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Abstract. This paper outlines a new geometric parameterization of 2D curves where parameterization
is in terms of geometric invariants and parameters that determine intrinsic coordinate systems. This
new approach handles two fundamental problems: single-computation alignment, and recognition of 2D
shapes under Euclidean or affine transformations. The approach is model-based: every shape is first
fitted by a quartic represented by a fourth degree 2D polynomial. Based on the decomposition of this
equation into three covariant conics, we are able, in both the Euclidean and the affine cases, to define a
unique intrinsic coordinate system for non-singular bounded quartics that incorporates usable alignment
information contained in the polynomial representation, a complete set of geometric invariants, and thus
an associated canonical form for a quartic. This representation permits shape recognition based on 11

Euclidean invariants, or 8 affine invariants. This is illustrated in experiments with real data sets.



1. Introduction

Algebraic curves have proven to be powerful shape
representations in model-based vision for handling
the alignment and recognition of 2D shapes [7, 4,
15, 16, 13]. Shapes in 2D images are described by
their boundaries, which are then represented by
algebraic curves. An algebraic curveis the zero-set
of a second or higher degree 2D polynomial, also
called an implicit polynomial (IP) representation.
For 3D data sets, the representation consists of
algebraic surfaces. Curves of degree two are called

conics, and those of degree four are called quartics.

Algebraic representations are related to geomet-
ric moments, but the advantage of algebraic curves
is that the data point set is interpolated by the fit-
ted representation, so it can handle missing data
due to occlusion and to segmentation errors. Fur-
thermore, the algebraic curves also handle open
curve patches. As with geometric moments, alge-
braic representations have smoothing properties
which provide robustness to data set noise and er-
rors. They can also be used in a Bayesian recog-

nition framework [11, 5].

A major benefit of algebraic representations is
that they have invariants under Euclidean or affine
transformations. These invariants are functions of
the polynomial coefficients alone. For computer
vision purposes, these invariants are used to recog-
nize whether two given shapes are globally similar

or not — they are shape descriptors.

Alignment is another fundamental problem in
several disciplines, ranging from computer vision,
robotics and medical imaging to photogrammetry.
2D-2D alignment is also referred to as shape reg-
istration in images. In 3D, several techniques can
be used for pose estimation [§8] and alignment,
among which are Euclidean intrinsic coordinate
systems [16] defined for algebraic curves. The ad-
vantage of using intrinsic coordinate systems of
algebraic curves compared to the use of geometric
moments is better robustness to moderate degrees
of missing data and to varying density in point-
sampling of boundaries, and the ability to deal
with open curves. Moreover no initialization is

needed.

Our approach utilizes the fact that a decompo-
sition of quartics into covariant conics implies an

object-based coordinate system (consisting of an



intrinsic coordinate center and an intrinsic coordi-
nate orientation) and a complete set of geometric
invariants. For a conic, its center of symmetry
defines the intrinsic center, and the eigenvectors
of the matrix associated with the second degree

terms provide the intrinsic orientation.

The proposed decomposition is an improvement
over [22, 23], where uniqueness is enforced in a
linear way. Other decompositions of a quartic
are possible: a decomposition into covariant con-
ics [18] which only implies Euclidean invariants,
and a decomposition into lines [19] which is less

easy to interpret geometrically.

Our work can also be seen as a significant ex-
tension of [16, 15], where this concept of intrinsic
coordinate system was generalized from the case
of conics to the case of higher degree polynomials
(with affine and Euclidean coordinate systems).
Compared to previous studies, the originality of
the approach consists in a geometric interpreta-
tion that allows us to make less incomplete use
of polynomial coeflicients. Indeed, we were influ-
enced by the insightful geometric interpretation of
the projective invariants of a conic pair outlined

in [7] and by the more general treatment of invari-
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ants in [12, 13]. The proposed approach provides a
geometric signification of intrinsic coordinate sys-

tems and invariants for quartics.

In [13], an different approach based on a com-
plex basis for IPs is proposed within a similar ap-
plication context. With this approach, another
complete set of Euclidean invariants is obtained,
where alignment is better performed by using all
the possible information in the algebraic curve.
Unfortunately, this approach does not generalize
to affine transformations. The aim of this paper
is to demonstrate a meaningful approach to the
calculation of a complete set of invariants via a
geometric interpretation of these invariants, par-
ticularly under affine transformations. The invari-
ants obtained are different from the classical al-
gebraic invariants usually proposed [20], because
they are not restricted to being rational and poly-
nomial functions of the polynomial coefficients but
rather are general functions involving roots and
trigonometric functions as well. As a consequence,
we call this new set of invariants geometric in-
variants. We want to emphasize the important
fact that the geometric interpretation of these in-

variants implies a natural distance for comparing



two sets, which is fundamental to practical shape
recognition. In contrast, the comparison of alge-
braic invariants is difficult due to very different

order of magnitude of variations.

Here, we focus our attention only on quartics
because conics are well known and can handle
only alignment and invariants under Euclidean
transformations. Cubics are not bounded curves,
whereas in images we are mainly interested in
bounded shapes. Thus, quartics are the lowest de-
gree polynomials that describe our approach pre-
cisely in the affine case. Of course, when the ob-
ject shape is close to a conic, a conic should be
used as the edge model to provide robust and sta-
ble fitting. On the other hand, when the shape
is very complex, a higher degree polynomial can
be used. Extension of the proposed approach to
higher degrees is possible. In the experiments de-
scribed in this paper, only shapes well modeled by

one quartic are considered.

After defining quartics and describing some well
known asymptotic properties, we outline in sec-
tion 2.1 how quartic curves can be obtained from
a given raw data set by using a fitting algorithm.

In section 3, we show how to decompose a non-

singular quartic as three covariant conics. In sec-
tion 4, we use this decomposition to obtain a Eu-
clidean canonical form for quartics. In particular,
we illustrate how the intrinsic coordinate system
defined on quartics is useful for alignment under
Euclidean transformations. This coordinate sys-
tem contains useful information for pose estima-
tion. We also exhibit a complete set of invari-
ants under Euclidean transformations with a nat-
ural distance measure on every invariant, which
allows us to carry out recognition tasks in an effi-
cient way. Finally in section 5, we extend these
Euclidean results to affine transformations and
present some experimental results concerning ro-

bustness to noise and missing data.

