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Abstract

New representations are introduced for handling 2D algebraic curves (implicit poly-
nomial curves) of arbitrary degree in the scope of computer vision applications. These
representations permit fast accurate pose-independent shape recognition under Euclidean
transformations with a complete set of invariants, and fast accurate pose-estimation based
on all the polynomial coefficients. The latter is accomplished by a new centering of a poly-
nomial based on its coefficients, followed by rotation estimation by decomposing polyno-
mial coefficient space into a union of orthogonal subspaces for which rotations within
two dimensional subspaces or identity transformations within one dimensional subspaces
result from rotations in z,y measured-data space. Angles of these rotations in the two
dimensional coefficient subspaces are proportional to each other and are integer multiples
of the rotation angle in the z,y data space. By recasting this approach in terms of a com-
plex variable, i.e, z + iy = z and complex polynomial-coefficients, further conceptual and
computational simplification results. Application to shape-based indexing into databases

is presented to illustrate the usefulness and the robustness of the complex representation



of algebraic curves.
Keywords: Complex polynomials, pose estimation, pose-independent curve recog-
nition, Euclidean invariants, complete-sets of rotation invariants, curve centers, implicit

polynomial curves, algebraic curves, shape representation, shape recognition.

1 Introduction

For shape recognition involving large databases, position-invariant 2D shape-recognition and
pose-estimation have to be performed by fast algorithms providing robust accurate estimates
subject to noise, missing data (perhaps due to partial occlusion) and local deformations. There
is a sizeable literature on alignment and invariants based on moments [1], B-splines [2], su-
perquadrics [3], conics [4], combinations of straight lines and conics, bitangeants [5], differential
invariants [6, 7, 8, 9], and Fourier descriptors. Two observations are: these two problems (pose
estimation and pose-independent recognition) are often studied independently; though the pre-
ceding approaches have their own significant strengths and handle certain situations very well,
the two problems —pose-independent recognition and pose-estimation— are unsolved if there is
large noise and large shape deformation present, there is missing data, and maximum estima-
tion speed and estimation accuracy are important. This paper presents an approach based on
algebraic (also referred to as implicit polynomial) curve models which meets these requirements
for pose estimation and for pose-invariant object recognition.

2D algebraic curves of degrees 4 or 6 are able to capture the global shape of curve data of
interest (see Fig. 1). However, our primary interest in algebraic curves in this paper is that

they have unparalleled features crucial to fundamental computer vision applications. First, we



derive a complete set of invariants for fast pose-invariant shape recognition. By a complete set
of independent invariants, we mean that it is possible to reconstruct, without ambiguity, the
algebraic curve shape from the set of invariants only. Since this set specifies the shape in a
unique way, these invariants can be used as “optimal” shape descriptors. (Of conceptual interest
is that this set of invariants, defined in the paper, is not necessarily complete algebraically).
Second, algorithms are given in the paper which permit single-computation pose estimation,
and slightly slower but more accurate iterative pose estimation based on all the polynomial

coefficients. These features are due to the following contributions.

1. A complex basis is introduced for the space of coefficient vectors leading to the complex
representation of algebraic curves of degree n, where n is arbitrary. The components of
the basis vectors are complex numbers, even though the resulting polynomial is still real.
This provides a representation from which we derive a complete set of rotation-invariants.

We fully describe how real and complex vector representations are related.

The complex basis arises not from consideration of the geometry of the algebraic curve
but rather from consideration of the geometry of the transformation of its coefficients and
is built on the fact that when the (x,y) data set is rotated, the resulting coefficient vector

undergoes an orthogonal transformation [1].

2. A new accurate estimate of an “intrinsic center” for an algebraic curve, which is based
on all of the polynomial coefficients. The algebraic curve can then be centered by moving
its intrinsic center to the origin of the data coordinate system. This centering is invariant
to any prior translations a shape may have undergone. Computing the center requires a

single computation followed by a few iterations.



3. Pose-invariant shape recognition is realized by centering an algebraic curve, as in 2., and
then basing shape recognition on the complete set of rotation-invariant shape descriptors

indicated above in 1.

4. Fast pose-estimation. Estimating the Euclidean transformation, that has taken one shape
data-set into another using all the polynomial coefficients is realized by: initial translation
estimation as the difference in the estimated intrinsic centers, based on 2., of the two
curves; this is followed by rotation estimation, based on 1.; and is completed by one or
two iterations of translation estimation followed by rotation estimation, where coefficients

for the two polynomials are compared using the representation in 1.

What is most important in the preceding methodology is that estimators used are linear
or slightly nonlinear functions, which are iterated a few times, of the original polynomial co-
efficients, thus being stable. Highly nonlinear functions of polynomial coefficients, which have
been used previously, usually are not as robust and repeatable.

Note, the invariant representations we use with algebraic curves are global. At this stage of
the research, we do not know if these representations are well suited to highly-accurate finely-
discriminating shape recognition and therefore look upon the recognition, when dealing with
very very large image databases, to be used for the purpose of indexing into these databases.
The idea is to reduce the number of images that must be considered in the database by a large
factor using our invariant recognition, and then do more careful comparison on the shapes that
remain. This more careful comparison would involve pose estimation for alignment followed
by careful comparison of aligned shape data. This careful comparison of aligned shapes could

then be done through our PIMs measure [10] or through other measures.



