. Nielsen and R. Deriche. Binocular dense depth reconstruction using isotropy constraint. In Scandinavian Conference on Image Analysis, pages 67-76, Uppsala, Sweden, June 1995.
[ bib ]
[377] C. Nikou, F. Heitz, J. P. Armspach, and I. J. Namer. Mesures de similarité robustes pour le recalage d'images médicales volumiques multimodales. Traitement du signal, 16(3):255-272, 1999.
[ bib ]
[378] H. K. Nishihara. Prism, a pratical real-time imaging stereo matcher. Technical report A. I. Memo 780, Massachusetts Institute of Technology, United States, 1984.
[ bib ]
[379] H. K. Nishihara and P. A. Crossley. Measuring photographic overlay accuracy and critical dimensions by correlating binarized laplacian of gaussian convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(1):17-30, January 1988.
[ bib ]
[380] A. Nishikawa, N. Maru, and F. Miyazaki. Detection of occluding contours and occlusion by active binocular stereo. In Third Symposium on Experimental Robotic, Lecture Notes in Control and Information Sciences 200, pages 255-266. Springer-Verlag, 1994.
[ bib ]
[381] I. A. Ocadiz Luna. Analyse en composantes principales d'une image couleur. Thesis, Institut National Polytechnique, Grenoble, France, 1985.
[ bib ]
[382] Y.-I. Ohta and T. Kanade. Stereo by intra- and inter-scanline search using dynamic programming. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7(2):139-154, March 1985.
[ bib ]
[383] Y.-I. Ohta, T. Kanade, and T. Sakai. Color information for region segmentation. Computer Graphics and Image Processing, 13(3):222-241, July 1980.
[ bib ]
[384] M. Okutomi and T. Kanade. A locally adaptive window for signal matching. International Journal of Computer Vision, 7(2):143-162, January 1992.
[ bib ]
[385] M. Okutomi and T. Kanade. A multiple-baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(4):358-363, April 1993.
[ bib ]
[386] M. Okutomi and G. Tomita. Color stereo matching and its application to 3-d measurement of optic nerve head. In International Conference on Pattern Recognition, volume 1, pages 509-513, La Haye, Holland, September 1992.
[ bib ]
[387] J. J. Orteu, D. Garcia, and M. Devy. Mesure de formes et de champs de déplacements tridimensionnels par stéréo-corrélation d'images : applications en mécanique expérimentale. Photoniques - La Revue de la Société Française d'Optique, 10:34-43, June 2003.
[ bib ]
[388] L. A. Overturf, M. L. Comer, and E. J. Delp. Color image coding using morphological pyramid decomposition. IEEE Transactions on Image Processing, 4(2):177-185, February 1995.
[ bib ]
[389] G. Pajares and J. M. de la Cruz. Stereovision matching through support vector machines. Pattern Recognition Letters, 24(15):2575-2583, November 2003.
[ bib ]
[390] H.-P. Pan. General stereo matching using symmetric complex wavelets. In Wavelet Applications in Signal and Image Processing IV, volume SPIE-2825, Denver, United States, August 1996.
[ bib ]
[391] N. Paparoditis, M. Cord, M. Jordan, and J.-P. Cocquerez. Building detection and reconstruction from mid- and high-resolution aerial imagery. Computer Vision and Image Understanding, 72(2):122-142, November 1998.
[ bib ]
[392] S. Paris and F. Sillion. Optimisation à base de flot de graphe pour l'acquisition d'informations 3d à partir de séquences d'images. In Actes des 15ème journées de l'AFIG, Association Française d'Informatique Graphique, pages 165-182, Villeurbanne, France, December 2002.
[ bib ]
[393] B. G. Park, K. Mu. Lee, S. U. Lee, and J. H. Lee. Recognition of partially occluded objects using probabilistic arg (attributed relational graph)-based matching. Computer Vision and Image Understanding, 90(3):217-241, June 2003.
[ bib ]
[394] C. S. Park and H. W. Park. A robust stereo disparity estimation using adaptive window search and dynamic programming search. The Journal of the Pattern Recognition Society, 34(12):2573-2576, December 2001.
[ bib ]
[395] J. Park and S. Inoue. Hierarchical depth mapping from multiple cameras. In International Conference on Image Analysis and Processing, volume 2, pages 685-692, Florence, Italia, September 1997.
[ bib ]
[396] S. P. Park and I. S. Kweon. Robust and direct estimation of 3-d motion and scene depth from stereo image sequences. The Journal of the Pattern Recognition Society, 34(9):1713-1728, September 2001.
[ bib ]
[397] S. Y. Park, J. S. Kim, S. H. Lee, N. I. Cho, G.-S. Lee, and C.-H. Ahn. Composition of high-resolution stereo images from hybrid stereo system. In International Workshop on Advanced Image Technology, Nagasaki, Japan, January 2003.
[ bib ]
[398] J. P. Pascual Starink and E. Backer. Finding point correspondences using simulated annealing. The Journal of the Pattern Recognition Society, 28(2):231-240, February 1995.
[ bib ]
[399] J. Paterson and A. Fitzgibbon. 3D head tracking using non-linear optimization. In British Machine Vision Conference, volume 2, pages 609-618, Norwich, United Kingdom, September 2003.
