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Abstract. We present a new application of computer vision: continu-
ous measurement of the geometrical visibility range on inter-urban roads,
solely based on a monocular image acquisition system. To tackle this
problem, we propose first a road segmentation scheme based on a Parzen-
windowing of a color feature space with an original update that allows
us to cope with heterogeneously paved-roads, shadows and reflections,
observed under various and changing lighting conditions. Second, we ad-
dress the under-constrained problem of retrieving the depth information
along the road based on the flat word assumption. This is performed
by a new region-fitting iterative least squares algorithm, derived from
half-quadratic theory, able to cope with vanishing-point estimation, and
allowing us to estimate the geometrical visibility range.

1 Introduction

Coming with the development of outdoor mobile robot systems, the detection
and the recovering of the geometry of paved and /or marked roads has been
an active research-field in the late 80’s. Since these pioneering works, the prob-
lem is still of great importance for different fields of Intelligent Transportation
Systems. A precise, robust segmentation and fitting of the road thus remains a
crucial requisite for many applications such as driver assistance or infrastructure
management systems. We propose a new infrastructure management system:
automatic estimation of the geometrical visibility range along a route, which is
strictly related to the shape of the road and the presence of occluding objects in
its close surroundings. Circumstantial perturbations such as weather conditions
(vehicles, fog, snow, rain ...) are not considered. The challenge is to use a single
camera to estimate the geometrical visibility range along the road path, i.e the
maximum distance the road is visible.

When only one camera is used, the process of recovering the projected depth
information is an under-constrained problem which requires the introduction of
generic constraints in order to infer a unique solution. The hypothesis which is
usually considered is the flat world assumption [1], by which the road is assumed
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included in a plane. With the flat word assumption, a precise detection of the
vanishing line is crucial. Most of the past and recent single camera algorithms
are based on this assumption but differ by the retained model for the road
itself [2–7]. One group of algorithms moves aside from the flat world assumption
and provides an estimation of the vertical curvature of the road. In [8–10] the
constraint that the road generally keeps an approximately constant width and
does not tilt sideways is used.

In a general way, it should be noted that the quoted systems, which often
relate to applications of lane-tracking /-following, work primarily on relatively
’not so far’ parts of the road. In our case, the geometrical visibility range should
be monitored along an interurban route to check for instance its compatibility
with speed limits. We are thus released from the requirements of a strictly real-
time application; however, both parts of the system, the detection and the fitting
of the road, should manage the far extremity of the perceptible road, a requisite
for which a road detection-based approach appears to be more adequate than
the detection of markings.

This article is composed of two sections. The first section deals with the seg-
mentation of the image. We restrict ourselves to structured road contrary to [11].
The proposed algorithm operates an adaptative supervised classification of each
pixel in two classes: Road (R) and Other (O). The proposed algorithm is robust
and benefits from the fact that the process is off-line. The second section deals
with the region-fitting algorithm of the road working on the probability map pro-
vided by the segmentation step. The proposed algorithm follows an alternated
iterative scheme which allows both to estimate the position of the vanishing line
and to fit the borders of the road. The camera calibration being known, the
positions of the vanishing line and of the far extremity of the perceptible road
are enough to estimate the geometrical visibility range.

2 An adaptative probabilistic classification

Fig. 1. Examples of road scenes to segment, with shadows and changes in pavement
material.

A dense detection of the road has been the object of many works which
consider it as a two class pixel classification problem either in a supervised way [1,
12–14], or not [15, 16]. All these works face the same difficulty: the detection
should be performed all along a road, when the appearance of the road is likely
to strongly vary because of changes in the pavement material or because of



local color heterogeneity; the lighting conditions can also drastically modify the
appearance of the road, see Fig. 1:

– The shadows in outdoors environment modify intensity and chromatic com-
ponents (blue-wards shifting).

– The sun at grazing angles and/or the presence of water on the road causes
specular reflections.

Several previously proposed systems try to tackle these difficulties. The orig-
inality of our approach is that we take advantage of the fact that the segmen-
tation is off-line by performing backward processing which leads to robustness.
We use a classification scheme able to cope with classes with possibly complex
distributions of the color signal, rather than searching for features that would
be invariant to well-identified transformations of the signal. In our tests, and
contrary to [11], no feature with spatial or textured content (Gabor energy, local
entropy, moments of co-occurence matrix, etc.) appeared to be sufficiently dis-
criminant in the case of paved roads, whatever is the environment. In practice,
we have chosen to work in the La∗b∗ color-space which is quasi-uncorrelated.

