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Abstract

This paper presents new approaches to two fundamental
3D vision problems: 3D surface representation, and fast ex-
traction of geometric information from this representation,
particularly 3D alignment. For surface representation by
implicit algebraic surfaces, a non-iterative, robust, repeat-
able and approximately least squares fitting algorithm, 3D
3L, is proposed. The alignment problem is solved by formu-
lating an intrinsic coordinate system determined by tensor
contractions of the surface representation parameters.

Keywords:pose estimation, 3D implicit surfaces, tensor
analysis, implicit surface fitting

1. Introduction

3D pose estimation involves determining the underlying
coordinate transformation between two occurrences of an
object, each in different position. In 3D, the coordinate
transformation is usually a rigid motion composed of a rota-
tion and a translation. Among several approaches proposed
to solve the problem are scatter matrices [6], high degree
moments [5], least-squares formulations based on a set of
point correspondences [7], superquadrics [10], and model-
based approach using a point set and a surface model [2].
These methods either require an accurate point correspon-
dence (as in least squares methods) or are sensitive to occlu-
sion (as in scatter matrix) or are iterative (as in model-based
approach), or have limited representation power (as with su-
perquadrics) and would not be effective when objects are
spherically or cylindrically symmetric plus some bumps as
in figure 4(a).

This paper presents new powerful approaches to two fun-
damental problems in 3D computer vision. First is the rep-
resentation of 3D surface data by models described by mod-
est numbers of parameters which can be fit to data with
simple parallel processing. Second is the fast extraction of
geometric information from these models, e.g., intrinsic co-
ordinate systems which permit accurate 3D alignment with
one shot rather than iterative computation. More specifi-
cally, the results presented are the following. A 3D implicit
polynomial surface is fit to a data set which can represent a
closed surface or an open 3D surface patch. The fitting is
linear, approximately least-squares with the result that the
computation is modest and non-iterative. The proposed fit-
ting algorithm is a 3D version of the 3L fitting algorithm
which was first used for 2D shapes with satisfying results
and is extended here to the 3D case. With the algorithm, the
polynomial coefficients are much more stable and repeat-
able, than are the results with other current fitting methods,
under small changes in the data sets to be fit. Fitting is
done using polynomials with degrees ranging from 1 to 12
so that either very crude or fairly high resolution shape in-
formation can be captured with a single polynomial. Using
this model, to compute the shape alignment an intrinsic co-
ordinate system is formed by computing a center and a set
of three coordinate axes for the implicit surface. This is a
one shot computation, and the resulting coordinate system
can then be aligned by a single computation with an anal-
ogously computed intrinsic coordinate system for another
3D shape. The two aligned 3D representations or data sets
can then be compared very accurately at low computational
cost with our methods. Our intrinsic coordinate system is
determined by tensor contractions [5]. Its desirable prop-
erties are that the covariant parameters that result and are



used are linear combinations of the coefficients of the fitted
polynomial and seem to be more stable and repeatable in
the presence of noise than are parameters used in previous
approaches.

The representations and methodology developed appear
to be ideally suited to the following uses:

1. A single IP (implicit polynomial) can represent 3D
surface data ”well” if the surface shape is of moderate
complexity, and it can provide a meaningful approx-
imation, for many purposes including pose estima-
tion to a complex shape. For example, the 6th degree
polynomial in Figure 4 provides a good representa-
tion for the given human heart data. Furthermore,
essentially all the time required for this fitting is in
the computation of 84 monomials for each data point.
With efficient programs, this should be less – perhaps
considerably less – than a few seconds on a fast com-
puter. Since each point is processed separately, this
can also be done on a signal processing chip. Fig-
ure 1(b)-(c) illustrate a 3D data set of a human head
and a 10th degree IP representation. IP models are
useful for visualization and for measuring shape ge-
ometry parameters of the represented object at a level
of resolution appropriate to the representation.