[ bib ]
[400] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers, San Francisco, United States, 1988.
[ bib ]
[401] S. Peleg and G. Ron. Nonlinear multiresolution: A shape-from-shading example. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(12):1206-1210, December 1990.
[ bib ]
[402] C. B. U. Perwass and G. Sommer. A fuzzy logic algorithm for dense image point matching. In International Conference on Vision Interface, pages 39-47, Ottawa, Canada, June 2001.
[ bib ]
[403] C. B. U. Perwass and G. Sommer. Dense image point matching trough propagation of local constraints. Technical Report 0205, Christian-Albrechts-University Kiel, Germany, May 2002.
[ bib ]
[404] E. G. M. Petrakis, A. Diplaros, and E. Milios. Matching and retrieval of distorted and occluded shapes using dynamic programming. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(11):1501-1516, November 2002.
[ bib ]
[405] S. Philipp-Foliguet and M. Lekkat. Recherche d'images à partir d'une requête partielle utilisant la disposition des régions. In actes du Congrès AFRIF-AFIA Reconnaissance des Formes et Intelligence Artificielle, RFIA, volume 1, pages 123-132, Toulouse, France, January 2004.
[ bib ]
[406] M. Pollefeys, F. Verbiest, and L. V. Gool. Surviving dominant planes in uncalibrated structure and motion recovery. In European Conference on Computer Vision, volume 2, pages 837-851, Copenhagen, Denmark, May 2002.
[ bib ]
[407] J.-P. Pons, R. Keriven, O. Faugeras, and G. Hermosillo Valadez. Variational and 3D scene flow estimation with statistical similarity measures. In IEEE International Conference on Computer Vision, volume 1, pages 597-602, Nice, France, October 2003.
[ bib ]
[408] S. Porter, M. Mirmehdi, and B. Thomas. Video indexing using motion estimation. In British Machine Vision Conference, volume 2, pages 659-668, Norwich, United Kingdom, September 2003.
[ bib ]
[409] W. K. Pratt. Digital image processing, chapter 20, pages 666-667. Wiley-Interscience Publication, New-York, United States, 1978.
[ bib ]
[410] W. K. Pratt. Digital image processing. Wiley-Interscience Publication, 1978.
[ bib ]
[411] M. Pressigout and É. Marchand. Fusion de primitives visuelles pour le suivi 3D temps-réel. In actes du Congrès AFRIF-AFIA Reconnaissance des Formes et Intelligence Artificielle, RFIA, Tours, France, January 2006. to appear.
[ bib ]
[412] D. Prewer and L. Kitchen. Weighted linked pyramids and soft segmentation of colour images. In Asian Conference on Computer Vision, volume 2, pages 989-994, Taïpeh, Taiwan, January 2000.
[ bib ]
[413] P. Pritchett and A. Zisserman. Matching and reconstruction from widely separated views. In European Workshop on 3D Structure from Multiple Images of Large-Scale Environments, volume 1506 of Lecture Notes in Computer Science, pages 78-92, freiburg, Germany, June 1998.
[ bib ]
[414] N. Pugeault and N. Krülger. Multi-modal matching applied to stereo. In British Machine Vision Conference, volume 1, pages 271-280, Norwich, United Kingdom, September 2003.
[ bib ]
[415] J. Puzicha, T. Hofmann, and J. M. Buhmann. Non-parametric similarity measures for unsupervised texture segmentation and image retrieval. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 267-272, San Juan, Porto Rico, June 1997.
[ bib ]
[416] G. Qian, S. Sural, and S. Pramanik. A comparative analysis of two distance measures in color image databases. In IEEE International Conference on Image Processing, volume 1, pages 401-404, Rochester, United States, September 2002.
[ bib ]
[417] N. Qian. Binocular disparity and the perception of depth. Neuron, 18(3):359-368, March 1997.
[ bib ]
[418] C. Rao, A. Gritai, and M. Shah. View-invariant alignment and matching of video sequences. In IEEE International Conference on Computer Vision, volume 2, pages 939-945, Nice, France, October 2003.
[ bib ]
[419] V. S. K. Reddy and S. Sengupta. A new predictive full-search block motion estimation. In International Conference on Pattern Recognition, volume 4, pages 721-724, Cambridge, United Kingdom, August 2004.
[ bib ]
[420] P. Remagnino, P. Brand, and R. Mohr. Correlation techniques in adaptive template matching with uncalibrated cameras. In Vision Geometry, III, volume SPIE-2356, Boston, United States, November 1994.
[ bib ]
[421] S. Rital, H. Cherfi, and D. Aboutajdine. A vectorial edge detector using spatiocolorimetric neighborhood hypergraph and perceptual color distance. In International Conference on Complex Systems, Intelligence and Modern Technology, pages 305-310, Cherbourg, France, September 2004.
[ bib ]
[422] L. Robert and R. Deriche. Dense depth map reconstruction : A minimization and regularization approach which preserves discontinuities. In European Conference on Computer Vision, volume A, pages 439-451, Cambridge, United Kingdom, April 1996.
[ bib ]
[423] A. Robert De Saint Vincent. Perception et modélisation de l'environnement d'un robot mobile : approche par stéréovision. Thesis, Université Paul Sabatier, Toulouse, France, November 1986.