2. Quartics

2.1. Definition

A quartic is an algebraic curve of degree 4 in the

plane, which is defined with Cartesian coordinates



(z,y) by the implicit polynomial equation:
f1(z,y) = asoz*+as1 23 y+arnr?y’+arszy®+acay?
+az07® + a217%y + a127y? + agzy®
+a202” + a11zy + ag2y’
+a10T + aory

4agg =0

(1)

The number of polynomial coefficients (a;;)o<i+j<a

is 15. However, since the zero set of f4(z,y) is un-
affected by a multiplication by a non-zero scalar,
a quartic has 14 independent degrees of freedom.
The homogeneous polynomial Hy(z,y) of degree 4

in f4(z,y) is called the leading form of fj.

Ifa;j; =0fori+j=4and i+ j =3, the quar-
tic becomes a conic, as defined by a polynomial

function of degree 2:

f2(z,9) = asoz® +ar1zy+agy® +ai0r+ao1y+aoo,
(2)

which has 5 independent degrees of freedom.

2.2.  Asymptotes

As in the case of conics, there are different kinds of
quartics. For conics, it is well known that there are

two different types of non-singular conics: hyper-

?? )

bolas and ellipses. A hyperbola has two asymp-

totes, and an ellipse has none.

The existence of asymptotes in the conic case
depends on the existence or non-existence of real
roots in the homogeneous leading terms. When y

is very large, we have from (2):

x, x x
% bl 0@0(;)2 + 04115 + ap2 (3)

Therefore, if 6 is the angle of the asymptote, the

cotangent t of 8 satisfies the equation:

asot® + ajt +ags =0

In the same way, a quartic has an asymptote if
and only if the following fourth degree equation

has a real root (a root can be at infinity):
asot! +az1t® + axnt® + a1zt +ao =0 (4)

Since this is a real equation, there are three cases:

¢ 4 real roots and therefore 4 asymptotes;

¢ 2 real roots and therefore 2 asymptotes;

¢ no real roots and no asymptotes, in which case
the zero set of the quartic is bounded, i.e, the

quartic curve is bounded.
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2.3. Shape Modeling with Quartics

To align and compare two shapes described by
their boundaries, input data sets are assumed to
be sets of points along boundaries (see the dot-
ted lines in Fig. 1). Before we can consider align-
ment and recognition, we must determine a quar-
tic polynomial whose zero set approximates the
data points. For this we use a fitting algorithm.
Some algorithms [9, 15, 3, 17, 12] minimize the
average squared distance from the data points to
the zero set of the polynomial. The solution gen-
erally fits the data well. However, the fit is often
too sensitive to noise or missing data, especially
when the data set cannot be closely represented

by a quartic.

Fortunately, the 3-level (3L) fitting algorithm
introduced in [2] improves the stability of the re-
sult. In [14] the gradient one (G1) fitting algo-
rithm is introduced, which is a differential version
of the 3L algorithm. The effectiveness of the G1
and 3L fitting algorithms is that they achieve not
only the fitting of the polynomial zero set on the
data set, but also they constrain the tangent of the

fitted algebraic curve to be close to the one of the

data curve at all data points. This is performed by
enforcing the gradient of the fitted polynomial to
have magnitude 1 and to be perpendicular to the
data curve. Moreover to insure complete stabil-
ity, a regularization technique must be applied in
the case where not all IP coefficients are fully con-
strained by the data. A solution proposed in [14],
is to use a Ridge Regression (RR) approach to bias
the solution towards IPs with less unstable coef-
ficients. RR-G1 and RR-3L fitting algorithms are
numerically stable and repeatable, with respect to
Euclidean transformations of the data set, and ro-
bust to noise and a moderate percentage of miss-
ing data. Fig. 1 illustrates the result of fitting on
four different shapes defined by their data sets by

quartics (the solid lines).

3. A Quartic Decomposition into Covari-

ant Conics

The aim in this section, as first formulated in [23],
is to rewrite the polynomial function in (1) as the

product of two conics, plus a third conic, namely:

falz,y) = g2(z, y)g5 (2, y) + g5 (2, y)



The proposed decomposition is unique for non-
singular bounded quartics and the three obtained

conics are covariant under affine transformations.

3.1. The Leading Form

With the new variable ¢t = %, the homogeneous
leading form is rewritten as the fourth degree poly-
nomial asot? + as1t® + aget® + aist + ag. This
polynomial can always be factored as the prod-
uct of two real second degree polynomials. Con-

sequently:

fa(z, y)=aso(a?+an zy+ao2y®) (2 +a  Ty+agy?)
+azoz® + a2 2’y + ar2zy? + agsy®
+a202* + a112y + ag2y?
+a102 + a1y

+a00

(5)

We have assumed that aq9 # 0. For a given
quartic, the leading term decomposition can be
computed without root extraction, by finding the
"bi-quadratic’ form of the fourth degree polyno-
mial in ¢ (for example, see [1] p.118-121 for a de-

scription of this classic technique).

?? 7

Notice that the leading form decomposition is
unique for polynomials with 2 or 0 asymptotes.
For quartics with 4 asymptotes, the real roots can

be coupled three different ways.

3.2.  Third Degree Homogeneous Terms

We now want to eliminate the third degree ho-
mogeneous terms by introducing linear terms
a0z + a1y and of gz + ag, y in each homogeneous
quadratic factor in (5) as in [23]. After expansion,

we rewrite the quartic polynomial:

fa(z,y)= aso(2? + 112y + 02y + 102+ 1Y)
(z® + oy 2y + gy’ +ajgr+ag y)

+(aso — ago(euo+0aiy))z?

+(a21 —aso(ef ar0+anafy+ao +ap, ))z?y

! ! ! !
Ha1a—aa0(0h 010+ o2y +ah o1 +ar1 0l ) ) zy?

+(a03 —a40 (0662C¥01 +a02a61))y3 +---

We observe that the coeflicients of the third or-
der terms are linear functions of ajg, a1, @, and
agp,- Consequently, we can choose the values of

these terms to eliminate all the third order terms
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by solving the following linear system:

1 0 1 0 a10 aso
! !
Qp; Gy Q11 Qo1 Qo1 az
a49 =
! ! !
Qpp Q11 Qo2 011 251} a2
! !
0 ap 0 ape o1 a3

(6)
After this computation, the quartic polynomial is

decomposed as:

fa(z,y)=as0((z® + c112y+ 02y’ + a1z +01y)

(2% + b 2y + agey® + o + agy) + T2(2,y))
(7)

where the ”remainder” ra(z,y) is of a degree no

greater than two:

72(2,y) = bao@® + br12y + bo2y” + b1oT + bo1y + boo

Notice that the centers (t;,t,) and (t,t;,) of
each conic factor g2 and g}, respectively, can be
determined by solving:

1 % tw 1 Q10

- ®
a11 2
5t Qo ty Qo1

since this computation is independent of the un-

known constant term.