How do Fourier descriptors compare with the algebraic curve model? Fourier descriptors,
like algebraic curves, provide a global description for shapes from which pose and recognition
can be processed. But the Fourier approach has difficulty in general with open patches or is
restricted to star shapes, depending on the parameterization used. In particular, when dealing
with missing data, small extra components, and random perturbations, heuristic preprocessing
must be applied to the curve data in order to close and clean it, and then arc-length normal-
ization problems arise in the comparison between shapes. This is also the case with curvature
descriptors [11]. In matching open curves having inaccurately known end points, both of these
approaches require extensive computation for aligning starting and stopping points.

For algebraic 2D curves and 3D surfaces, the most basic approach to comparison of two
shapes is iterative estimation of the transformation of one algebraic model to the other followed
by recognition based on comparison of their coefficients or based on comparing the data set
for one with the algebraic model for the other [12, 1, 10]. But the problem of initialize this
iterative process still remains. A major jump was the introduction of intrinsic coordinate
systems for pose estimation and Euclidean algebraic invariants for algebraic 2D curves and 3D
surfaces [1, 6]. These are effective and useful, but as published do not use all the information
in the coefficients.

The present paper is an expansion of the complex representation first presented in [13]. A
later paper [14] presented a partial complex representation for algebraic curves for obtaining
some recognition invariants related to our complete set of invariants, and for pose estimation
based on only a few polynomial coefficients. It also uses a different center for an algebraic
curve. Moreover, the authors are not concerned with concepts developed in this paper such as

complex bases and invariant subspaces, complete sets of invariants, and pose estimation using



and combining information available in all the polynomial coefficients.

In Sec. 2, we introduce the decomposition of the coefficient space with two examples: conics
and cubics under rotation. This leads to the complex representation of algebraic curves. Then, in
Sec. 3, the proposed pose estimation technique is described with validation experiments. Sec. 4
is dedicated to recognition with invariants. The proposed recognition algorithm is applied in
the context of indexing into a database of silhouettes, where algebraic representations allow us

to easily handle missing parts along the contour.

2 Algebraic Curve Model

2.1 Definition

An algebraic curve is defined as the zero set of a polynomial in 2 variables. More formally, a

2D implicit polynomial (IP) curve is specified by the following polynomial of degree n:

fa(@,y) = Eocjpjthan 0ipt’y* = @g+910$ + a01?i+920332 +anry + a02yi+
Ho H Hs (1)
ggox?’ + anz’y + appry’ + aogy?:+ N B 12"y 4+ 4 agy” =0

~~
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Here H,(x,y) is a homogeneous binary polynomial (or form) of degree r in x and y. Usually,
we denote by H,(z,y) the leading form. An algebraic curve of degree 2 is a conic, degree 3 a
cubic, degree 4 a quartic, and so on.

Polynomial f,, is conveniently represented by coefficient vector A, having components (a,y),

0<j,k, j+k<mn (number of coefficients is 1(n + 1)(n + 2)), as:

falz,y) =YTA



where
A = T

= [aoo aip Qo1 G2 G111 G2 --- Qpo - -- GOn]
Y = (1 z y 22 zy o* ... 2" ... y"]

Superscript T" denotes matrix transpose.

2.2 A Useful Basis for Conics and Cubics under Rotation

We first consider the representation of conics and cubics under rotation in order to exhibit

properties we want to exploit. A cubic curve is defined by 10 coefficients:

[3(z,y) = ago + (@107 + ao1y) + (a202® + a112y + ap2y?)
(2)

+(azpx® + ag1 2%y + a1zy? + agzy®) =0

When a cubic is rotated through angle 6, the 10 coefficients (a;;), 0 < ¢,7,¢ + j < 3, are trans-

formed as a messy function of §. The rotation matrix R(f) for the data is:

z' cos@ —sinf| |z

= (3)

Y sinf  cosf Y

which specifies the counter-clockwise rotation of the curve by 6 radians, equivalently the clock-
wise rotation of the coordinate system by # radians. The original cubic coefficients are vector A
and the transformed one is A’. We denote with a prime the representation after transformation.
By substituting (3) in (2), and after expansion, we obtain the linear relation between the two

vectors A" = LA, where the 10 x 10 matrix L is a function of the rotation angle only. This



matrix can be put into a block diagonal form as shown

Ly

L,

0 Ly |

where the block L; transforms the coefficients of the homogeneous polynomial of degree j, i.e

the j* form. Therefore, the size of the block L; is (j + 1) x (j + 1). We have L; = R(6),

[ 3 —c%s cs? s
c? —cs 52
3c?s A —2cs? —2c¢%s+ s 3cs?
Ly=|2cs 2—s> —2cs| , Ly3=
3cs? 2c?s—s 2 —2cs® —3c%s
52 cs c?
| s? cs? s )

The elements of these blocks are non-linear functions of ¢ = cosf and s = sinf. For a second
degree form, to put things into a form exhibiting invariance and simple dependence on angle 6,
we define a new parameterization, awg, Ba0, Y11, of the coefficients asgg, a11, age of the polynomial,

by applying the following matrix transformation, Ns:

(6N 1 0 -1 920
Bao| =10 1 0 a1
Y11 10 1 Qo2
| —
N2



These new parameters agg, P20 and 11 are linear functions of the original polynomial coeffi-

cients. With this new representation, the matrix L, is mapped into a matrix where 26 appears:

2—s?> -2 0
R(260) 0
N2L2N2_1 = 2cs -5 0| =
0 1
0 0 1

That is, [aby By Vie]" = NoLaNy ' [asg Ba0711]". The reason for this o, 8 notation is that
i, and B, are the real and imaginary parts, respectively, of the complex coefficient ;2%
introduced in the next section. When k = j, the complex coefficient c;; is always real, and

we have v;; = ¢;;2%71. For Ls, it turns out that a similar simplification is possible with the

transformation Nj:

-0[30- (1 0 -1 0 —ag()_

ﬁSO 0 1 0 -1 a1

91 3 0 1 0 a12
[ Bar] [0 1 0 3 ] [aes]

and L3 is mapped into:
R(36) 0
N?,L?,N?,_1 =
0 R(6)



In summary, when a cubic is rotated, there exists a natural basis determined by the square

matrices (IV;), 1 < j < 3 where, L is mapped into diagonal 2 x 2 and 1 x 1 sub block form:

BI

Il

sy
—

N
~

The coefficient vector of the cubic in the new basis is B, and B’ after rotation R(6). It is
clear that in this new basis, the coefficient space is decomposed into a union of orthogonal
one or two dimensional subspaces invariant under rotations. More specifically, the vector B =
[Y00 @10 B10 Q20 Bao Y11 30 B30 a1 B21]” is decomposed into 2D vectors [ajx Bjx]” which rotate
with angles 6, 20, or 36. This leads directly to a simple and stable way to compute the relative
orientation between cubics, namely, estimate ¢ by comparing the angle ¢;; of the pairs of
T

coefficients [aji, Bjx]" in B with their transformations in B’. Moreover, it is easy to compute a

complete set of independent invariants under rotation for a conic:

e 2 linear invariants (i.e., linear functions of the IP coefficients): coefficients 99 = ago and

Y11 = Qg0 + Gg2,

e 2 quadratic invariants (i.e., second degree functions of the coefficients): squared radiuses
oy + B3 = a2y +a?y, and oy + B2, = (az — ag2)? + a2, of the 2D vectors [ayg B10]T and
I

[0 Bao]”, respectively.

e and 1 relative angle: the angle between ¢o and 2o, i.e, arctan(Ba/cgg) —

10



2arctan(Bio/a10), which is arctan(aq1/(as0 — ag2)) — 2arctan(ag /ao)-

Note, to understand the angular invariant, under coordinate system rotation of § we see from (4)
that ¢op transforms to 20 + ¢y and 2¢; transforms to 260 + 2¢1,. Hence, the angular difference

is invariant to rotations. For a cubic, we complete the set of independent invariants with:

e 2 quadratic invariants: squared radiuses a3, + 82, = (aszo — a12)? + (a21 — ag3)?, and

a§1 + 5§1 = (3@30 + a12)2 + (a21 + 3@03)2,
e and 2 relative angles: the angle between ¢3y and 3¢9;, and between ¢19 and ¢o;.

In order to generalize this approach to IPs of arbitrary degree, we turn to complex numbers

and thus the complex representation of IPs.

2.3 Complex Representation of Algebraic Curves

Since we are dealing with rotations and translations of 2D curves, complex representation
provides a simplification in the analysis and implementation of pose estimation or pose-invariant
object recognition. Given the polynomial fu(z,y) = o<k jtk<n @52’ y*, the main idea is to

rewrite f,(z,y) as a real polynomial of complex variables z = x + iy and zZ = z — iy:

hay=fE= ¥ ZaG+-2"

0<3:k, j+k<n

Using binomial expansions for (z + z)7 and (z — 2)*, we rewrite f,(z) with new complex coeffi-
cients cj:
falz) = D> cpddt (5)

0<3,k, j+k<n

11



Notice that coefficients (cjz) are complex linear combinations of the (a;;), and that ¢ = c;
since the polynomial is real. We call the vector C = (c;i) the complex vector representation of

an algebraic curve which is defined by a real polynomial in z and z:

fi2)=Z2"C=Y"A=0

2 2 .3 .2

22 72 28 227 252 78 4.

where 7 =[1 2z z z3 2%...z"]T is the vector of complex monomials. With
this notation, j+k specifies the degree of the multinomial in z and Z associated with c;;. Notice
that the sub-set of polynomials in z only is the well-known set of harmonic polynomials.

For example, the complex representation of a conic is fao(2) = cog + €10Z + €192 + €202 +
c1122 + €22, since ¢y and ¢y are real numbers. From the previous section, it is easy to
show that vp0 = coo, @10 = 2Re(c10), Bio = 2Im(c), o9 = 4Re(co), Boo = 4Im(cy), and
Y11 = 2¢11, where Re(.) and I'm(.) are the real and imaginary parts of the expression within
parenthesis. The complex representation of a cubic is f3(z) = cg + 2Re(c10Z) + Re(czz?) +
c11|z|? + Re(cz02®) + Re(c312]z|?), and so on.

The principal benefit of the vector complex representation is the very simple way in which

complex coefficients transform under a rotation of the polynomial curve. Indeed, we see that if

the IP shape is rotated through angle 6 (see (3)), z transforms as 2’ = €%z, so that z = e %2/,

and by substituting in (5):

fz)= 3 €0 = f()

0<j,k,j+k<n

12



Hence, the coefficients of the transformed polynomial are

ik = Cik (6)

Moreover, as presented in the appendix, there is a recursive and thus fast way to compute the
matrix providing the transformation of a given polynomial coefficient vector A to the new basis

C for any degree (it is the N; matrices introduced in the previous section).