[ bib ]
[424] A. Roche, G. Malandain, X. Pennec, and N. Ayache. Multimodal image registration by maximization of the correlation ratio. Research report RR-3378, Institut National de Recherche en Informatique et en Automatique, August 1998.
[ bib ]
[425] A. Roche, X. Pennec, G. Malandain, and N. Ayache. Rigid registration of 3-D ultrasond with MR images:a new approach combining intensity and gradient information. IEEE Transactions on Medical Imaging, 20(10):1038-1149, October 2001.
[ bib ]
[426] P. Rogelj, S. Kovacic, and J. C. Gee. Point similarity measures for non-rigid registration of multi-modal data. Computer Vision and Image Understanding, 92(1):112-140, October 2003.
[ bib ]
[427] P. J. Rousseeuw and C. Croux. L1-statistical analysis and related methods. In Y. Dodge, editor, Explicit Scale Estimators with High Breakdown Point, pages 77-92. Elsevier, Amsterdam, Holland, 1992.
[ bib ]
[428] P. J. Rousseeuw and C. Croux. The bias of k-step m-estimators. Statistics and Probability Letters, 20(5):411-420, August 1994.
[ bib ]
[429] P. J. Rousseeuw, C. Croux, and O. Hössjer. Sensitivity functions and numerical analysis of the repeated median slope. Computational Statistics, 10(1):71-90, 1995.
[ bib ]
[430] P. J. Rousseeuw and M. Hubert. Regression depth. Journal of the American Statistical Association, 94(446):388-402, June 1999.
[ bib ]
[431] P. J. Rousseeuw and A. M. Leroy. Robust regression and outlier detection. J. Wiley & Sons, New-York, United States, 1987.
[ bib ]
[432] P. J. Rousseeuw and I. Ruts. Constructing the bivariate tukey median. Statistica Sinica, 8(3):828-839, July 1998.
[ bib ]
[433] P. J. Rousseeuw and A. Struyf. Computing location depth and regression depth in higher dimensions. Statistics and Computing, 8(3):193-203, August 1998.
[ bib ]
[434] P. J. Rousseeuw and S. Van Aelst. Positive-breakdown robust methods in computer vision. In Computing Science and statistics, volume 31 of Interface Foundation of North America, pages 451-460, Schaumburg, United States, June 1999.
[ bib ]
[435] P. J. Rousseeuw, S. Van Aelst, and K. Van Driessen. Robust multivariate regression. Technical report, Antwerp University, June 2000.
[ bib ]
[436] P. J. Rousseeuw and K. Van Driessen. A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41(3):212-223, August 1999.
[ bib ]
[437] P. J. Rousseeuw and S. Verboven. Robust estimation in very small samples. Computational Statistics and Data Analysis, 40(4):741-846, October 2002.
[ bib ]
[438] C. Roux, G. Haesbroeck, and P. J. Rousseeuw. Location adjustment for the minimum volume ellipsoid estimator. sc, 12(3):191-200, July 2002.
[ bib ]
[439] S. Roy and I. J. Cox. A maximum-flow formulation of the n-camera stereo correspondence problem. In IEEE International Conference on Computer Vision, pages 492-499, Bombay, India, January 1998.
[ bib ]
[440] E. Royer, M. Lhuillier, M. Dhome, and J.-M. Lavest. Localisation par vision monoculaire pour la navigation autonome : précision et stabilité de la méthode. In actes du Congrès AFRIF-AFIA Reconnaissance des Formes et Intelligence Artificielle, RFIA, Tours, France, January 2006. to appear.
[ bib ]
[441] Y. Rubner, J. Puzicha, C. Tomasi, and J. M. Buhmann. Empirical evaluation of dissimilarity measures for color and texture. Computer Vision and Image Understanding, 84(1):25-43, October 2001.
[ bib ]
[442] T. D. Russ and A. P. Reeves. High accuracy depth measurement using multi-view stereo. In International Conference on Vision Interface, pages 103-110, Trois-Rivières, Canada, May 1999.
[ bib ]
[443] M. Rziza, D. Aboutajdine, L. Morin, and A. Tamtaoui. Schéma multirésolution d'estimation d'un champ de disparités dense sous contrainte épipolaire pour les images bruitées. In colloque GRETSI sur le traitement du signal et des images, Toulouse, France, September 2001.
[ bib ]
[444] M. Rziza, A. Tamtaoui, L. Morin, and D. Aboutajdine. Estimation and segmentation of a dense disparity map for 3d reconstruction. In IEEE International Conference on Acoustics, Speech and Signal Processing, Istanbul, Turkey, March 2000.
[ bib ]
[445] H. Saito and M. Mori. Application of genetic algorithms to stereo matching of images. Pattern Recognition Letters, 16(8):815-821, August 1995.
[ bib ]
[446] M. Sankar Kishore and K. Veerabhadra Rao. A study of correlation technique on pyramid processed images. Sadhana, Academy Proceedings in Engineering Sciences, 25(1):37-43, February 2000.
[ bib ]
[447] M. Sankar Kishore and K. Veerabhadra Rao. Robust correlation tracker. Sadhana, Academy Proceedings in Engineering Sciences, 26(3):227-236, June 2001.