3.3.  Uniqueness of the Decomposition

To express (7) as the product of two generic conics
g2 and g4, we need to introduce constant terms agg
and af, into the two factors, respectively.

As in the previous section, we rewrite the quar-

tic:

fi(@,y) = as(@® + o117y + apay? + @107 + o1y + o) (@ + a7y + ahsy® + QloT + a1y + aby)

+(b20 — 00 — afg)x® + (b1 — 300 — a110h9) Y + (boz — Aga00 — 0200 )y?

! ! ! !
+(b1o — ajga00 — a100p9)T + (bo1 — @y oo — o1y

From section 2.1, we recall that a quartic has 14

degrees of freedom, and a conic 5. We want to de-

compose the quartic as the product of two conics,

!
+b00 — Qo Qo0

(9)

plus a remainder term, which has 14 —5x 2 =4
degrees of freedom. Consequently, the remain-
der can not be a fully independent conic. Due

to the multiplicative factor on the remainder, g4



has only 3 degrees of freedom. It is possible, as
shown in [22], to constrain this remainder conic to
be singular (the product of two real or imaginary
parallel lines). But this constraint involves resolv-
ing third degree equations, and thus the possible
existence of three solutions.

We propose a different affine invariant con-
straint, which has the advantage of involving only
linear computations. Indeed, we compute ago and
oo by constraining the remainder to be a conic
with its center (cz,cy) at the mid-point of the
line between points (t,t,) and (t;,t,). This con-
straint is linear because (8) is linear as a func-
tion of the conic coefficient when the center is
given. Moreover, the coefficients of g involved
in this constraint are linear functions of ag¢ and
afy- When an affine transformation is applied to
a conic, its center is mapped by the same affine
transformation, i.e the center of a conic is an affine
covariant. Consequently, (¢z,¢,) is also a covari-
ant of the two conics. This implies that our con-
straint on the third conic is invariant under affine

transformations. With the uniqueness of the pre-

?? 9

vious decomposition, this property ensures that
g2, g5, and g4 are covariant conics with respect to
the affine transformation applied to fs.

Finally, after computating ago and af,, the
quartic is decomposed into the product of two con-
ics g2 and g4 plus a third conic g4, whose center

is aligned with the centers of g» and g}:

f4($7y)=1140($2 -|-a11$y+0102y2+a10$+0401y—|ﬂ00)
(22 + o2y + afoy® + o + gy + agg)

+boo(x + o 2y + o2y® + Q107 + 01y + 04620) )
10

We call (10) the decomposition of a quartic into
three covariant conics, or its covariant-conics de-
composition. Notice that for quartics with 2 or
0 asymptotes, the decomposition is unique. For
quartics with 4 asymptotes, 3 such decomposi-
tions exist. If the uniqueness of the decomposi-
tion is true for most of the quartics with 2 or 0
asymptotes, there are special quartics in this class
that do not have a unique decomposition. For in-
stance, the decomposition is not unique when the
matrix of linear system (6) cannot be inverted, or
when one of the conics factors g» and g} is sin-
gular (the matrix of linear system (8) cannot be
inverted). Similarly to the conic case, these quar-

tics are named singular.



10 99

3.4. FEzxamples

Consider the quartic curve depicted in Fig. 2(a),

which is defined by the polynomial equation:
fa(z,y) = 0.156250z* — 0.18750z3y

+0.78125022y? — 0.750zy> + 0.6250y*
—1.25022y + 1.50zy? — 1.240y3
—0.9375022 + 2.250zy + 1.8750y2

—3.50y + 0.750

The ellipse factors without the constant terms
are: go(z,y) = 2% + 4.0y? — 8.0y and gh(x,y) =
z2 — 1.20zy + 1.0y>. The center of g, the largest
ellipse, is at (0.0,1.0). The center of g5 is at
(0.0,0.0). Thus the center of g4 is constrained
to be at (0.0,0.50). In this particular case, the

constraint on ago and oy is:

0.30 0.0 Qoo —3.60

= (11)
—-0.50 2.0/ \ aj 5.20

By solving (11), we obtain the equations of the

three ellipses shown in Fig. 2(b) :

ga(z,y) = 2* + 4.0y° — 8.0y — 12.0

gh(z,y) = 2° — 1.20zy + 1.0y% — 0.40

gy (x,y) = 6.402% + 25.60y% — 25.60y

Fig. 3 illustrates the unique covariant-conics de-
composition of the quartic fit on the hiking boot
of Fig. 1(c), where one conic factor is an ellipse

and the other a hyperbola.

4. Quartics under Euclidean Transforma-

tions

Since the conic decomposition is covariant, we
have transformed the problems of alignment and
recognition of quartics to the equivalent problems
on a set of three conics. Next we will show how
to deduce a Euclidean intrinsic coordinate system
for a quartic curve, and then determine a complete
set of Euclidean invariants. The idea to first com-
pute an intrinsic coordinate system, and then ap-
ply it on the curve to obtain invariants, is similar
to what is used in [21] in a different (local) context
for Euclidean, affine and homographic transforma-

tions.

4.1.  FEuclidean Intrinsic coordinate System of

Quartics

We can rewrite every non-singular conic in the

quartic decomposition (10) in its own Euclidean



intrinsic coordinate system, namely

Xintr.2 + Yrintr.2 —1= 0’

C1 C2

under the transformation

T cosY —siny Xintr. tr
= + ,
y sing)  cosy Yintr. ty

where 9 and (¢;,t,) are the angle and the center,
respectively, of the intrinsic coordinate system of
the conic expressed in the original coordinate sys-
tem. Note that the square lengths ¢; and ¢y are
intrinsic parameters of the conic under Euclidean

transformations.