2. These representations are useful for comparing two
shapes. Since our IP fitting approach is to fit an IP���������	��
��

to the distance transform  ����������
�� of the
data set ��� in the vicinity of ��� , for any new data
point
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�� , the respective polynomial
fittings, the comparison of the shapes can be done
in a number of ways, two of which are the follow-
ing: (i) Compute the approximate sum of squared dis-
tances from the points in ��� to the IP representation����������	��
�� for �� � , or vice versa, i.e.,�
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tances between smooth approximations

�
and �� to ���

and ���� ,�
�-,.�� ����/ "0 $�%1&/'�(32�4')(�5 ������������
���6 ��7����������
���8 *

Note that this particular approximate distance mea-
sure, which we call PIMs (Polynomial Interpolated
Measure), will be highly accurate even though corre-
sponding coefficients of the two IPs may be very dif-
ferent. Both measures (i) and (ii) can be expressed as

Mahalanobis distances in the polynomial coefficients
(see [9] for details for the 2D case)

3. A complex object can be represented at arbitrarily
fine resolution with low degree IPs by representing
the data by overlapping polynomial patches, each
covering only a portion of the object surface. Align-
ment of an entire object can be done in terms of the
intrinsic coordinate systems for its patches.

4. Since the IP representations are coordinate indepen-
dent, the computational cost of tracking a data set
which is moving and deforming is very low. Hence,
IP patches are an ideal representation for represent-
ing, tracking and registering a moving organ in med-
ical data analysis [1].

5. For the preceding reasons, IP patches are ideal for
many applications such as object recognition, posi-
tioning, and metrological inspection for manufactur-
ing automation, and indexing into 3D databases.

2. Implicit Polynomial Model

Many 3D problems are still relatively difficult as they in-
volve processing of huge volumes of data. A generic model
fitted to data sets can dramatically ease the required process-
ing and simplify several 3D problems. In computer vision,
objects in 3D images are mostly described by their surfaces.
Ellipsoids, quadratic surfaces, and super-quadric are used as
surface models. In essence, these surfaces are special forms
of the more generic implicit algebraic surfaces. An implicit
algebraic surface is defined as the zero set of an implicit
polynomial in 3 variables

��9���� * ���;: . More formally, a 3D
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Here fhg ����90��� * ���C:#� is a homogeneous ternary polynomial
(called a form) of degree i in

��9
,
� * , and

�;:
. Notice that in

equation 1 the graded lexicographic ordering on monomials
induced by

� :kj � * j � 9
is applied.

There are two useful representations for implicit polyno-
mial surfaces:



� Vector form: (
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� Tensor form: when a new component
����� �

is added
to every 3D point

��� 9 ��� * ��� : � and the polynomial
is rewritten as a homogeneous polynomial in 4 vari-
ables:� � ����9���� * ���C:!��� � ��� �

�����  �M �! ��� ��� � � � � ��� �	 � ���� ��9 � � * � �;: � � � �
the above sum can be written in an unique way in the
following form:

� � � ��
��� � 9

��
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where
$ ������ %'%'% ��" equals 	 � �(��� divided by

�*)� ) � ) � ) � ) , the
multinomial coefficient in the expansion of the form����9 , � * , �;: , � � � � . This equation defines the covari-
ant tensor + � � �#$ � � �  �,',', � " � 9 �-���  ��  ,',',  ��".� � of order <
representing the polynomial (see Section 4.1). Note,
here the tensor + is an n-dimensional array with / �
entries

$ � � �  &,',', � " .
The vector form, as described in the next section, is very

convenient for implicit polynomial fitting, while the tensor
form provides a useful framework for pose estimation as
shown in section 4.

Given ��� �10���� 932 ��� * 2 ��� :42 �5 67� � � 
8
8
 � �:9 a set of
data points along an object surface, an implicit polynomial
is said to represent this object surface if every point of � � is
close to the zero set ; ���+���<0���� 9 ��� * ��� : �5 ����� 9 ��� * ��� : �=�> 9 of the implicit polynomial. Given such a data set � � ,
an implicit polynomial representation is obtained through a
fitting algorithm.