3 Pose Estimation

As described in the previous section, the relation between the coefficients C' of a polynomial
and C’ of the polynomial rotated is particularly simple when using the complex representation,
allowing us to compute the difference of orientation between two given polynomial curves, C'
and C' (see (6)). It turns out that the complex representation also has nice properties under
translation, allowing pose estimation under Euclidean transformation in a very fast way and
using all the polynomial coefficients. At present, we view the most computationally-attractive
approach to pose estimation to consist of two steps. 1) Compute an intrinsic center for each
algebraic curve based on the coefficients of its IP representation. This generalizes [1] to
optimally use all the information in the coefficients. It is an iterative process with only a few
iterations. 2) Center each algebraic curve at the origin of the coordinate system (i.e., move the
intrinsic center to the origin of the coordinate system), and then compute the rotation of one
algebraic curve with respect to the other based on the coefficients of their IP representations.
This optimally uses all the information about the rotation in the coefficients. It is not an

iterative process. Note, the translation of one curve with respect to another is then given in

13



terms of the difference in their intrinsic centers. Hence, we are treating location and rotation
estimation separately in different ways. When processing speed is less important, maximum
accuracy under Euclidean transformations is achieved by following the preceding by a few

iterations as discussed in Sec. 3.4.

Figure 1: 3L fits of 4'" degree polynomials to a butterfly, a guitar body, a mig 29 and a sky-hawk
airplane. These are followed by two 6 degree polynomials fits.

3.1 Implicit Polynomial Fitting

Since object pose estimation and recognition are realized in terms of coefficients of shape-
modeling algebraic curves, the process begins by fitting an 2D implicit polynomial to a data
set representing the 2D shape of interest. For this purpose, we use the gradient-one fitting [15],
which is a least squares linear fitting of a 2D explicit polynomial to the data set where the
gradient of the polynomial at any data point is soft-constrained to be perpendicular to the

data curve and to have magnitude equal to 1. This fitting is of lower computational cost and
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Figure 2: In (a), the original data set is perturbed with a colored Gaussian noise along the
normal with a standard deviation of 0.1 for a shape size of 3 (equivalently, the data is contained
in a box having side length 375 pixels and the noise has 12.5 pixels standard deviation). In (b),
10% of the curve is removed. In (c), 5 4th degree fits are superimposed with associated noisy
data sets each having standard deviation of 0.1. In (d), 5 fits are superimposed when 10% of
the curve is removed at random starting points.

has better polynomial estimated-coefficient repeatability than all previously existing IP fitting
methods [15]. This algorithm is an improved version of the 3L fitting [16], taking advantage of
the ridge regression approach. The algebraic curve is the zero set of this explicit polynomial.
A side benefit of use of the gradient-one soft-constraint is that the fitted polynomial is then
normalized in the sense that the polynomial multiplicative constant is uniquely determined.
Fig. 1 shows measured curve data and the fit obtained. This fitting is numerically invariant
with respect to Euclidean transformations of the data set, and stable with respect to noise and
a moderate percentage of missing data as shown in Fig. 2. 4" degree fits allows us to robustly
capture the global shape, and higher degree polynomials provide more accurate fits as shown

in Fig. 1 with 6" degree polynomials.

3.2 Translation

It is well known that a non degenerate conic has a center. Given two conics, the two centers are

very useful for estimating the relative pose since each conic can be centered before computing
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the relative orientation. The goal of this section is to compute a stable center in the complex
representation with similar properties for polynomials having any degrees.
From (5), if z is transformed as 2’ = €?(z +1) (i.e translated by ¢ and rotated with an angle

0), we have: z=e %2 —t, and

fn(z) = Hn(e_wzl o t) + anl(e_wzl o t) +.o..= f{z(zl)

After expansion, we obtain H/ (z'), the transformed leading form:

H ()= > cjkei(j’k)azj’jz'k
n
0<j,k<n, j+k=n
Consequently, complex coefficients (cj;) of the transformed leading form Hj, are unaffected by

translation in the Fuclidean transformation. Continuing expansion, we obtain the transformed

next-highest degree form Hj, ,(2') having the coefficients (cj;), 0 <j, k<n, j+k=n—1:

! N _ i(n—1-2k)0 n—1-k 1k
H, (&)= > Cr1_k 1€ 02 z
0<k<n—1

] — -n—k k-1
—t Z Cn_kkkez(n—H 2k)021n P
1<k<n

in i(n—1— —n—1-k 1k
—7 Z Cnfkk(n . k)ez(n 1 2k)9Z/” P
0<k<n-—1

These coefficients are linear functions of the translation component ¢:

e =€ g — (K + Depmioppiat — (0 — k)en—gil) (7)

The first interesting property of (7) is that the term depending on the angle is a multiplica-

tive factor in this set of equations. This means that, given any polynomial, the translation
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tiinearcenter = t Which minimizes the linear least squares problem:

> enciokk — (k+ 1)cno1—prsrt — (0 — k) cpopit]? (8)
0<k<n—1

does not depend on the rotation applied to the polynomial. Therefore, the algebraic curve can
be translated by tjinearcenter tO center it at the origin of the coordinate system. This centering is
invariant to any Euclidean transformation the algebraic curve may have originally undergone.
This center is not different than the Euclidean center of a polynomial derived with the real
representation of IPs in [1].