By wusing these canonical forms, we can
rewrite (10) as:
X2 y2 X/2 Y/2 X//2 Yn2
—+—-1 -1 —=1)=0
(c1 + Co X cl + ch )+l cf + cl )
(12)

where each conic is transformed as follows:

T costy —sine X ty
= +
Y siny  cos® Y ty
T cosy’ —sine)’ X' th,
= +
Y siny’  cosy’ Y'! ty,
T costy” —siny)" x" —t“;t;
- + ty+t,
Y siny”  cose” Yy 5
(13)

Note that a factor ¢ appears in (12). This factor

is the weight between the pair (g2,¢5) and g5. In

?7? 11

the above, we assume that g» has the largest major
axis length (if ambiguous, we chose g2 to have the
largest ratio of the major and minor axis lengths).
If a Fuclidean transformation D is applied to the
quartic, ¥, ¥, ¢", (ts,t,) and (t;,, ;) are mapped
by D, and each Euclidean intrinsic coordinate sys-
tems is simply transformed by D = (R,T), with
R the rotation and T the translation.

A quartic has not only one but several intrin-
sic coordinate systems, as noted by Taubin [16].
Three are defined by the intrinsic coordinate sys-
tem of each covariant conic. Another can be de-
fined by the line through the three centers. More-
over, all linear combinations of these coordinate
systems define other Euclidean intrinsic coordi-
nate systems. Fig. 4 illustrates that the covariant-
conics decomposition allows us to interpret a quar-
tic as geometrically equivalent to 3 aligned conics.
Sometimes one or more of the covariant conics are
imaginary. This means only that then we are not
able to draw these conics in the plane, nevertheless
all the properties we are using still exist. There-
fore, this is not a limitation of the approach, since
in fact, we are working on the associated quadratic

form of every conic.
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Notice, that we have to select one orientation
of the intrinsic coordinate systems. When the two
conic factors are ordered (one is larger than the
other with respect to its major axis, or ratio of its
major and minor axes), we will orient each major
axis through the largest conic factor gs.

Since we have several intrinsic coordinate sys-
tems, to do the alignment between two given quar-
tics, we have to figure out what is the one to one
correspondence between these intrinsic coordinate
systems. To avoid the matching problem of coor-
dinate systems, a coordinate system can be chosen

in the following ways:

¢ if the two conic factors are non-circular, we
choose the orientation of the intrinsic coordi-
nate systems defined in Fig. 4(a). The origin
of the intrinsic coordinate system is defined as
the center (cg,cy) of the line between points
(te,ty) and (t;, ;). To define the intrinsic ori-
entation, the major axis of g2 and g} is first
oriented as the vector defined by (¢,,t,) and
(ty»ty). Thus, the first axis Xjn4 of the co-
ordinate system is defined as the normalized

sum of the normalized directions of the two

major axes of g and g} oriented as above.

¢ if one of the conic factors is a circle, and the
centers of the conic factors are different, the
first axis X4 of the coordinate system is de-
fined as the normalized vector given by points
(tz,ty) and (t,t;), and thus Xins, is always
oriented through the conic go. The orientation

of the intrinsic coordinate system is shown in

Fig. 4(b).

In most of the other cases, one can define a unique
coordinate system. The quartic reduced to a circle
is a singular quartic for the computation of the
coordinate system. Indeed, in such a case, there

is no way to robustly extract the rotation angle.

4.2.  FEuclidean Alignment Experiments

In this section, we present a summary of the stabil-
ity experiments of the computation of the intrinsic
coordinate system. Robustness to random bumps
and missing data along the curves are tested sep-
arately (see Fig. 5).

For example, with the car or the hiking boot
shapes of Fig. 1, using of the definition of the
coordinate system of Fig. 4(a), we obtain bet-
ter results than those obtained using Taubin’s co-

ordinate system or the classical scatter matrix



method, as shown in Fig. 6. Our approach per-
forms better than the scatter matrix method be-
cause the shapes used here are not elongated,
but what we will term ”blobby”. For elongated
shapes, the alignment technique based on the fit-
ting of a conic and the use of the Euclidean intrin-
sic coordinate system of this conic provides more
robust and accurate results. Consequently in the
Euclidean case, our approach based on quartics
handles the case of blobby shapes, where conic
based algorithms usually fail. Fig. 6(b) also shows
that, compared to moment approaches, the fitting
algorithm nicely interpolates missing data when
no high curvature points are removed.

A way to check the computation of the Eu-
clidean transformation between the original and
transformed shapes is to apply the transformation
on the original data point sets and then to com-
pute the value of >, f#(R(z;,y;)). This gives us
a simple estimate of a non-Euclidean distance be-
tween the polynomial function f; and the trans-
formed data set R(x;,v;)- A good estimation is
associated with the smallest value [6].

We test the robustness of the estimation of the

intrinsic coordinate system under noise and miss-

?7? 13

ing data on the 4 shapes of Fig. 1. First, we add
bumps at 50 locations along the curve. The am-
plitude of the bump is a random Gaussian vari-
able with a variance of 0.05. An example of a
perturbed data set is shown in Fig. 5. Table 1
illustrates the robustness of the estimation of the
intrinsic coordinate system under noise.

Next, we removed 5% of the length of the data
at 50 different starting points. Table 1 shows that
the estimation is very stable for the intrinsic angle
of the boot and of the skyhawk, but less stable for
the guitar and the car under 5% missing data. As
shown in Fig. 5, this can be explained by the fact
that removing 5% of the guitar can suppress shape

features that are important to compute the pose.

4.8.  Euclidean Invariants of Quartics

Since there are 3 degrees of freedom in a 2D Eu-
clidean transformation, and 14 degrees of freedom
for a quartic, we want to find 11 independent in-
variants. The values of ¢y, ¢2, ¢}, ¢, ¢ and ¢} are
invariants of the conics gs, g5 and g4, hence they
are Euclidean invariants of the quartic. The proof

is straightforward using (12). In a similar way, ¢
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also is a FEuclidean invariant, so we directly have
7 independent invariants for a quartic.

From the geometric interpretation of the quar-
tic in terms of 3 conics, we are able to exhibit
a complete set of 11 invariants for quartics. As
shown in Fig. 4, there are several ways to define
an intrinsic coordinate system for a quartic and,
therefore, different choices for geometric invariant
sets. With the definition used in Fig. 4(b), a pos-
sible set of 11 geometric invariants is as shown in

Fig. 7:

* c1, ¢, Ch, Ch, cf and ¢y squared real or imag-
inary lengths of minor and major axes of the
three covariant conics,

o ¢, ¢ and ¢'": the three angles of the major
axes of the conics,

¢ ¢y the halflength of the distance between the
conic factor centers,

¢ and the relative weight ¢ between the conics

(g2, g95) and the conic g4 (see (12)).