[ bib ]
[448] K. Satoh and Y. Ohta. Occlusion detectable stereo - systematic comparison of detection algorithms. In International Conference on Pattern Recognition, volume 1, pages 280-286, Vienna, Austria, August 1996.
[ bib ]
[449] D. Scharstein and R. Szeliski. Stereo matching with non-linear diffusion. International Journal of Computer Vision, 28(2):155-174, June, July 1998.
[ bib ]
[450] D. Scharstein and R. Szeliski. A taxomomy and evaluation of dense two-frame stereo correspondence algorithms. Technical Report MSR-TR-2001-81, MicroSoft Research, November 2001.
[ bib ]
[451] D. Scharstein and R. Szeliski. A taxomomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 47(1):7-42, April 2002.
[ bib ]
[452] D. Scharstein and R. Szeliski. High-accuracy stereo depth maps using structured light. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 1, pages 195-202, Madison, United States, June 2003.
[ bib ]
[453] K. Schindler. Generalized use of homographies for piecewise planar reconstruction. In Scandinavian Conference on Image Analysis, pages 470-476, Göteborg, Sweden, June 2003.
[ bib ]
[454] T. Schlögl, C. Beleznai, M. Winter, and H. Bischof. Performance evaluation metrics for motion detection and tracking. In International Conference on Pattern Recognition, volume 4, pages 519-522, Cambridge, United Kingdom, August 2004.
[ bib ]
[455] K. Schlüns and A. Koschan. Global and local highlight analysis in color images. In International Conference on Color in Graphics and Image Processing, pages 300-304, Saint-Étienne, France, October 2000.
[ bib ]
[456] C. Schmid and R. Mohr. Matching by local invariants. Research report RR-2644, Institut National de Recherche en Informatique et en Automatique, August 1995.
[ bib ]
[457] C. Schmid and A. Zisserman. Automatic line matching across views. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 666-671, San Juan, Porto Rico, June 1997.
[ bib ]
[458] H. W. Schreier, J. R. Braasch, and M. A. Sutton. Systematic errors in digital image correlation caused by intensity interpolation. Optical engineering, 39(11):2915-2921, November 2000.
[ bib ]
[459] P. Seitz. Using local orientational information as image primitive for robust object recognition. In Visual Communication and Image Processing IV, volume SPIE-1199, pages 1630-1639, 1989.
[ bib ]
[460] D. Semani, M. Chambah, and P. Courtellemont. Processing of underwater colour images applied to live aquarium videos. In International Conference on Complex Systems, Intelligence and Modern Technology, Cherbourg, France, September 2004.
[ bib ]
[461] D. Semani, M. Chambah, and P. Courtellemont. Processing of underwater colour images applied to live aquarium videos. International Journal of Robotics and Automation, 20(2):123-130, 2005.
[ bib ]
[462] R. Serfling. Robust and nonparametric estimation via generalized l-statistics: theory, applications, and perspectives. In N. Balakrishnan, editor, Advances on Methodological and Applied Aspects of Probability and Statistics, pages 197-217. Gordon & Breach, Ontario, Canada, 2000.
[ bib ]
[463] S. Sethuraman, A. G. Jordan, and M. W. Siegel. Multiresolution based hierarchical disparity estimation for stereo image pair compression. In Symposium on Applications of subbands and wavelets, Newark, United States, March 1994.
[ bib ]
[464] K. Shafique and M. Shah. A non-iterative greedy algorithm for multi-frame point correspondence. In IEEE International Conference on Computer Vision, volume 1, pages 111-115, Nice, France, October 2003.
[ bib ]
[465] J. Shao. Generation of temporally consistent multiple virtual camera views from stereoscopic image sequences. International Journal of Computer Vision, 47(2):171-180, April 2002.
[ bib ]
[466] G. Sharma and H. J. Trusell. Digital color imaging. IEEE Transactions on Image Processing, 6(7):901-932, July 1997.
[ bib ]
[467] H. Shekarforoush, M. Berthod, and J. Zerubia. Subpixel image registration by estimating the polyphase decomposition of the cross power spectrum. Research report 2707, Institut National de Recherche en Informatique et en Automatique, Sophia-Antipolis, France, November 1995.
[ bib ]
[468] J. Shen and S. Castan. An optimal linear operator for step edge detection. Computer Vision, Graphics, and Image Processing, 24(2):112-133, March 1992.
[ bib ]
[469] J. Shi and C. Tomasi. Good features to track. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 593-600, Seattle, United States, June 1994.
[ bib ]
[470] M. Shimizu and M. Okutomi. Sub-pixel estimation error cancellation on area-based matching. International Journal of Computer Vision, 63(3):207-224, July 2005.
[ bib ]
[471] C. Silva and J. Santos-Victor. Intrinsic images for dense stereo matching with occlusions. In European Conference on Computer Vision, volume 1, pages 100-114, Dublin, Ireland, June-July 2000.
[ bib ]
[472] E. Simonetto and A. Soadane. Colour image watermarking using a spatial frequency sub-band decomposition. In International Conference on Complex Systems, Intelligence and Modern Technology, Cherbourg, France, September 2004.