3. Implicit Polynomial Fitting

The IP fitting problem can be set up as follows. Given a
data set � � �?04@A2B� ����9C2 ��� * 2^���;:D2_��5 6E� � � 
8
 � �F9 , find
the <HGDI degree implicit polynomial

� � ����9���� * ���C:0� that min-
imizes the average squared distance from the data points to
the zero set ; ��� � of the polynomial [12]. When the geo-
metric distance from a point to the zero set of an implicit

(a)

(b) (c)

Figure 1. (a) Level sets for head (b) Head data
set (c) 10th degree fit (ears discarded).

polynomial is minimized, an iterative process is needed be-
cause there is no explicit expression for this distance. This
formulation requires nonlinear optimization. Several geo-
metric distance approximations have been used, such as the
first order approximation [12], which speed up computation
considerably, but iterative nonlinear optimization is still re-
quired.

In the next section we present the 3L algorithm, a linear
fitting algorithm which is of lower computation and has bet-
ter polynomial estimated coefficient repeatability than all
presently existing IP fitting methods.



(a) (b)

Figure 2. (a) Face (b) 12th degree fit.

3.1. 3L Fitting

The polynomial
������90��� * ���C:#� is an explicit function at

all values of
��9���� * ���C: and usually fitting formulations take

into account only � � . We get fast, stable, repeatable im-
plicit polynomial surface fits by fitting the explicit polyno-
mial

����� 9 ��� * ��� : � to a portion of the distance transform, ��� 9 ��� * ��� : � , of ��� .  ��� 9 ��� * ��� : � is the function which, at��� 9 ��� * ��� : � , takes on the value of the signed distance from��� 9 ��� * ��� : � to ��� . 3L fitting, besides the original data set� � , uses a pair of synthetically generated data sets � � � and��� � consisting of points at a distance � to either side of� � . Note, � � � and ��� � are the level sets of  ����9���� * ���;:#�
at levels , � and

6 � , respectively.  ����9���� * ���C:#� can be gen-
erated by a distance transform computation algorithm from��� or as described in the next subsection. For each data
point in ��� , the Euclidean distance transform determines a
point in ��� � and another one in � � � which are at a perpen-
dicular distance � to each side of the original curve � � [4].
Figure 1(a) shows the 3 level sets for a head shape in 3D
(surface defined by 12640 points).

Let ��� � ��� � � � � � � 0)��� 9C2 � * 2 � :42 � ��� ��� 6 �
	 �:9 and 
 � 5 � 9 � * 
 
8
 � :�� 8 �
where

� 2
is Y (in equation 4) evaluated at

@-2 ���� 932 ��� * 2 ��� :42 � . Also define d as a vector whose
6 GDI

component is  ��� 9C2 ��� * 2 ��� :42 � , the distance of the point@ 2
to ��� . As previously explained, the level sets we use

for  ��� 9C2 ��� * 2 ��� :42 � are only -c, 0, and +c. Then estimat-
ing the vector of polynomial coefficients

�
(in equation 2)

is minimization of 
:��2 � 9 �  ����9C2 ��� * 2^���C:42_��6 � �2 � � * �

or��� � 6�� � *
. The least squares solution to this problem is:� � � ����� � � 9 ��� � (6)

The purpose of introducing the two level sets as addi-
tional constraints is because it makes the fitting more stable
and consistent with regard to transformation of data sets,
and more robust to noisy or missing data. The pose esti-
mator discussed in following sections particularly relies on
consistency and robustness of fitting under Euclidean trans-
formations and occlusion.
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Figure 3. Relative error on the fit, in norm, due
to perpendicular noise and resampling of the
surface.

The 3L fitting is robust to the addition at all data set
points of a random Gaussian noise in the direction perpen-
dicular to the shape as shown in figure 3 in the case of the
heart shape of figure 4. Robustness to random resampling is
excellent. If a data set is too complicated to be fit accurately
by a polynomial of the degree being used, then by choosing� appropriately, a meaningful smooth approximation can be
obtained. This is useful for initial pose estimation and may
be useful for initial low resolution object recognition.

The level sets bring in the additional benefit of forcing
singularities away from the vicinity of the data set, as sin-
gularities occur at local extrema or saddle points. We refer
the reader to [3] for additional information.