Even if tearcenter 18 computed by solving a linear system as above, it is not using all the
information available about the curve location, in particular, coefficients c;x, j < n —1, are not
involved. To use these, we proceed as follows. Compute tjneqrcenter- 1ranslate the polynomial,
having coefficient vector C, by tinearcenter- Lhe resulting polynomial coefficient vector C will
be independent of any previous translations the original data set may have undergone (in
practice approximately independent due to measurement noise and other deviations from the
ideal). Now recenter the C polynomial to obtain (C~')* by computing and using translation
teenter = T for which || (C) ||? is minimum. Note, C is an nth degree polynomial in £, so we
compute  iteratively by using a first order Taylor series approximation and thus only the linear
{ monomials in (C‘) All the ¢jj are used in this computation, which is why Zcepner has smaller
variance than does tjincarcenter- Generally, the optimum || # || is small and only 2 or 3 iterations
are needed to converge to the # minimizing || C ||2. This defines the center ¢ ., which we use.

Note, this t.enter, determined solely by curve coefficients C', is of sub-optimal accuracy because

we do not weight the components of C' in an optimal way to achieve maximum likelihood or

17



minimum mean square error estimates.
The teenter of a high degree polynomial has the same property as the conic center, namely,
it is covariant with the Euclidean transformation applied to the data. Consequently, it can

be used in the same way for comparing polynomial coefficients: each polynomial C' and C’ is

!

centered by computing tcenter and ..,,;0r

before computing the relative orientation using all the
transformed coefficients.

For illustration, consider the simple case of a conic. For a conic f(z) = coo + 2Re(c10z) +
2Re(cp02?) + c11]2|?, the set of equations (7) is reduced to ¢}, = €¥(cip — 11t — 2¢90t) and
its conjugate. The well known center of a conic is defined as the point for which the linear
terms vanish, i.e, its position satisfies ¢ig — ¢11tunearcenter — 2C20ttinearcenter = 0. ThiS tinearcenter
is different from the more stable t.ene, introduced before which is the one minimizing 2 |
€10 — Cliteenter — 2C20tcenter | + | Coo — 2Re(C1otcenter) + Ciiteentert — 2Re(Co0l20nse,) 2. Notice
that this criterion involve all the IP coefficients of the conic.

The second advantage of the complex representation is that we can derive not only one center
but several, a different one for each summand in (8), with the same covariance to Euclidean
Transformations. The property used here is that ¢],_,_, , depends only on ¢,—1_kk, Cp—k , and
Cn—k—1k+1, 1.6, the complex representation decouples the rotation and the translation which
is not the case with the coefficients aj;. For every equation in (7), we are able to define a
new Euclidean center for the IP as ¢, for which the right side is 0, as done in the conic case.

Consequently, an IP of degree n has [}] extra centers ¢; ([u] denotes the greatest integer not

exceeding u), defined by:

en1-kk — (K+1)cn 1 prrats — (n—k)cng it =0 9)

18



A nice property of these centers for two curves is that they match one to another without
a matching search problem since we know the degree k associated with the center ;. Hence,
given two polynomials C' and C' of degree n, after the computation of the [%] centers for each
polynomial, approximative but simple pose estimation is determined by [5] matched points.
Pose estimation of 4" degree algebraic curves can be solved by doing the pose estimation
between two centers, pose estimation of 6 degree polynomials by doing the pose estimation
between two triangles, and so on. Of course, these centers do not use all the pose information
contained in the polynomial coefficients, so this pose estimation can be used either for fast

computation or for a first approximation to maximum accuracy Euclidean pose estimation.

3.3 Rotation

Experimentally, it turns out that the center is very stable in the presence of noise and small
perturbations (see Fig. 3). The computation of the rotation is in practice less accurate. There-
fore, it is important to take advantage of all the information available in the polynomial to
obtain the most accurate orientation estimation possible. Assume that the two polynomials
are each centered by using Euclidean center ¢, defined in the previous section.

For a cubic, wunder rotation R(f), C transforms to the vector C' =
[coo, €c10, €20 cog, 11, €3%C39, €y ]T.  In this equation, as seen in Sec. 2.2, complex coef-
ficients c¢19 and co; are rotated by angle 0, cy9 by angle 26, and c3y by angle 36. We use all of
this information to estimate 6.

In the general case, from (6), C' as a function of C' under a rotation  is given by ) =

c;ke’V k% where 0 < j, k, j+k < n. Given C and C’, we simply used least squares to estimate

19



min 3 [ — cpeTHP (10)
0<jb, J+k<n

which leads to maximization of 3° [cjk||c}y|cos((j — k)0 + arg(cjx) — arg(c)y) — 2mljx). Ljx is an
unknown integer when 7 — k # 1, and 2]—7?% is the unknown phase. Integer [;; is between 0 and
j—k—1. It is inserted to make the argument of the cosine close to 0, thus permitting the cosine
to be well approximated by its second order Taylor expansion. Then an explicit approximated

solution is derived:

1 arg(cy,) — arg(cjk) + 2mljy
0= ; J 11
ijk Z ka ] —k ( )

2
1 30

where weights w; are (j—k)?|c;x||c}| (These weights can be easily used to test if an IP has «
5, or any other kind of symmetries. Consequently, we are not limited to non-symmetric shapes
in computing the pose estimate). The obtained solution is a good approximate solution, and a
few iterations may be used to obtain the closest sub-optimal solution. An optimal estimate can
be obtained using a Bayesian formulation and iterative globally optimizing techniques. In this
case, the summands in (10) would be weighted by an appropriate inverse covariance matrix.

Since the computational cost is very small, the best estimated angle can be obtained by

computing the estimate for all possible integers /;; and choosing the one which minimizes the

(c;k)—arg(cjk)—l—Qﬂljk
j—k

wj, weighted standard deviation of R — 6. An even faster alternative is to get

a good first estimate of 6 by combining arg(c},) — arg(c;x) when j — k = 1 or by using the

centers defined with (9).