[ bib ]
[473] E. Simonetto and A. Soadane. Colour image watermarking using a visual sub-band decomposition. International Journal of Robotics and Automation, 20(2):101-108, 2005.
[ bib ]
[474] D. Skerl, B. Likar, and F. Pernus. Evaluation of nine similarity measures used in rigid registration. In International Conference on Pattern Recognition, volume 3, pages 794-797, Cambridge, United Kingdom, August 2004.
[ bib ]
[475] P. Smith, D. Sinclair, R. Cipolla, and K. Wood. Effective corner matching. In British Machine Vision Conference, pages 545-556, Southampton, United Kingdom, September 1998.
[ bib ]
[476] P. W. Smith and N. Nandhakumar. An improved power cepstrum based stereo correspondence method for textured scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(3):338-348, March 1996.
[ bib ]
[477] S. Smith and J. Brady. SUSAN - a new approach to low level image processing. International Journal of Computer Vision, 23(1):45-78, May 1997.
[ bib ]
[478] B. Smolka. On the similarity based impulsive noise removal technique for multichannel images. In Scandinavian Conference on Image Analysis, pages 1066-1073, Göteborg, Sweden, June 2003.
[ bib ]
[479] C. V. Stewart. A new robust operator for computer vision: Theoretical analysis. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 1-8, Seattle, United States, June 1994.
[ bib ]
[480] C. V. Stewart. Bias in robust estimation caused by discontinuities and mutliple structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(8):818-833, August 1997.
[ bib ]
[481] C. V. Stewart. Robust parameter estimation in computer vision. The Society for Industrial and Applied Mathematics, SIAM Review, 41(3):513-537, September 1999.
[ bib ]
[482] C. V. Stewart, K. Bubna, and A. Perera. Estimating model parameters and boundaries by minimizing a joint, robust objective function. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, pages 387-393, Fort Collins, United States, June 1999.
[ bib ]
[483] C. Stock and A. Pinz. Similarity measure for corner redetection. In Scandinavian Conference on Image Analysis, pages 133-139, Göteborg, Sweden, June 2003.
[ bib ]
[484] A. Stoica, M. C. Larabi, and C. Fernandez-Maloigne. A method of integration of human visual system in jpeg2000 compression scheme for image quality enhancement. In International Conference on Complex Systems, Intelligence and Modern Technology, Cherbourg, France, September 2004.
[ bib ]
[485] A. Stoica, M. C. Larabi, and C. Fernandez-Maloigne. Visual quality enhancement for colour images in the framework the jpeg2000 compression standard. ijra, 20(2):109-122, 2005.
[ bib ]
[486] C. Strecha, T. Tuytelaars, and L. Van Gool. Dense matching of multiple wide-baseline views. In IEEE International Conference on Computer Vision, volume 2, pages 1194-1201, Nice, France, October 2003.
[ bib ]
[487] M. Stricker and M. Orengo. Similarity of color images. In Storage and Retrieval for Image and Video Databases, volume SPIE-2420, pages 381-392, San Jose, United States, February 1995.
[ bib ]
[488] A. Struyf and P. J. Rousseeuw. High-dimensional computation of the deepest location. Computational Statistics and Data Analysis, 34(4):415-426, October 1999.
[ bib ]
[489] C. Sun. A fast stereo matching method. In Digital Image Computing : Techniques and Applications, pages 95-100, Auckland, New Zeland, December 1997.
[ bib ]
[490] C. Sun. Fast optical flow using 3d shortest path techniques. International Journal of Image and Vision Computing, 20(13-14):981-991, December 2002.
[ bib ]
[491] C. Sun and S. Peleg. Fast panoramic stereo matching using cylindrical maximum surfaces. IEEE Transactions on Systems, Man and Cybernetics, 34(1):760-765, February 2004.
[ bib ]
[492] J. Sun. Stereo matching using belief propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(7):787-800, December 2003.
[ bib ]
[493] J. Sun, Y. Li, S. B. Kang, and H.-Y. Shum. Symmetric stereo matching for occlusion handling. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, pages 399-406, San Diego, United States, June 2005.
[ bib ]
[494] T. Svoboda and T. Pajdla. Matching in catadioptric images with appropriate windows, and outliers removal. In International Conference on Computer Analysis of Images and Patterns, pages 733-740, Warsaw, Poland, September 2001.
[ bib ]
[495] M. J. Swain and D. H. Ballard. Color indexing. International Journal of Computer Vision, 7(1):11-32, November 1991.
[ bib ]
[496] R. Szeliski. Prediction error as a quality metric for motion and stereo. In IEEE International Conference on Computer Vision, volume 2, pages 781-788, Kerkyra, Greece, September 1999.
[ bib ]
[497] R. Szeliski. Sampling the disparity space image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(3):419-425, March 2004.
[ bib ]
[498] R. Szeliski and D. Scharstein. Symmetric sub-pixel stereo matching. In European Conference on Computer Vision, volume 2, pages 525-540, Copenhagen, Denmark, May 2002.
[ bib ]
[499] R. Szeliski and R. Zabih. An experimental comparison of stereo algorithms. In IEEE Workshop on Vision Algorithms: Theory and Practice, volume 1883 of Lecture Notes in Computer Science, pages 1-19, Kerkyra, Greece, September 1999.