2.1 Parzen-windowing

In order to avoid taking hasty and wrong decisions, the very purpose of the
segmentation stage is restricted to provide a probability map to be within the
Road class, which will be used for fitting the road. The classification of each pixel
is performed using a Bayesian decision: the posterior probability for a pixel with
feature vector x = [L, a∗, b∗] to be part of the road class is:

P(R/x) =
p(x/R)P(R)

p(x/R)P(R) + p(x/O)P(O)
(1)

where R and O denotes the two classes. We use Parzen windows to model p(x/R)
and p(x/O), the class-conditional probability density functions (pdf ). We choose
the anisotropic Gaussian function with mean zero and diagonal covariance matrix
Σd as the Parzen window.

Parzen windows are accumulated during the learning phases in two 3-D ma-
trices, called PR and PO. The matrix dimensions depend on the signal dynamic
and an adequacy is performed with respect to the bandwidth of Σd. For a 24-bit
color signal, we typically use two 643 matrices and a diagonal covariance matrix
Σd with [2, 1, 1] for bandwidth. This particular choice indeed allows larger vari-
ations along the intensity axis making it possible to cope with color variations
causes by sun reflexions far ahead on the road. A fast estimation of p(x/R) and
p(x/O) is thus obtained by using PR and PO as simple Look-Up-Tables, the
entries of which are the digitized color coordinates of feature vectors x.

2.2 Comparison

We compared our approach with [16] which is based on the use of color satu-
ration only. We found although saturation usually provides good segmentation



Fig. 2. Posterior probability maps based on saturation (middle) and [L, a∗, b∗] vectors
(right).
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Fig. 3. Correct classification rate comparison for different types of feature.

results, this heuristic fails in cases too complex, where separability is no longer
verified, see Fig. 2. Fig. 3 shows the correct pixel classification rate for a variable
threshold applied on the class-conditional pdf p(x/R). Three types of feature
have been compared on twenty images of different road scenes with a ground-

truth segmented by hand: 1) the color saturation x = S = 1 −
Min(R,G,B)

Mean(R,G,B) , 2)

the chromatic coefficients x = [r = R
R+G+B

, b = B
R+G+B

] and 3) the full color
signal x = [L, a∗, b∗]. The obtained results show the benefit of a characterization
based on this last vector, which is made possible by the use of Parzen-windowing.

2.3 Robust Update

The difficulty is to correctly update the class-conditional pdfs along a route
despite drastic changes of the road appearance. In case of online processing,
thanks to the temporal continuity, new pixel samples are typically selected in
areas where either road or non-road pixels are predicted to take place [12, 1].
In practice, this approach is not very robust because segmentation prediction is
subject to errors and these errors imply damaged class-conditional pdfs that will
produce a poor segmentation on the next image.

Due to our particular application which is off-line, we greatly benefit from
a backward processing of the entire sequence: being given N images taken at
regular intervals, the (N − k)-th one is processed at the k-th iteration. For this
image, new pixel samples are picked up in the bottom center part of the image



Fig. 4. 20 of the detected road connected-components in a image sequence. This par-
ticular sequence is difficult due to shadows and pavement material changes.

to update the ’Road ’ pdf. The advantage is that we know for sure that these
pixels are from the ’Road ’ class since the on-board imaging system grabbing
the sequence is on the road. Moreover, these new samples belongs to the newly

observable portion of the road, and thus no prediction is needed. The update
of the ’Other ’ pdf is only made on pixels that have been labeled ’Other ’ at the
previous iteration. In order to lower as much as possible the risk of incorrect
learning of the ’Road ’ class, and then to prevent any divergence of the learning,
the proper labeling of pixels as ’Road ’ is performed by carrying out a logical-
AND operation between the fitted model explained in the next section and the
connected-component of the threshold probability map which is overlapping the
bottom center-part of the image. The ’Other ’ class is then naturally defined
as the complementary. This process drastically improves the robustness of the
update compared to online approaches.

Fig. 4 shows the detected connected-component superimposed on the cor-
responding original images with a probability threshold set at 0.5. These quite
difficult frames show at the same time shadowed and overexposed bi-component
pavement materials. The over-detections in the three first frames of the fourth
row are due to a partially occluded private gravel road. This quality of results
cannot be obtained with online update.