The values of these 11 invariants completely
specifies a quartic under Euclidean transforma-

tions.

Since the definition of these invariants involves
trigonometric functions and rational roots, these
11 invariants are not classical algebraic invari-
ants, but rather they are geometric invariants
directly obtained from our covariant-conics de-
composition. Indeed, an algebraic invariant is a
function of the polynomial coefficients where only
addition, subtraction, multiplication and division
are involved.

We want to emphasize that these new geometric
invariants (lengths and angles) are very important
for recognition tasks, because they imply a natu-
ral and meaningful physical measure which can be
used to discriminate between object shapes.

With (13), we can now obtain a unique canoni-

cal form for a quartic :

X2 y2 X/2 Y/2 X112 YI/2
(e —Dte(Z 1) =
(c1+c2 )(c,1+c,2 )+e( T )

(14)
where we have introduced three coordinate sys-
tems (X,Y), (X',Y"), and (X",Y"). These are,
respectively, the three intrinsic coordinate systems
of the three covariant conics g, g5, and g4, defined
by (see Fig. 8):

Xintr. cos¢ —sing X C12

= +
Yintr. sing  cos¢ Y 0



Xintr. cos¢’ —sing’ X! —cCi19
= +
Yintr. sing’ cos¢' Y! 0
Xintr. cos@” —sing" X"
Yintr. sing”  cos¢” Y

Thus, the canonical form is defined in the intrinsic
coordinate system (X;n¢r., Yinsr.), which is related

to the original coordinate system by:

z cosf —sind Xintr. Cx
= +
Y sinf cos@ Yintr. Cy

As explained in sections 3.3 and 4.1, the
covariant-conics decomposition and its coordinate
system is unique for non-singular quartics with 0
or two asymptotes. Thus, the canonical decompo-
sition is also unique for these quartics. In the case
of 4 asymptotes, we can obtain a unique canonical
decomposition by using the invariants. For exam-
ple, one may choose the decomposition where the
factor ¢ is maximum.

Notice that, from (14), it is easy to express poly-
nomial coefficients as functions of the geometric
invariants, and then write the usual algebraic in-

variants as functions of the geometric invariants.
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4.4. Examples

Consider the decomposed quartic of section 3.4.
The center (c,,c,) of the quartic, (the center
of the two conic factor centers (0.0,0.0) and

(0.0,1.0)) is (0.0,0.50). In light of Fig. 4(b),

and (14), the angle of the first axis X;n¢ of the
coordinate system is 7 (7). Since g» has the larger
major axis length of the two conic factors, the in-
trinsic coordinate system is oriented through its
center. Therefore § = 7. The intrinsic coordinate

system of the quartic is consequently given by:

™

quwT.::COS(2

)z —0.0) + sin(g)(y —0.50)

Yintr. = — sin(g)(;c —0.0) + cos(g)(y — 0.50)

with the intrinsic coordinate system so defined:
ga(z,y) = 161—_0((:05(—%)(Xm”, + 0.50)
+sin(—=5) (Yiner. +0.0))?
+ 25 (= sin(—=Z)(Xingr. + 0.50)
+ cos(— %) (YVintr. +0.0))? — 1
92(w,y) = (155 (cos(=§)(Xintr. — 0.50)
+sin(—§) (Yiner. — 0.0))?
+ 5250 (= Sin(=§) (Xiner. — 0.50)

+ 005(— ) (Vinr. — 0.0))° — 1)
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gé’(.’L‘,y) = ﬁ(cos(_%)Xintr.
+ Sin(_g)yrintr.)z
+()21W(_ Sin(_%)Xintr.

+ cos(— %) Yiner. )2 — 1

From these equations, we deduce that ¢; = 16.0,

2 =1.0,¢f =1.0,¢h = {5, =1.0, ¢4 = 75 and
¢ = 1.0. The distance between the quartic center
and one of the conic centers is ¢;2 = 0.50. In
the intrinsic Euclidean coordinate system, all the

characteristics of the quartic are Euclidean invari-

ants.

4.5.  Recognition Tests

Table 2 shows the average percentage of errors be-
tween invariants of four curves where 50 random
bumps are added along the curve. The size of each
bump is a random variable of standard deviation
0.05. As in the previous experiments, the average
is on 20 realizations. In the right part of Table 2,
the shape has missing data at different starting
points. The size of the missing data length is al-
ways 5% of the curve, and the average is based
on 50 different starting points. Table 2 illustrates
that the computation of the geometric invariants

is stable under a modest amount of noise or miss-

ing data. Note that the invariants ¢, ¢”, 2 and
Cc1

% of the skyhawk shape vary considerably. This
can be explained by the fact that for this partic-
ular shape, the estimation of these invariants is
very correlated because one of the two conic fac-
tors is close to a parabola. Indeed, under noise
or missing data, the estimated shape can be a hy-
perbola as a huge ellipse, introducing instability
in the invariants computation. In particular, the
center is very instable in this configuration. We
expect these difficulties can be solved by applying
a regularization technique such as Ridge Regres-
sion.

In these experiments, we generally notice that
the invariants have different robustness under
missing data or noise.

In Fig. 9, the mean of the invariant \/H and
its standard deviation is shown for an increasing
amount of noise. For this hiking boot shape and
for this parameter, the estimation is good until
the noise is more than 0.13. For bigger noise,
the estimation becomes unstable. We observed
the well known threshold effect [10] in estimation
problems. This observation leads us to develop

a more robust approach for comparing two alge-



braic curves under Euclidean transformations [13].
It relies on the translation alignment using all the
information about algebraic curves, followed by
the computation of a complete set of rotation in-
variants. If this last approach should be preferred
in the Euclidean case, it does not seem to extend
to the affine case, unlike the approach described

here.

Fig. 10 shows how the two invariants (/| X[, 1/ |%|)

are well separated for the four shapes of Fig. 1, so
the proposed geometric invariant metric allows us

to solve the recognition task.

5. Quartics under Affine Transformations

In this section, we apply the approach explained in

the Euclidean case to the affine case. We will next

show how to deduce an affine intrinsic coordinate

system for a quartic curve, and then determine

a complete set of affine invariants by computing

the Euclidean invariants of the conics in the de-

composition after transformation to the intrinsic

coordinate system.
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5.1.  Affine Intrinsic coordinate System of Quar-

tics

There is no unique affine canonical form for a
conic. An infinite number of affine transforma-
tions can change a given ellipse to a circle, for
example. Nevertheless, and it is one of the main
reasons for using quartics, it is possible to have
an affine canonical form for a quartic by using the
two covariant conics to define an affine intrinsic
coordinate system.