[ bib ]
[500] R. Sára and R. Bajcsy. On occluding contour artifacts in stereo vision. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 852-857, San Juan, Porto Rico, June 1997.
[ bib ]
[501] J. Tang, Z. Chen, A. W. Fu, and D. Cheung. A robust outlier detection scheme for large data sets. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, Taïpeh, Taiwan, May 2002.
[ bib ]
[502] L. Tang, C. Wu, and Z. Chen. Image dense matching based on region growth with adaptive window. Pattern Recognition Letters, 23(10):1169-1178, August 2002.
[ bib ]
[503] H. Tao and H. S. Sawhnwey. Global matching criterion and color segmentation based stereo. In IEEE Workshop on Applications of Computer Vision, pages 246-253, Palm Springs, United States, December 2000.
[ bib ]
[504] H. Tao, H. S. Sawhnwey, and R. Kumar. A global matching framework for stereo computation. In IEEE International Conference on Computer Vision, volume 2, pages 532-539, Vancouver, Canada, July 2001.
[ bib ]
[505] M. F. Tappen and W. T. Freeman. Comparison of graph cuts with belief propagation for stereo, using identical mrf parameters. In IEEE International Conference on Computer Vision, volume 2, pages 900-907, Nice, France, October 2003.
[ bib ]
[506] H. Tesser and T. Trout. A note on evaluation of image recognition systems. In Scandinavian Conference on Image Analysis, pages 60-66, Göteborg, Sweden, June 2003.
[ bib ]
[507] Q. Tian and M. N. Huhns. Algorithms for subpixel registration. Computer Vision, Graphics, and Image Processing, 35:220-233, August 1986.
[ bib ]
[508] P. H. S. Torr and A. Criminisi. Dense stereo using pivoted dynamic programming. International Journal of Image and Vision Computing, 22(10):795-806, September 2004.
[ bib ]
[509] P. H. S. Torr and D. Murray. Outlier detection and motion segmentation. In Sensor Fusion VI, volume SPIE-2059, pages 432-443, 1993.
[ bib ]
[510] P. H. S. Torr and A. Zisserman. Robust computation and parametrization of multiple view relations. In IEEE International Conference on Computer Vision, pages 727-732, Bombay, India, January 1998.
[ bib ]
[511] G. A. Triantafyllidis and M. G. Strintzis. Occlusion and visible background and foreground areas in stereo: A bayesian approach. IEEE Transactions on Circuits and Systems for Video Technology, 10(4):563-575, July 2000.
[ bib ]
[512] M. Trujillo and E. Izquierdo. A robust correlation measure for correspondence estimation. In International Symposium on 3D Data Processing, Visualization and Transmission, pages 155-162, Thessaloniki, Greece, September 2004.
[ bib ]
[513] A. Trémeau and P. Colantoni. Visualisation 3d dédiée à l'analyse des images couleur. In Actes du congrès francophone de Vision par Ordinateur, ORASIS, pages 261-268, Gérardmer, France, May 2003.
[ bib ]
[514] A. Trémeau, C. Fernandez-Maloigne, and P. Bonton, editors. Image numérique couleur - De l'acquisition au traitement. Dunod, January 2004.
[ bib ]
[515] C. Tsai and A. K. Katsaggelos. Dense disparity estimation with a divide-and-conquer disparity space image technique. IEEE Transactions on Multimedia, 1(1):18-29, March 1999.
[ bib ]
[516] D.-M. Tsai and C.-T. Lin. Fast normalized cross correlation for defect detection. Pattern Recognition Letters, 24(15):2625-2631, November 2003.
[ bib ]
[517] D.-M. Tsai, C.-T. Lin, and J.-F. Chen. The evaluation of normalized cross correlations for defect detection. Pattern Recognition Letters, 24(15):2525-2535, November 2003.
[ bib ]
[518] D.-C. Tseng and C.-H. Chang. Color segmentation using perceptual attributes. In International Conference on Pattern Recognition, volume 3, pages 228-231, La Haye, Holland, September 1992.
[ bib ]
[519] T. Tuytelaars and L. Van Gool. Wide baseline stereo matching based on local, affinely invariant regions. In British Machine Vision Conference, volume 1, pages 412-422, Bristol, United Kingdom, September 2000.
[ bib ]
[520] M. Uenohara and T. Kanade. Use of fourier and karhunen-loeve decomposition for fast pattern matching with a large set of templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(8):891-898, August 1997.
[ bib ]
[521] F. Ullah, S. Kaneko, and S. Igarashi. Orientation code matching for robust object search. IEICE Transactions on Information and Systems, E-84-D(8):999-1006, March 2001.
[ bib ]
[522] R. Unnikrishnan and M. Hebert. Measures of similarity. In IEEE Workshop on Applications of Computer Vision, volume 1, pages 394-400, Breckenridge, United States, January 2005.
[ bib ]
[523] J. Van de Weijer, T. Gevers, and J. M. Geusebroek. Color edge detection by photometric quasi-invariants. In IEEE International Conference on Computer Vision, volume 2, pages 1520-1525, Nice, France, October 2003.