3.4 Estimation of Euclidean transformations

To estimate the Euclidean transformation between two shapes:

20



‘ H noise 0.1 ‘ noise 0.2 H 10% missing data ‘ 20% missing data ‘

0 5.7% 72.1% 2.9% 37.8%
translation || 5.9% 13.4% 3.0% 6.0%

Table 1: Standard deviation in percentage of the average of the angle and the norm of one
translation component, with various perturbations for object in Fig. 2. Added colored Gaussian
data noise has standard deviations 0.1 and 0.2 (12.5 and 25 pixels respectively). Occlusions are
10% and 20% of the curve at random starting points. Statistics are for 200 different random
perturbations of each kind on the original shape data. As in Fig. 3, true rotation is 1 radian,
true translation is 1. (Data lies in box having side-length 375 pixels).

First each polynomial is centered by computing its center t.cpse using information in all

the coefficients of f, as discussed in Sec. 3.2.

Then the rotation alignment is performed by using information in all the coefficients of

fn using (11) and the discussion in Sec. 3.3.

A first estimate of the translation and rotation are the displacement from one center to

the other, and the rotation alignment.

To remove remaining small translation and rotation estimation errors, the translation and
the orientation alignment are iterated one or two times by minimizing the sum of squared
errors between the two sides of (7) and for all the other c;i, most of which involve higher
degree monomials in ¢ and ¢. This estimation of translation and rotation jointly results

in maximum accuracy.

The proposed pose estimation is numerically stable to noise and a moderate percentage of

missing data as illustrated in Fig. 3. The pose estimation error due to missing data increases

nicely in the range from 0 to 15% (19 pixels). Similar results are obtained in the range [0, 0.12]

for the standard deviation of the noise. The added noise is a colored noise [15], i.e, a Gaussian

noise in the direction normal to the shape curve at every point and then averaged along 10
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consecutive points. We want to emphasis the fact that even if a noise standard deviation of 0.1
(equivalently, 12.5 pixels), is only 3% of the size of shape of the butterfly, this value of the noise
represent a very large perturbation of the shape as shown on Fig. 2(a). For greater amounts
of noise or missing data, we have the well know threshold effect [17] in estimation problems as
shown in Table 1. It arises in our problem because of the nonlinear computations in the angle

estimation.

% error % error
! angle 4500 ‘7angle
70.00 — _ trandation : translation

40.00 — _

60.00 — -
35.00 - -

50.00 - -
30.00 - -
40.00 - - 25.00 - ,
30.00 — - 20.00 — —
20.00 - - 15.00 - —
10,00 — _ 10.00 - -
5.00 - -

0.00 - -
0.00 - -

-10.00- 1 ! ! foise std. dev. x 103 ! ! ! ! % removed

0.00 200.00 400.00 0.00 10.00 20.00 30.00

Figure 3: Left, variation of the standard deviation of the angle and the x component of the
translation as a function of increasing colored noise standard deviation. Right, variation as a
function of increasing percentage of missing data. Plotted values are std. deviation of the error
as a percentage of the average values of the pose components. Measurements based on 200
realizations. True rotation is 1 radian, translation is 1.

4 Recognition Using Invariants

In this section we solve the pose-independent shape recognition problem based on invariants

arising from the complex representation.
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4.1 Stable Euclidean Invariants

% error % error
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Figure 4: Left, variation of the standard deviations of invariants |c|, 11, |2¢30 — 331/, and
|2¢21 — ¢31| as a function of increasing colored Gaussian noise std. deviation (¢, denotes
arg(cjr))- Right, variation of the standard deviation of the same invariants as a function of an
increasing percentage of missing data at random starting points. Values are std. dev. of the
error as a percentage of the average value of the invariant. 200 realizations of the shape data
were used.

When the IP is centered with the computation of the Euclidean center as described previ-
ously in Sec. 3.2, we have canceled the dependence of the polynomial on translation, and the

only remaining unknown transformation is the rotation.

‘ H noise 0.1 ‘ noise 0.2 H 10% missing data, ‘ 20% missing data ‘

lcao] 151% | 28.5% 2.0% 6.7%

i 14.0% | 26.8% 8.2% 16.7%
2¢30 — 3¢a1| || 10.6% | 32.1% 5.7% 12.9%
26901 — ¢51] || 43.5% | 81.4% 24.6% 90.0%

Table 2: Standard deviations as a percentage of the means of a few invariants in response
to various data perturbations. Gaussian colored noise has standard deviations 0.1 or 0.2.
Occlusions are 10% or 20% of the curve at random starting points. Statistics for each case are
computed from 200 different random realizations.

Since the number of coefficients of f, is 3(n+1)(n+2) and the number of degrees of freedom
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of a rotation is 1, the counting argument indicates that the number of independent geometric
invariants [18] is £(n + 1)(n + 2) — 1. We directly have [%] + 1 linear invariants which are ¢;;.
From (6), we deduce that all other |c;x|? are invariants under rotations. The number of these
independent quadratic invariants (2" degree functions of the c;;) is the number of complex
Cjk,j # k. This number is o = ([2] + 1)[2] for even degrees and o = ([2] + 1)[2] + [2F]
for odd degrees. Invariants |cj;| are geometric distances, but there are angles which also are
Euclidean invariants for an IP. Indeed, the 0(02—+1) relative angles (I—m)arg(cx) — (7 —k)arg(cim)
are preserved under rotations. We can choose a maximal independent subset of these relative
angles and these along with the preceding linear and quadratic invariants provides a complete
set, of independent rotation invariants for an IP of degree n, as for the cubic case in Sec. 2.2. We
want to emphasis the fact that the obtained invariants are linear, quadratic, or arctan functions
of ratios of linear combinations of coefficients, even for high degree polynomials. This leads to
invariants less sensitive to noise than are others such as algebraic invariants which are rational
functions perhaps of high degrees, of the polynomial coefficients. Moreover, these are the first
complete set of Euclidean invariants for high degree IP curves appearing in the computer vision
literature.