A good candidate, for the origin of this coor-
dinate system is (c,c,) the center of gy as de-
scribed in the previous section. When the origin
is known, we have to define an intrinsic coordinate

system under linear transforms. First, we define

e ! e
ez Gt €90 %

2
E = and E' = , the

7
€11 €11 !
2 €02 2 €02

matrices associated with the leading terms of each
conic g, and g5. These matrices are unique up to a
scale factor. To define these matrices in a unique
way, we assume that each conic is centered, and
that its constant term is —1, before computing £
and E'.

If a linear transform L is applied to the quar-
tic, the previous two matrices become L!'EL and

L!E'L, respectively, and the product E'~'E be-
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comes L~ 'E'"1EL. We therefore deduce that the
eigenvalues \; of E'~1E are affine invariants and,
moreover, that the eigenvectors u; of this matrix
are linearly transformed by an affine transforma-
tion of the coordinate system. This eigenvector
problem is equivalent to the following generalized

eigenvector problem:

Eui = )\iE'ui (15)

The two eigenvectors u; and ws, which are solu-
tions of (15), provide the directions of an affine
intrinsic coordinate system for the quartic. How-
ever, this eigenvector problem does not always
have a real solution. If the matrix E or E' is pos-
itive definite, i.e, if one of the conic factors is an
ellipse, a real solution always exists. Indeed, when
E' is positive definite, the square root B defined
by E' = BB? exists. Consequently, the problem
is equivalent to finding the eigenvectors Blu; of
the symmetric matrix B"'EB~*f. Notice that in
this case, the length of the vectors in the intrinsic
coordinate system are also computed to transform
g% into a unit circle.

When g> and g} are two hyperbolas, the previ-

ous properties do not apply. In this case, the lead-

ing term has 4 real roots, and the decomposition is
not unique. However when roots are ordered, it is
not difficult to show that real eigenvectors always
exist if the two conic factors involve consecutive
roots.

By diagonalizing the matrix E'~! E, we have the
direction of each axis of the intrinsic coordinate
system. If we reverse the roles of F and E’, the
computed eigenvectors stay the same but the com-
puted eigenvalues are inverted. Then, we order
the axes by first choosing the axis which maxi-
mizes A; + /\%, where J); is the associated eigen-
value. Moreover, if A; is less than 1, we decide
that the two ellipses are in reverse order. By con-
vention, go is defined as the largest conic factor.
Then, both lengths of the vectors of the affine in-
trinsic coordinate system are computed to trans-
form g4 into a circle.

Therefore, we have defined the direction and the
length of every axis of the affine intrinsic coordi-
nate system. We now orient each axis through the
center of the largest conic go (see Fig. 11). After
all these steps, the coordinate system is uniquely
defined for non-singular quartics with zero or two

asymptotes.



5.2.  Affine Invariants of Quartics

When an intrinsic coordinate system has been
found, we apply the inverse of the affine trans-
formation to map the origin of the coordinate sys-
tem to (0,0) and the coordinate orientations to
orthogonal unit vectors. The quartic is thus set in
its intrinsic coordinate system. After this trans-
formation, the Euclidean invariants of the set of
3 conics (computed as described in section 4) are
affine invariants of the original quartic.

In this case, however, not all of the Euclidean
invariants are useful. We want a largest indepen-
dent subset. As shown in Fig. 11, a possible set of

geometric affine invariants is:

* ¢, co: squared lengths of minor and major
axes of the conic go (positive for ellipses and
negative for hyperbolas) in the intrinsic coor-
dinate system,

* (tg,t,) the position of the center of the conic
92,

o ¢! and ¢f the squared lengths of minor and
major axes of the central conic g,

o ¢" the angle of the major axis of g},
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¢ and the relative weight ¢ between the conic

factors and the central one.

The number of geometric invariants is then 8.
An affine transformation has 6 degrees of freedom.
The geometric invariant set is then complete, since
846 = 14, which is equal to the number of quartic
degrees of freedom. As in the Euclidean case, the
invariants obtained are different from the classical
algebraic invariants.

The unique canonical form in the affine case is:

R _ 2 R 2
fulryy) = (Hmetel o Bime 2l )

Cc1 C2

(Xintr. +t2)* + Yintr. + ty)? —€) (16)

XII2 Y//2 o
+C( Clll + 6'2’ - ]-) — 0
with € = &1 and
Xintr. cos@” —sing"” X"
Yintr. sing”  cos¢” Y

and where the intrinsic coordinate system is de-

fined by:
z Utz U2z Xintr. Cy
= +
Y Uy U2y Yvintr. Cy

The vectors u; = (U1s,u1y) and us = (u24,u2y)
are the two eigenvectors of (15). Note that we
have to introduce € which equals —1 if g} is a real
circle or +1 if g} is an imaginary circle. This € is

a characteristic of the quartic, but since its value
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is discrete, this parameter is not included in the
set of geometric invariants.

From this affine canonical form, we can express
classical algebraic invariants as functions of the
geometric invariants. For example, the invariant

of the leading term

12 1 1
12a40a04 — 3az1a13 + a2y = — + - + —~ 2
1C2 1 2

which is not easy to interpret geometrically.

5.3. Ezxamples

Let us consider the same quartic as in section 3.4.

0.06250 0.0
In this example, we have E =
0.0 0.250
250 -1.50
and E' = when each ellipse is
—1.50 2.50

centered and the constant term equals —1.

The two normalized eigenvectors are (Ey, Es) =

—0.98496 0.57432
and the two eigenvalues
0.17275  0.81863

are ¢; = 44.209 and ¢a = 5.7906. We note that
the order of the two vectors is correct, since ¢; + é

is larger than cy + é

3.01047 0
Since (E]_, EQ)tEI(El, EQ) =
0.0 1.08953
we must divide the first and the second eigenvec-

tors of (Ej, Fs) by the square root of the corre-

sponding diagonal element in order to transform
g4 into a circle. The resulting affine intrinsic co-

ordinate system is:

x 0.56768  0.55021\ [ Xintr. 0.0
= +
y —0.09956 0.78427 ) \ Yipur. 0.5

Notice that the affine center is the same as
the Euclidean center in this expression. We
can check that the orientation of each vector is
correct, because the two coordinates (tz,t,) =
(0.55021,0.56768) of the center of g» are both pos-
itive in the intrinsic coordinate system. The quar-
tic is shown in this intrinsic coordinate system in
Fig. 12, where g} is transformed into a circle.