[ bib ]
[524] D. Van der Weken, M. Nachtegael, and E. E. Kerre. Using similarity measures and homogeneity for the comparison of images. International Journal of Image and Vision Computing, 22(9):695-702, August 2004.
[ bib ]
[525] N. Vandenbroucke. Segmentation d'images couleur par classification de pixels dans des espaces d'attributs colorimétriques adaptés. Application à l'analyse d'images de football. Thesis, Université des sciences et technologies de Lille 1, France, December 2000.
[ bib ]
[526] N. Vandenbroucke, L. Macaire, and J.-G. Postaire. Color systems coding for color image processing. In International Conference on Color in Graphics and Image Processing, pages 180-185, Saint-Étienne, France, October 2000.
[ bib ]
[527] O. Veksler. Efficient graph-based energy minimization methods in computer vision. PhD thesis, Cornell University, Ithaca, United States, August 1999.
[ bib ]
[528] O. Veksler. Dense features for semi-dense stereo correspondence. In IEEE Workshop on Stereo and Multi-Baseline Vision, pages 149-157, Kauai, United States, June 2001.
[ bib ]
[529] O. Veksler. Fast variable window for stereo correspondence using integral images. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 1, pages 565-570, Madison, United States, June 2003.
[ bib ]
[530] O. Veksler. Stereo correspondence by dynamic programming on a tree. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, pages 384-390, San Diego, United States, June 2005.
[ bib ]
[531] C. Vestri and F. Devernay. Using robust methods for automatic extraction of buildings. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 1, pages 133-138, Kauai, United States, December 2001.
[ bib ]
[532] A. J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory, 13(2):260-269, April 1967.
[ bib ]
[533] P. A. Walcott and T. J. Ellis. A colour object search algorithm. In British Machine Vision Conference, pages 296-305, Southampton, United Kingdom, September 1998.
[ bib ]
[534] J. Wang and C. Hsiao. On disparity matching in stereo vision via a neural network framework. National Science Council, 23(5):665-678, March 1999.
[ bib ]
[535] J. Y. A. Wang and E. H. Adelson. Layered representation for motion analysis. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 361-366, New-York, United States, June 1993.
[ bib ]
[536] L. Wang, S. B. Kang, H.-Y. Shum, and G. Xu. Cooperative segmentation and stereo using perspective space search. In Asian Conference on Computer Vision, pages 366-371, Jeju, South Korea, January 2004.
[ bib ]
[537] Y. Wang and D. Wiens. Optimal, robust r-estimators and test statistics in the linear model. Statistics and Probability Letters, 14:179-188, June 1992.
[ bib ]
[538] Q.-Q. Wei, W. Brauer, and G. Hirzinger. Intensity- and gradient-based stereo matching using hierarchical gaussian basis functions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11):1143-1160, November 1998.
[ bib ]
[539] Y. Wei and L. Quan. Region-based progressive stereo matching. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 1, pages 106-113, Washington, United States, June-July 2004.
[ bib ]
[540] Y. Weiss and W. T. Freeman. On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs. IEEE Transactions on Information Theory, 47(2):736-744, February 2001.
[ bib ]
[541] J. Weng, N. Ahuja, and T. S. Huang. Matching two perspective views. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(8):806-825, July 1992.
[ bib ]
[542] S. Wesolkowski and E. Jernigan. Color edge detection in RGB using jointly euclidean distance and vector angle. In International Conference on Vision Interface, pages 9-16, Trois-Rivières, Canada, May 1999.
[ bib ]
[543] T. Whitted. An improved illumination model for shaded display. Communications of the ACM, 23(6):343-349, 1980.
[ bib ]
[544] D. Wiens and J. Zhou. Bounded-influence rank estimation in the linear model. The Canadian Journal of Statistics, 22(2):233-245, 1994.
[ bib ]
[545] T. Williamson and C. Thorpe. A specialized multibaseline stereo technique for obstacle detection. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 238-244, Santa Barbara, United States, June 1998.
[ bib ]
[546] P. Withagen, K. Schutte, and F. Groen. Probabilistic classification between foreground objects and background. In International Conference on Pattern Recognition, volume 1, pages 31-34, Cambridge, United Kingdom, August 2004.
[ bib ]
[547] J. Woetzel and R. Koch. Multi-camera real-time depth estimation with discontinuity handling on pc graphics hardware. In International Conference on Pattern Recognition, volume 1, pages 741-744, Cambridge, United Kingdom, August 2004.
[ bib ]
[548] G. Wyszecki and W. S. Stiles. Color Science : Concepts and Methods, quantitative Data and Formulae. J. Wiley & Sons, New-York, United States, 1982.
[ bib ]
[549] J. Xiao and M. Shah. Two-frame wide baseline matching. In IEEE International Conference on Computer Vision, volume 1, pages 603-609, Nice, France, October 2003.
[ bib ]
[550] G. Xu. A unified approach to image matching and segmentation in stereo, motion, and object recognition via recovery of epipolar geometry. Videre: Journal of Computer Vision Research, 1(1):22-54, 1997.
[ bib ]
[551] R. Yang and M. Pollefeys. Multi-resolution real-time stereo on commodity graphics hardware. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 1, pages 211-217, Madison, United States, June 2003.