Figure 2 shows the data set and the 12th degree implicit
surface fit for a face (with 1250 data points). Figure 4 dis-
plays the data set and the 6th degree fit for a heart (with
6480 data points). These figures along with Figure 1 il-
lustrate the power of polynomials in representing complex
shapes which are either open or closed.



(a) (b)

Figure 4. (a) Heart (b) 6th degree fit.

3.2. Level Set Generation

If the surface data is not sparse and is closed, a 3D Eu-
clidean distance transform can be applied to obtain the level
sets. However this is not the case with most 3D data sets.
Moreover, computing the 3D Euclidean distance transform
is computationally intensive. Other level set generation
techniques which work in 2D usually fail in 3D. The princi-
ple dissimilarity between 2D and 3D lies in the fact that in
2D, the edge chain, a set of points forming the contour of an
object, whether it is a closed or not, has a natural ordering:
it can be traversed in clockwise or counterclockwise direc-
tion. Thus, vector difference of adjacent points can be used
for defining an absolute normal direction, i.e., one known
to be pointing towards inside or outside the curve, for all
points on the curve.

In 3D, some data acquisition techniques enable the di-
rect estimation of local topology and surface normals [13].
However in general, data consist of a set of unorganized
data points. The 3D equivalent of an edge chain is a triangu-
lation of the captured data surface. This procedure is costly
and sometimes inaccurate as compared to contour tracing
algorithms generating an edge chain in 2D [8]. Our ap-
proach is to fit a plane to a set of points comprising the data
point and the neighboring points within a given radius from
the data point. In this case, the fitted plane is an approxima-
tion to the plane tangent to the surface in the vicinity of the
data point and the plane normal can be used. However since
the reference frame is not known, the plane normal does not
give an absolute direction. To resolve this ambiguity, for a
star shape an additional reference point known to be inside
or outside the surface can be used. The ray

�
joining the

reference point and the data point along with the tangent
plane normal � gives the absolute orientation. More pre-
cisely, if � ! ����� , vectors � and

�
point towards oppo-

site directions with respect to the tangent plane and towards

the same direction otherwise. In our experiments, we uti-
lized generalized eigenvector fitting for fitting local tangent
planes and used the plane normal � along with the center
of mass as the additional reference point. An alternative
approach, which does not involve any additional reference
point, is to benefit from the surface continuity. With this
approach, for a given seed point the surface normal is com-
puted by fitting a tangent plane and an absolute orientation
is chosen arbitrarily [8]. Then, since adjacent points would
have nearly parallel normals, absolute orientations of neigh-
boring planes can be obtained by propagation from already
determined ones. For our purposes, as long as the tangent
plane orientations are consistent, the initial orientation can
be arbitrary because, in the 3L fitting, a change in the choice
of the initial orientation amounts only to a reversal of the
sign of

����� 9 ��� * ��� : � for ��� � and � � � which leaves the zero
set of the resulting implicit polynomials the same while the
coefficient vectors would differ in sign only.

4. Pose estimation

Given
� � and

���� , two < �	� degree IP surfaces represent-
ing the same free-form object in two different positions,
how can the pose estimation be carried out in a non-iterative
way? To our knowledge, the only answer to the above ques-
tion is the one put forth by Taubin [11] which is effective.
The approach in our paper further evolves some basic ideas
in [11], appears to provide greater accuracy, and is a step
in the process of trying to construct the most accurate pose
estimation based on all the information in the polynomial
coefficients. The proposed solution is based on the con-
struction of two covariants providing an intrinsic reference
system associated with the polynomial. One of these covari-
ants is a vector 
 with

	
components each component being

a polynomial function in the coefficients of forms f � andf � � 9 in
� � . The vector 
 is called the intrinsic center of

the polynomial and used to estimate the object location. The
second covariant is a

	�� 	
symmetric matrix  and each

component of this matrix is a polynomial function of the
coefficients of only the < �	� degree terms f � of the polyno-
mial

� � . The matrix  provides the sufficient information
to compute the intrinsic orientation of the polynomial.

The matrix  � f � � and the vector 
 � f � � f � � 9 � can be
interpreted geometrically as an ellipsoid or a hyperboloid in
3D space. This quadratic form is a Euclidean covariant with
respect to the original polynomial

� � . That is, upon a Eu-
clidean transformation of the polynomial

� � , the quadratic
form is transformed in the same way. This property can be
used to recover the object pose.