The value of the invariants shown in Fig. 11 are
then computed. The square axis lengths of go are
c1 = 44.209 and c2 = 5.7906. The square axis
lengths of g4 are ¢ = 2.7631 and ¢ = 0.36191.
The invariant angle is ¢" = 0(w), the position of
the center (t;,t,) is (0.55022,0.56768), and ¢ =
1.0.

Finally, Fig. 13 depicts the affine canonical de-
composition of the hiking boot shape, which was

shown in section 4.4 for the Euclidean case.



5.4. Affine Alignment

We have computed the variances of alignment
and invariance errors under affine transformations
with additive bumps and missing data, respec-
tively. Fig. 14 is a typical example of noise or
missing data combined with an affine transforma-
tion.

Table 3 is a summary of the relative errors ob-
tained for the same four shapes of Fig. 1. Statis-
tics for each case are computed from 20 random
realizations for the noise and for 50 different start-
ing points for missing data. The affine alignment
clearly fails for the skyhawk shape, for the same
reason that we did not obtain accurate results in
the Euclidean case. For other shapes, we observed
that the affine error is higher in comparison with
the Euclidean case for the same noise and miss-
ing data. A partial explanation is that the fitting
we used is not affine invariant. This is a limited
source of errors since the fitting algorithm used
has shown a relative robustness to affine trans-
formation not too far from Euclidean transforma-

tions.
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Compared to the Euclidean case, intrinsically,
the affine coordinate system is more subject to
instabilities during its computation. The conic
case can be used to explain this. To compute the
major and minor axis lengths of the hyperbola:
v12% — v2y? — v3 = 0, we have to normalize the
equation by dividing it by the term vz, to obtain
o = rand & = 2. If vz is close to zero, or
small in comparison to v; and vy, i.e if the hyper-
bola is ”"close” to the singular case of two lines,
and a small perturbation in the data set can im-
ply that the sign of vz (estimated by the fitting
algorithm) becomes positive for a certain pertur-
bation and negative for another one, then the sign
of ¢; and ¢ will change, and the intrinsic coordi-
nate system is unstable. Consequently, instability
occurs around those curves which have singular
covariant conics.

The car shape presents poorer results under
noise than the guitar and the hiking boot. This
can be explained by the fact that one of the conics
factors of the fitted polynomial is close to a sin-

gular conic. This proves the need to use regular-

ization techniques to handle such singular cases.
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5.5.  Recognition Tests

Table 4 presents the standard deviation relative
to the value of every affine invariant under 0.05
standard deviation noise and 5% of missing data.
As we can see, Euclidean invariants are more sta-
ble than the affine invariants. Indeed, due to the
way we compute the affine invariants, by apply-
ing the inverse of the intrinsic coordinate system,
the invariant robustness is directly related to the
coordinate system robustness.

We can expect that the use of regularization
techniques allows us to handle all the particular
quartics where one step of the proposed estima-
tions may introduce instabilities. The difficulty is
that there exist many configurations that must be
handled as specific cases in the decomposition and
alignment computations. For example, to define a
unique coordinate system, the conic factors have
to be different from a circle, and the shape must

not be with specific symmetries.

6. Conclusions

In both the Euclidean and the affine cases, using

the decomposition of a quartic in three covariant

conics, we have defined a unique intrinsic coordi-
nate system and complete sets of geometric invari-
ants. This result is valid for most quartics.

But there are singular quartics where one step
of the decomposition into covariant conics or the
intrinsic coordinate system computation can not
be performed uniquely. Quartics close to singular
ones are generally subject to instabilities of the
resulting coordinate system and invariants, under
noise and missing data perturbations. This prob-
lem is not specific to our particular approach but
it illustrates one difficulty of applying geometric
or algebraic approaches to computer vision.

For instance, under a transformation of shape,
because of noise and missing data, the model curve
obtained with the fitting algorithm is not always
decomposed as three conics of the same type for a
shape and its transformation. In these situations,
the proposed recognition approach gives bad de-
cisions, since the model of the original and per-
turbed shapes are of different mathematical types.

Regularization techniques whose origins lie in
the field of statistics, can be used to tackle this
practical problem. Therefore, the design of the

fitting algorithm must be related to the way the



intrinsic coordinate system is obtained. This im-
plies to point all the singular quartics, and the
challenge here is to design a specific fitting algo-
rithm that biases the solution away from these sin-
gular quartics. Another important improvement
will be provided by an affine invariant fitting al-
gorithm.

The significant contribution of this paper is
complete sets of geometric interpretable invari-
ants and sets of geometric interpretable param-
eters for defining intrinsic coordinate systems for
quartics (4th degree implicit polynomial curves)
under Euclidean and affine transformations. This
provides useful insights into the practical use of
these polynomials in pose estimation and shape
recognition. Extension to polynomials of a higher
degree should contribute to a general framework
for studying the application of algebraic curves

and surfaces.
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Four data sets and associated quartics obtained by fitting.
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Fig. 2. The quartic in (a) is decomposed into three ellipses in (b).

Fig. 3. The fitted quartic in Fig. 1(c) is decomposed into three covariant conics (2 ellipses and 1 hyperbola).
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x

world reference system

x " |

92
world reference system !