3 Road fitting

As explain in the introduction, the estimation of the shape of the road is usually
achieved by means of edge-fitting algorithms, which are applied after the detec-
tion of some lane or road boundaries. Hereafter, we propose an original approach
based on region-fitting which is more robust to missing data and which is also
able to cope with vanishing line estimation.



3.1 Road models

Following [4], we use two possible curve families to model the borders of the
road. First we use polynomial curves. ur(v) (resp. ul(v)) models the right (resp.
left) border of the road and is given as:

ur = b0 + b1v + b2v
2 + . . . + bdv

d =

d
∑

i=0

biv
i (2)

and similarly for the left border. Close to the vehicle, the four first parameters
b0, b1, b2, b3 are proportional respectively to lateral offset, to the bearing of the
vehicle, to the curvature and to the curvature gradient of the lane. Second we use
hyperbolic polynomial curves which better fit road edges on long range distances:

ur = a0(v − vh) + a1 + . . . + ad

1

(v − vh)d−1
=

d
∑

i=0

ai(v − vh)1−d (3)

and similarly for the left border. vh is the position in the image of the vanishing
line. The previous equations are rewritten in short in vector notations as ur =
At

rXvh
(v) (resp. ul = At

lXvh
(v)).

3.2 Half quadratic theory

We propose to set the region fitting algorithm as the minimization of the follow-
ing classical least-square error:

e(Al, Ar) =

∫ ∫

Image

[P (R/x(u, v)) − ΩAl,Ar
(u, v)]

2
dudv (4)

between the image P (R/x(u, v)) of the probability to be within the road class
and the function ΩAl,Ar

(u, v) modeling the road. This region is parametrized
by Al and Ar, the left and right border parameters. ΩAl,Ar

must be one inside
the region and zero outside. Notice that function AtXvh

(v) − u is defined for
all pixel coordinates (u, v). Its zero set is the explicit curve parametrized by A
and the function is negative on the left of the curve and positive on its right.
We thus can use the previous function to build ΩAl,Ar

. For instance, function

g
(

AtXvh
(v)−u

σ

)

+ 1
2 is a smooth model of the region on the right of the curve for

any increasing odd function g with g(+∞) = 1
2 . The σ parameter is useful to

tune the smoothing strength. For a two-border region, we multiply the models
for the left and right borders accordingly:

ΩAl,Ar
=

(

g

(

At
lXvh

(v) − u

σ

)

+
1

2

)(

1

2
− g

(

At
rXvh

(v) − u

σ

))

(5)

By substitution of the previous model in (4), we rewrite it in its discrete form:

eAl,Ar
=

∑

ij∈Image

[

Pij −

(

g

(

At
lXi − j

σ

)

+
1

2

) (

1

2
− g

(

At
rXi − j

σ

))]2

(6)



The previous minimization is non-linear due to g. However, we now show that
this minimization can be handled with the half-quadratic theory and allows
us to derive the associated iterative algorithm. Indeed, after expansion of the

square in (6), the function g2 of the left and right residuals appears: g2
(

At

l
Xi−j

σ

)

and g2
(

At

r
Xi−j

σ

)

. Function g2(t) being even, it can be rewritten as g2(t) =

h(t2). Once the problem is set in these terms, the half-quadratic theory can be
applied in a similar way as for instance in [6] by defining the auxiliary variables

ωl
ij =

(

At

l
Xi−j

σ

)

, ωr
ij =

(

At

r
Xi−j

σ

)

, νl
ij =

(

At

l
Xi−j

σ

)2

and νr
ij =

(

At

r
Xi−j

σ

)2

. The

Lagrangian of the minimization is then obtained as:

L =
∑

ij

[

h(νl
ij)h(νr

ij) + 1
4 (h(νl

ij) + h(νr
ij)) + (2Pij − 1)g(ωl

ij)g(ωr
ij)

+(Pij − 1/4)
[

−g(ωl
ij) + g(ωr

ij)
]

−h(νl
ij)g(ωr

ij) + h(νr
ij)g(ωl

ij)
]

+
∑

ij λl
ij

(

ωl
ij −

At

l
Xi−j

σ

)

+ λr
ij

(

ωr
ij −

At

r
Xi−j

σ

)

+
∑

ij µl
ij

(

νl
ij −

(

At

l
Xi−j

σ

)2
)

+ µr
ij

(

νr
ij −

(

j−At

r
Xi−j

σ

)2
)

(7)

The derivatives of (7) with respect to : the auxiliary variables, the unknown
variables Al and Ar, and the Lagrange coefficients λl

ij , λr
ij , µl

ij µr
ij are set to

zero. The algorithm is derived as an alternate and iterative minimization using
the resulting equations.