By using the tensor representation of a polynomial, for
any even degree polynomial, we are able to formulate an-
other covariant matrix  � f � � whose components are linear
with respect to the coefficients of the leading term f � of

� � .



Because of this linearity, the proposed covariant matrix al-
lows us to obtain what appears to be a more robust orienta-
tion estimation. We describe now how this new covariant is
obtained by focusing on the case when the Euclidean trans-
formation is solely a rotation.

4.1. Rotation

Any homogeneous polynomial, and thus the leading
form f � of

� � described by the vector
�B� � 	 � �(� � ��� � � �.� �

can be expressed in an unique way as a symmetric covariant
tensor. The polynomial f � is:

f � ��� 9 ��� * ��� : ��� �
��� � � � � �

	 � �(� � 9 � � * � � : �
By expanding the previous triangular sum (see (5)), we de-
fine a symmetric tensor � � � ��� ���C�� ,',', ��" � 9 �����  ��  ,',',  ��".� : such
that

f � ����90��� * ���C:����
:�

��� � 9
:�
�  � 9-!�!�!

:�
��" � 9 � � � �  &%'%'% � " � � � � �  !�!�! � � "

For programming purposes this tensor is represented by
an < -dimensional array where each entry has 3 possible in-
dex values. Tensor representation simplifies the treatment
of the pose estimation problem by providing an easy way
to express the transformation of the polynomial coefficients
under a Euclidean transformation of the reference frame.
Upon an orthogonal transformation � � � i � � � (

� i � � � refers
to a matrix whose entry at row i and column j is i � � ) or more
generally a linear transformation of the world

��� 9���� * ���;:#�
coordinate system, the tensor in the new basis is expressed
as � � � �C%'%'% � " � 5 � � 9 5 :�

��� � 9-!�!�!
:�

��" � 9 � � �3%'%'% � " i � ���� !�!! i � "��"
where

�
is the Jacobian of the transformation and

5�� 5 ����G � � � is unity for orthogonal transformation. This expres-
sion provides a direct implementation of the transformation
of the polynomial coefficients through an easy array manip-
ulation. Note, the above equation defines a covariant tensor
as it transforms with the same transformation of the coor-
dinate system as opposed to a contravariant tensor which
transforms with the inverse of the coordinate transforma-
tion.

A basic tensor operation is the contraction of a tensor
with respect to two indices. Given a tensor, a contraction
with respect to the indices 	 9 and 	 * , e.g., is a new tensor
which is of order < 6�


with� � �� %'%'% ��" � :�
��� � 9 � ���#������� %'%'% ��"

A total contraction of a tensor gives a zero order tensor
which is an invariant. For example, for a symmetric 2x2
matrix viewed as a tensor of order



, the tensor contraction

gives the trace of the matrix which is known to be an invari-
ant under Euclidean transformations. Notice that a single
contraction of a tensor of order < gives a tensor of order< 6�


, and components of the contracted tensor are linear
functions of the original tensor. But the main property we
use here is that the contracted tensor still stay an orthogo-
nal covariant independent of how many contractions are ap-
plied. Consequently, for a tensor of even order


�@
,
��@ 6 � �

contraction results in a
	 ��	

symmetric matrix which is
covariant with respect to orthogonal transformations. The
diagonalization of this covariant matrix  and the orthonor-
mal eigenvectors basis allow us to estimate the orientation
of the polynomial by providing an intrinsic orientation for
the polynomial.