As shown in Fig. 4 and Table 2, invariants are individually less stable than pose parameters.
In particular, angle invariants are more sensitive to curve-data perturbations. Nevertheless,
these angular invariants are useful for discriminating between shapes as illustrated in Fig. 5.
Moreover, as shown in Fig. 3, the better stability of the translation estimation in comparison
to the angle estimation allows rotation invariants to be computed out of the range of stability

of the angle estimation (0.2 noise std. dev. and 20% missing data). We observed that a few

angular invariants have a standard deviation several times larger than the others. It turns out
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Figure 5: Left, scatter of invariants vector (|cspl, c22) for 200 perturbed data sets (colored noise
with 0.05 standard deviation) of the 4 IPs of degree 4 in Fig. 1. Right, scatter, in radians, of
invariants vector (3d10 — ¢30, P20 — P31)-

that, for particular shapes, a few angular invariants become bimodal up to a particular amount

of noise such as ¢99 — @31 as shown in Fig. 5 for the sky-hawk.

4.2 Invariant Recognition

‘ H guitar ‘ butterfly ‘ sky-hawk ‘ mig ‘
guitar 100% | 0% 0% 0%
butterfly || 0% 100% 0% 0%
sky-hawk || 0% 0% 100% 0%
mig 0% 0% 0% 100%
guitar || 95% | 1.5% 3.5% 0%
butterfly || 27.5% | 72.5% 0% 0%
sky-hawk || 2.5% | 0% 97.5% 0%
mig 9.5% | 0% 52% 38.5%
guitar 100% | 0% 0% 0%
butterfly || 0% 100% 0% 0.0%
sky-hawk || 0.5% | 0% 96% 3.5%
mig 4% 0% 0% 96%

Table 3: Percentage recognition on 3 sets of 200 perturbed shapes for colored noise of standard
deviations 0.05 and 0.1, and 10% missing data, respectively.
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Fig. 5 shows scatter plots vectors of pairs of invariants for the 4 shapes of degree 4 of Fig. 1.
Though the scatter of individual components of invariant vectors are not always well separated,
the use of the complete set of invariants appears to yield highly accurate recognition. The
recognizer used is Bayesian recognition based on a multivariate colored Gaussian distribution
for each object and having a diagonal covariance matrix estimated from 200 noisy perturbed
shapes for each object with noise perturbation standard deviations 0.05 in the normal direction.
This model is used to do recognition on two other noisy sets having standard deviation 0.05
and 0.1 (the latter is 12.5 pixels and is at the limit of the stability for pose) and on one set with
10% missing data. Results are quite good (see Table 3). For large noise perturbations (0.1 std.
dev. colored noise), the sky-hawk becomes difficult to recognize from the other airplane, since
details are lost in noise, but is still different from the guitar or the butterfly shapes. Better

accuracy would be achieved by using 6" degree IP curves [15].

4.3 Indexing in a silhouette database

In the previous section, recognition is applied to datasets deformed by synthetic perturbations:
colored noise and missing data. To test the proposed recognition algorithm on real data, we
used a database of 1100 boundary contours of fish images obtained from a web site [11]. The
number of data points in each silhouette in this database varies from 400 to 1600. This database
contains not only fishes but more generally sea animals, i.e, the diversity of shapes is large.
So as not to use size for easy discrimination between shapes, all shapes are normalized to the
same size. To prepare the database, every shape is fit by a 4* degree polynomial and then
polynomial curves are centered by setting t.cnsr at the origin. The last step is to compute

the rotation invariants as in the previous section. We first run queries by example to test the
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rotation invariants. Two examples are shown in Fig. 6 where the rotation invariance is clear.

o

Figure 6: Queries by example invariant to Euclidean Transformations and reflections.

Then, we test the stability to small perturbations such as removing data on a few shapes and
running queries with these modified shapes. In Fig. 7, small parts are removed in the query. The
capability of the IPs to handle missing data (especially if small patches are removed at many
locations throughout a silhouette) and to handle open (non closed) curves is one of the main
advantage of this description in comparison to descriptions using arc length parameterization
such as Fourier descriptors or B-splines.

With our approach query by sketch is also possible. For every query, a Bayesian recognizer
is used since the variability of each invariant can have very different standard deviations. This
variability is estimated from a training set. This training set is synthetically generated from the
given sketch by adding perturbations: sample functions of a colored noise. Obtained standard
deviations are used to weight each invariant during the comparison between shapes in the

database, i.e, the Mahalanobis distance is used. (The optimal weighting is to use a full inverse
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Figure 7: Queries by example where relative small parts as fans are removed.

covariance matrix in the quadratic-form recognizer, rather than the diagonal covariance matrix
approximation used in these experiments.) It turns out that depending on the talent of the
drawer and on the number of occurrences of and variability in the target shape in the database,
the user may want to control the similarity measure used between the query and the searched-
for database shapes. To handle this, the standard deviation used in generating training sets
is decreased or increased depending on whether more or less similarity is needed. Therefore,
in addition to the query, the user has to specify what degree of similarity he/she wants to
use: very similar (std. dev. is 0.02), similar (std. dev. is 0.1), weakly similar (std. dev. is
0.2). Fig 8 illustrate the database shapes found for the same query but using three different
similarity criteria.