(b)

Fig. 4. Two choices of Euclidean intrinsic coordinate systems on quartics. In (a) and (b), the intrinsic center (cz,cy) is
defined as the center of the two conic centers (tz,ty) and (t},,t},). In (a), azis Xintr of the intrinsic coordinate system is
the bisector of the two major azes of g2 and g4. Its orientation is assumed to be the same as that of vector (tz —tl,ty —t;).
Since the magjor azis of an ellipse is not always defined (in the case of a circle), another possible choice is shown in (b)

where the Xintr awis is aligned with the line between points (tz,ty) and (t;,t,).
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_ occluded set

160 —
140 — -
120 — -
1.00 — -
0.80 — -
0.60 — -
0.40 — -
0.20 — -
-0.00 — -
-0.20 — -
-0.40 — -
-0.60 — -

-0.80 — -

-1.20 — -

Fig. 5. In (a), the original data set of the guitar is perturbed with random Gaussian bumps at 50 different locations. The
standard deviation of the noise is 0.05. The size of the shape is approzimatively 3. In (b), the original data has 5% missing

data starting at one of the 50 possible starting points.
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angle (deg)
110,00
105.00 —
100,00 —
9.00 —
9000 — i
8500 — I}
8000 — I
75.00 —
7000 — i1
6500 — |
60.00 —
55.00 —
5000 — | 1
45.00 — :
40.00 — |
3500 — !
3000 — !
2500 — ¢
2000 — i |
50— i
1000 !
500 —

000 — -

noise realisation
0.00 10.00 20.00 30.00 40.00 50.00

angle (deg)
7300 — | | — Truevaue
7200 — ) L

71.00 — H

s 8
[
|

occlusion location

Fig. 6. In (a) and (b), the angle for canonical alignment are compared with our approach, Taubin’s definition, and a
simple technigue based on the scatter matriz of the dataset. In each case, the correct angle is 60 degrees. In (a), 0.05 std.
dev. noise is added to the car and in (b), 5% of missing data is applied at each of 50 different starting points along the

hiking boot.
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Vy!

x
world reference system yY”

Fig. 7. An example of a complete set of Euclidean invariants for a quartic with a coordinate system defined as in Fig. 4(b).

L < TN
Z

Fig. 8. The quartic of Fig. 2 in its Fuclidean intrinsic coordinate system, and its three covariant conics.
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7.50 —
7.00 —
6.50 —
6.00 —
550 —

5.00 —

450 —
400 — -
350 — ; _
3.00 — 7
250 — I

200 —

150 —
1.00 —

0.50 —

0.00 —

050 — | | | | ~ xx103
000 50.00 100.00 150.00

Fig. 9. Variations of the mean of +/|c1| and its standard deviation (with 20 realizations) for an increasing amount of

perturbation with 50 bumps.

car guitar boot  skyhawk | car guitar boot  skyhawk

6 (rad) | 0.023 0.005 0.015 0.002 0.662 0.218 0.029 0.009

Cr 0.019 0.015 0.038 0.218 0.038 0.087 0.071 0.570

cy 0.057 0.038 0.026 0.135 0.325 0.250 0.047 0.349

Table 1. The left part displays the standard deviation of the errors on the Euclidean intrinsic coordinate system under
0.05 std. dev. noise on the curve at 50 points, for 20 realizations. The right part displays the standard deviation under 5%

of missing data for 50 different starting points.
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Fig. 10. Distributions of invariants ( i—;|, \Z—H) under 0.05 std. dev. noise (a) and 5% of missing data at 50 different
2

starting points on the curve (b). The four data point sets used are shown in Fig. 1. Notice that the four clusters are well

separated in this plane of invariants.
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Fig. 11. This is an example of a complete set of affine invariants for quartics.
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Fig. 12.  The quartic of Fig. 2 in its affine intrinsic coordinate system and the three associated conics, where g is a circle.
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Fig. 13. Decomposition into three conics of the quartic fitted on the hiking boot in the original coordinate system (a) and

its affine intrinsic coordinate system (b).
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Fig. 14. 1In (a) are shown the original data set of the hiking boot and its perturbation with random Gaussian bumps of
size 0.05 (shape of size 3). In (b) are shown the original data and its perturbation with 5% of missing data. In each case,

an affine transformation is applied on the perturbed shape.
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car guitar boot skyhawk | car guitar boot skyhawk

¢ 11.9% 1.7% 4.6% 151% 33.7% 40.9% 6.3% 911.2%
z—f 10.8% 4.8% 4.4% 4.3% 33.4% 16.1% 10.3% 10.2%
% 12.7%  5.5% 130%  45.9% 283% 19.8% 286% 2232%
% |51% 7.3% 123% 203% | 194% 12.9% 18.3% 62.8%
91 17.3% 54%  9.8%  62.2% | TA1%  507%  20.4% 14948%
2—%: 13.7% 6.9% 10.3% 26.8% 50.8% 18.0% 14.8% 250%

0] 2.5% 0.8% 2.8% 0.8% 5.4% 1.3% 3.7% 1.5%

¢ | 2.5% 0.8% 2.8% 0.8% 5.4% 1.3% 3.7% 1.5%
¢" | 3.9% 19.4% 7.1% 0.9% 26.9% 65.4% 10.8% 3.5%
c12 | 6.0% 8.4% 2.5% 15.6% 21.1% 64.4% 4.0% 33.0%

c 15.8% 9.7% 497%  72.4% 691% 101% 553% 623.2%

Table 2. Percentage of relative errors on invariants estimations under 0.05 std. dev. noise (left) and 5% missing data on

the curve at 50 different starting points (right).




?7? 39

car guitar  boot skyhawk | car guitar  boot skyhawk

a | 306% 6.2% 52% 683.8% | 5860% 12.2% 7.2%  290%
b | 35.5% 7.2% 6.4% 479.8% | 205% 13.1% 9.3%  409%
c | 45.5% 42% 51%  108.5% 187%  5.8% 6.1%  57.4%
d | 444% 57% 80.9% 79.5% 204% 87%  70.0% 59.4%
¢ | 179% 4.8% 3.4% 18.9% 36.0% 71% 61% 16.7%

¢y | 09% 25% 1.8% 24.1% 3.6% 58% 31% 21.7%

Table 3. Percentage of errors in the estimated affine coordinate system under 0.05 of noise (left) and 5% of missing data

(right).

car guitar  boot skyhawk | car guitar  boot skyhawk

e | 299% 12.8% 10.8% 424% 852% 21.3% 17.3% 699%
2 1 491% 7.7%  13.6% 126% 65.6% 12.3% 49.7% 75.3%
t, | 63.6% 25.5% 16.2% 69.0% 232%  50.2% 32.3% 698%
t, | 373% 11.8% 51%  302% 241%  26.5% 6.0%  53.3%
S 17.7%  111%  66.7%  274% 87.3% 16.2% 211%  432%
% | 81.3% 4.4% 155% 117% 431% 53% 17.7% 2211%
¢" | 23.5% 36.4% 4.2%  651% 149%  39.4% 14.2% 1650%

c 10.4% 13.8% 43.3% 106% 597% 28.1% 120%  3057%

Table 4. Percentage of errors in invariants estimation under 0.05 std. dev. noise (left) and under 5% missing data

(right).