[ bib ]
[552] Y. Yang, A. Yuille, and J. Lu. Local, global, and multilevel stereo matching. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 274-279, New-York, United States, June 1993.
[ bib ]
[553] A. Yao and A. Calway. Dense 3-D structure from image sequences using probabilistic depth carving. In British Machine Vision Conference, volume 1, pages 211-220, Norwich, United Kingdom, September 2003.
[ bib ]
[554] J. S. Yedidia, W. T. Freeman, and Y. Weiss. On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs. IEEE Transactions on Information Theory, 51(7):2282-2312, July 2005.
[ bib ]
[555] K.-J. Yoon and I.-S. Kweon. Locally adaptive support-weight approach for visual correspondence search. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, pages 924-931, San Diego, United States, June 2005.
[ bib ]
[556] R. Zabih and J. Woodfill. Non-parametric local transforms for computing visual correspondence. In European Conference on Computer Vision, pages 151-158, Stockholm, Sweden, May 1994.
[ bib ]
[557] H. Zhang, J. Cech, R. Sára, F. Wu, and Z. Hu. A linear trinocular rectification method for accurate stereoscopic matching. In British Machine Vision Conference, volume 1, pages 281-290, Norwich, United Kingdom, September 2003.
[ bib ]
[558] H. Zhang, Z. Huang, W. Huang, and L. Li. Kernel-based method for trackimg objects with rotation and translation. In International Conference on Pattern Recognition, volume 2, pages 728-731, Cambridge, United Kingdom, August 2004.
[ bib ]
[559] T. Zhang and D. Freedman. Tracking objects using density matching and shape priors. In IEEE International Conference on Computer Vision, volume 2, pages 1056-1062, Nice, France, October 2003.
[ bib ]
[560] X. Zhang and Y. Liu. Point pattern matching for articulated or multiple objects. In International Conference on Pattern Recognition, volume 3, pages 630-633, Cambridge, United Kingdom, August 2004.
[ bib ]
[561] Y. Zhang and C. Kambhamettu. Stereo matching with segmentation-based cooperation. In European Conference on Computer Vision, volume 2, pages 556-571, Copenhagen, Denmark, May 2002.
[ bib ]
[562] Z. Zhang. Le problème de la mise en correspondance : l'état de l'art. Research report RR-2146, Institut National de Recherche en Informatique et en Automatique, December 1993.
[ bib ]
[563] Z. Zhang. Parameter estimation techniques: A tutorial with application to conic fitting. Research report RR-2676, Institut National de Recherche en Informatique et en Automatique, October 1995.
[ bib ]
[564] Z. Zhang. Determining the epipolar geometry and its uncertainty: A review. Research report RR-2927, Institut National de Recherche en Informatique et en Automatique, July 1996.
[ bib ]
[565] Z. Zhang. Parameter estimation techniques: A tutorial with application to conic fitting. International Journal of Image and Vision Computing, 15(1):59-76, January 1997.
[ bib ]
[566] Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Research report RR-2013, Institut National de Recherche en Informatique et en Automatique, August 1993.
[ bib ]
[567] Z. Zhang and B. Hotz. Terrain modeling with a correlation-based stereo for an autonomous planetary rover. In International Symposium of Young Investigators on Information Computer Control, pages 484-497, Beijing, China, February 1994.
[ bib ]
[568] Z. Zhang and Y. Shan. A progressive scheme for stereo matching. In European Workshop on 3D Structure from Multiple Images of Large-Scale Environments, volume 2018 of Lecture Notes in Computer Science, pages 68-85, Dublin, Ireland, July 2000.
[ bib ]
[569] B. Zhaoqi, C. Jinyan, and F. Gin. A new class of Lp correlation functions and its applications to seismic signal applications. In International Conference on Pattern Recognition, volume 2, pages 165-169, Atlantic City, United States, June 1990.
[ bib ]
[570] Y. Zhou and H. Tao. A background layer model for object tracking trough occlusion. In IEEE International Conference on Computer Vision, volume 2, pages 1079-1085, Nice, France, October 2003.
[ bib ]
[571] T. E. Zickler, J. Ho, D. J. Kriegman, J. Ponce, and P. N. Belhumeur. Binocular helmholtz stereopsis. In IEEE International Conference on Computer Vision, volume 2, pages 1411-1417, Nice, France, October 2003.
[ bib ]
[572] C. L. Zitnick and T. Kanade. A cooperative algorithm for stereo matching and occlusion detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(7):675-684, July 2000.
[ bib ]
[573] B. Zitová and J. Flusser. Image registration methods: A survey. International Journal of Image and Vision Computing, 21(11):977-1000, October 2003.
[ bib ]
[574] I. Zoghlami, O. Faugeras, and R. Deriche. Traitement des occlusions pour la modification d'objet plan dans une séquence d'image. In Actes du congrès francophone de Vision par Ordinateur, ORASIS, pages 93-103, Clermont-Ferrand, France, May 1996.
[ bib ]
[575] Y. Zuo and R. Serfling. General notions of statistical depth functions. Journal Information for The Annals of Statistics, 28(2):461-882, April 2000.
[ bib ]

This file has been generated by bibtex2html 1.65