Obviously, a 4" degree polynomial is not able to discriminate shapes with only small scale
dissimilarities. Better discrimination power can be achieved by using 6" degree polynomials,

see [15].
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Figure 8: Queries using the same query example but with a recognizer trained on different
standard deviations of the colored noise (0.02, 0.1, and 0.2 respectively). The first three closest
shapes are always retrieved, but increasing variability can be observed in the other retrieved
shapes.

5 Conclusions

Though the shape-representing IP’s that we use may be of high degree, we have introduced fast
accurate pose estimation, and fast accurate pose-independent shape recognition based on geo-
metric invariants. Approximate initial single-computation estimates are computed, and these
are iterated 2 or 3 times to achieve the closest local minimum of the performance functionals
used. The pose estimation uses all the IP coefficients, but is not optimal because it does not use
optimal weightings. The pose-independent recognition uses estimated centering based on all of
the IP coefficients followed by rotation invariant recognition based on a complete set of geomet-
ric rotation invariants. However, optimal weightings were not used here either. Nevertheless,
the effectiveness of the pose-invariant recognition is illustrated by the indexing application in a
database of 1,100 silhouettes. Though some of the invariants may not effective discriminators,
the complete set is. If put into a Bayesian or Maximum Likelihood framework, we can achieve

fully optimal pose estimation and pose-independent shape recognition.
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Extensions to 3D based on tensors are undergoing further development [19], as well as
is handling local deformations. Of great importance is to extend the pose estimation and
transformation-invariant shape recognition to handle two situations. First is that for which
considerable portions of a silhouette are missing, perhaps due to partial occlusion or where the
silhouette is much more complicated. Then, pose estimation and recognition can be based on
“Invariant patches”. These invariant patches are discussed in [10], and the ideas in the present
paper should be applicable. The second extension is to handle affine rather than just Euclidean
transformations of shapes. The intermediate transformation, scaled Euclidean, should be easy
to handle, since an isotropic scaling of the data set by A simply multiplies every monomial of
degree d in the polynomial by the factor A%. The full affine transformation is more challenging,
and we are studying it. One approach is to convert the Affine Transformation Problem to a
Euclidean Transformation Problem through a normalization based on the coefficients of the
polynomials fit to the data [1]. The challenge here is to develop a normalization that uses much
of the information contained in the polynomial coefficients [18] and which is highly stable.

Another subject of interest is to consider small locally affine deformations along a silhouette.

6 Appendix: From Complex to Real Representation

What is the transformation relating the coefficients in the real and complex polynomial repre-
sentations? Computing the coefficients of the complex representation given a real IP appears to
be complicated. The transformation from the complex C to the real A vector representation,
i.e, the reverse way, is easier to compute. Vector C' duplicates information since cx; = €j.

Therefore, it is in practice more efficient to use the vector representation B with components
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ajr, = Re(cjr) 2%, Bir = Im(c) 271, and v;; = ¢;;2%7', as introduced in Sec. 2.2. Indeed, B

is a minimal description of C'.

Transformation matrix 7" between B and A (A = T'B) is block diagonal since the coefficients

for a form transform independently of the coefficients for each other form. Thus,

T, 0 0 ... 0

0 7 0 ... 0
T=|0 0 i, ... 0

0 0 0 ... T

where T} is the transformation matrix of homogeneous polynomial H; of degree .

The goal of this section is to find a recursive way to compute 7;. Consider the following

family of formal real homogeneous polynomials in complex representation:

1 .
Dl(Z) = = Z dj_k,é]zk

0<g:k<l,j+k=l

with d; = d;_;. We deduce the following second order recursive formula for Dj(z):

Dy(z,y) = Re(d;Z') + 2z2D;_5(2)
l
= Re(di) Xo<an<i (—1)Fal2ky
2k
l
+Im(dp) Xo<ont1<i (—1)kgl (Ght1)y2k+1
2k +1

+(2* + y*) Do (z,y)

where the second and third lines are the expansion of Re(d;z!). From the last equation, we
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deduce a recursive computation for 7;:

1 0
TOZNO_IZ[l] T1:N1_1:
0 1
1 0 T
l
0
1
l Oox1)y  Tro 022 Oax-1)
Ti=|"— 0 Ou—1yx@+1) | + +
2 l O2x2  O@-1)x2 Ou-1yx2 112
0 _
3

l
Note, ( ) denotes the binomial coefficient m As an illustration, the first three iterations

k
give:
1 0 1 0]
1 01
0 3 01
h,=10 2 0 T =
-3 0 1 0
-1 0 1
| 0 -1 0 1]

0 -4 0 2 0

1 0 -1 0 1

and one can check that from Sec. 2.2, Ny = (373)"" and N3 = (573)7".

These matrices T specify T' (see (12)) which describes how a 2D polynomial is transformed
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from its complex C' to real A representation. In practice, to obtain the real and imaginary parts
of the complex polynomial coefficients that represent a data set, we first fit a real polynomial

to the data set to estimate the coefficient vector A, and then obtain B by B = T 'A.
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