As an example, for the leading polynomial of a 2D
quartic defined by f � ����90��� * � � 	 � � ��9 � , 	 :09���9 : � * ,	 * * ��9 * � * * , 	 91:0��9�� * : , 	 � � � * � , the tensor � � is de-
fined by a 4-dimensional array, which can be decomposed
in four matrix-slices

��� � � 9M9 � , ��� � � 9 * � , ��� � � * 9 � , and
��� � � *M* �

(
� � 	 ��� � 


) where:��� � � 9 9 �M9 �-�  � � * ��� 	 � � � � ��� � �� �  � ���
��� � � 9 * � 9 �-�  � � * � ��� � � * 9 � 9 �-�  � � * � � � �C�� �  � ��  # � � ��� ���� � � * *��M9 �-�  � � * � � �  � � � ���� ��� 	 � � �

The contraction of tensor � � is equivalent to constructing a
matrix from the trace of these 3 matrices and the associated
covariant matrix  � f � � is:

 � f � ��� � 	 � � , �  � � � �C� � � ���� �C��� � ��� �  � � , 	 � � �
For the quadratic form in 2D, f * ��� 9 ��� * � � 	 * � ��� 9 � * ,	 9 9 � 9 � * , 	 � * ��� * � * ,  � f * � is directly the matrix:

 � f * ��� � 	 * � � ���*� ���* 	 � * �
Since components of this covariant matrix  � f � � are

linear combinations of the polynomial coefficients, we ex-
pect less sensitivity to small changes in the data than by
using covariant matrices with components nonlinear in the
polynomial coefficients.

Translations leave the leading term f � unaffected.
Therefore, the orientation of the polynomial can be com-
puted directly from f � using  � f � � as described above.
Notice that the matrix  � f � � does not provide a unique
solution but rather / solutions due to the symmetries of an



ellipsoid. At this step of the computation, we are not able
to disambiguate this and determine the correct rotation esti-
mate. This is why, in the next section, we apply the transla-
tion estimation with each of the / rotation estimates.

4.2. Translation

This section is equivalent to Taubin's approach in [11],
but presented with the tensorial notation. This notation al-
lows us to present the approach in a more generic way and
is notationally closer to the implementation. Here the trans-
formation between

� � and
���� is a pure translation

�
.

As seen before, the leading terms polynomial f � is unaf-
fected by a translation. This property is written in tensorial
notation as � �� � � � where � �� is the tensor associated with
the leading form after translation. The homogeneous formf � � 9 of degree < 6 �

is transformed in the following way
by a translation

�
:

� �� � 9 � � � � 9 , < � ��� �
(7)

where � is the one-time contracted product of two tensors.
Equation 7 is a linear system with respect to the trans-

lation. For a quadratic form (degree < � 

), solving this

system is similar to using the center of a quadratic form.
For example, for a conic in 2D, equation 7 is equivalent to
the system:� 	 � 9 �	 �� 9 � � � 	 9 �	 � 9 � , 
 � 	 * � 	 9M9

	 9M9 	 � * � � G 9
G * �

which defines the well known conic center.
For higher degree (even or odd) this system is over con-

strained, and the solution is obtained by using the pseudo-
inverse matrix of the linear system. The use of the pseudo-
inverse provides the optimal solution which minimize the
error on all < 6 �

degree coefficients. For a quartic in 2D
(degree < � / ), equation 7 can be rewritten as the system:���

�
	 �: ���� �:� � �� :	 �� :

�
		
� �

��
�
	 : ��  �:� �� :	 � :

� 	
� , /

��
�
	 � � � ����� ���� �  # ��  # � � �C��� �C�� 	 � �

� 	
� � G 9

G * �
4.3. Algorithm

Having shown how rotation and translation estimations
are done, we now can answer the question posed at the be-
ginning of section 4 by stating the Euclidean pose estima-
tion algorithm as a whole for our polynomials

� � and
���� :

� computation of the 4 possible rotations � � based on
the covariant  � f � � given in section 4.1 from the
leading term of the polynomial

� � and one possi-
ble rotation � � based on the similar covariant matrix
 � f �� � of the polynomial

� �� ,

� for each 	 apply the rotation � � � �� on the polynomial
and compute the translation

� � based on the equa-
tion 7 (the role of

� � and
� �� can be swapped for more

symmetric computations),

� for each 	 apply the Euclidean transformation � � �� � � � �� � � � � on the original polynomial and compute
the distance between the result and

� �� . The optimal
Euclidean transformation � is given by the transfor-
mation minimizing the distance between the coeffi-
cient vectors

���� and
� � transformed by � . (Alter-

natively, the transformed function can be compared
with the data set ��� for greater accuracy)

The last step allows us to obtain a unique solution by us-
ing the information in the lower degree terms. An extension
is to iterate and refine the process by taking into account
the information in lower degree terms in order to better es-
timate � � and � � . The transformation rule for the whole
polynomial is given by expressing the polynomial

� � as a
symmetric tensor in homogeneous coordinates as described
in section 2.

5. Experiments

To test the robustness of the proposed pose estimation
technique, we ran 3 different experiments

� perpendicular noise: Gaussian noise in the surface
normal direction locally at each point of the data set
(figure 5(a) and (b)),

� resampling: Gaussian centered noise in the tangential
plane, at each data point, and half of the points are
randomly discarded (figure 5(d)),

� occlusion: a percentage of the data set out of a plane
is chopped off (figure 7).

5.1. Noise and random resampling

In Figure 4(a) and Figure 7 the heart data set
is displayed (6480 points in a box with dimensions
(
	 
 > � 6 � 	 
 > � 6 � /A
 
 � 6 ). In Figure 5(a) and (b) noisy data

sets in the normal direction (standard deviation = 0.06cm
and 0.12cm respectively). In (c), noisy data set in the tan-
gential direction, i.e., each data point is perturbed in a plane
tangential to the surface at the point and (d) shows a subset
of 50  of these points. This is resampling of the 3D surface
represented by the original data set, to be used for alignment
algorithm accuracy assessment.

From Figure 6, the location error is a linear function of
the noise standard deviation between

> 
 > and
> 
 � 
 � 6 . As

shown in figure 5, a noise with a standard deviation of
> 
 � 




a b

c d

Figure 5. Heart under noise (standard devi-
ation

> 
 >�� cm and
> 
 � 
 cm) and perturbations

(random resampling).

produces major perturbation of the shape, and it is difficult
to do the registration visually; nevertheless the angular error
obtained by the algorithm is

> 
 ��� i 	  , and the translation
error is

> 
 >�� � 6 . For higher value of the standard deviation,
the algorithm is not still able to discriminate between a set
of approximative symmetric solutions, and several solutions
are obtained.

In these preliminary experiments, our new algorithm
provides estimates at least as accurate as those in [11].
Sometimes the difference is large. A more definitive com-
parison requires further testing.

Finally, Figure 6 shows that our technique is quite insen-
sitive to the variation of the standard deviation of the noise
resampling, allowing us to estimate the pose between two
data sets without any point-to-point matching between the
two data sets. The bias is due to the fact that in these exper-
iments the shape is resampled not along the real surface but
only along the tangent plane.

5.2. Occlusion

In Figure 7, a patch consisting of �  of the points in the
heart shape is discarded. Nevertheless, the error on the ori-
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Figure 6. Error in the orientation and transla-
tion due to perpendicular noise, random re-
sampling, and occlusion.



(a) (b)

Figure 7. (a) Original data set (b) �  discarded
with a vertical plane. The light part is the dis-
carded region and the data points seen there
belong to the far side.

entation is
> 
 > ��i 	  and the error on the pose is

> 
 � � � 6 .
This result illustrates the robustness of our technique to
small amounts of occlusion of the data set. In this case, if
the orientation estimation is based on the classic method of
using the axes of the 3D scatter matrix for the data, the error
of orientation is one order of magnitude higher:

> 
 
 � i 	  .
Figure 6 shows errors in the angle and translation norm

estimates for occlusion between
>  and

� 
  where the es-
timation is stable. Under occlusion, it turns out that the
translation is affected by a systematic bias due to fitting.
But the angle is still accurate and robust.

6. Conclusions

The proposed technique does not use all the information
about the pose contained in the polynomial coefficients (for
example, we use only a part of the leading form to compute
the orientation). We are working on pose estimation based
on all the information in the polynomial coefficients.

Tensor formalism can be also used to obtain invariants
for use in recognition.

Real data are localized in a finite space but a polynomial
is defined on the whole space. We are exploiting  being a
linear function of the coefficients to extend our PIMs mea-
sure [9] to covariant tensors and pose estimation around the
data set only. This should result in even greater pose esti-
mation accuracy.
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