Fig. 5. 15th degree polynomial region fitting on a difficult synthetic image. Left: ΩAl,Ar

3D-rendering. Right: Obtained borders in white.

The proposed algorithm can handle a region defined either with polynomial
curves (2) or with hyperbolic curves (3). It is only the design matrix (Xi) that
changes. Fig. 5 presents a region fit on a difficult synthetic image with numerous
outliers and missing parts. The fit is a 15th order polynomial. On the left side,
the 3-D rendering of the obtained region model ΩAl,Ar

is shown. Notice how the
proposed region model is able to fit a closed shape even if the region borders
are two explicit curves. We want to insist on the fact that contour-based fitting
cannot handle correctly such images, with so many edge outliers and closings.



Fig. 6. Road region fitting results with 6th order hyperbolic polynomial borders. The
images on the right provide a zoom on the far extremity of the road. The white line
figures the estimated vanishing line; the red line figures the maximum distance at which
the road is visible.

3.3 Geometrical Visibility Range

As explained in the introduction, for road fitting, it is of main importance to
be able to estimate the position vh of the vanishing line which parametrizes the
design matrix. We solve this problem by adding an extra step in the previous
iterative minimization scheme, where vh is updated as the ordinate of the point
where the asymptotes of the two curves intersect each other. In practice, we
observed that the modified algorithm converges towards a local minimum. The
minimization is performed with decreasing scales to better converge towards a
local minimum not too far from the global one.

Fig. 7. Flat and non-flat road used for distance accuracy experiments.

Moreover, as underlined in [4], the left and right borders of the road are
related being approximately parallel. This constraint can be easily enforced in
the region fitting algorithm and leads to a minimization problem with a reduced
number of parameters. Indeed, parallelism of the road borders implies ari = ali,
∀i ≤ 1, in (3). This constraint brings an improved robustness to the road region
fitting algorithm as regards missing parts and outliers. Fig. 6 shows two images



taken from one of the sequences we experimented with. It illustrates the accuracy
and the robustness of the obtained results when the local-flatness assumption is
valid, first row. Notice the limited effect of the violation of this assumption on
the second row at long distance. The white line shows the estimated vanishing
line while the red line shows the maximum image height where the road is visible.
The geometric visibility range of the road is directly related to the difference in
height between the white and red lines.

Table 1. Comparison of the true distance in meters (true) with the distances estimated
by camera calibration (calib.), and estimated using the proposed segmentation and
fitting algorithms (estim.) for four targets and on two images. On the left is the flat
road, on the right the non-flat road of Fig. 7.

target true calib. estim. true calib. estim.

1 26.56 26.95 27.34 33.59 23.49 34.72

2 52.04 56.67 68.41 59.49 60.93 61.67

3 103.52 98.08 103.4 111.66 111.58 114.08

4 200.68 202.02 225.96 208.64 1176.75 1530.34

Finally, we ran experiments to evaluate the accuracy of the estimated dis-
tances using one camera. On two images, one where the road is really flat and
one where it is not the case, see Fig. 7, we compared the estimated and mea-
sured distances of white calibration targets set at different distances. The true
distances were measured using a theodolite, and two kinds of estimation are
provided. The first estimation is obtained using the camera calibration with re-
spect to the road at close range and the second estimation is obtained using road
segmentation and fitting. Results are shown on Tab. 1. It appears that errors
on distance estimation can be important for large distances when the flat world
assumption is not valid; but when it is valid the error is no more than 11%,
which is satisfactory. A video format image is processed in a few seconds, but
can be optimized further.

4 Conclusion

We tackle the original question of how to estimate the geometrical visibility range
of the road from a vehicle with only one camera along inter-urban roads. This
application is new and of importance in the field of transportation. It is a difficult
inverse problem since 3D distances must be estimated using only one 2D view.
However, we propose a solution based first on a fast and robust segmentation of
the road region using local color features, and second on parametrized fitting of
the segmented region using a priori knowledge we have on road regions. The seg-
mentation is robust to lighting and road color variations thanks to a backward
processing. The proposed original fitting algorithm is another new illustration
of the power of half-quadratic theory. An extension of this algorithm is also pro-
posed to estimate the position of the vanishing line in each image. We validated



the good accuracy of the proposed approach for flat roads. In the future, we will
focus on the combination of the proposed approach with stereovision, to handle
the case of non-flat roads.
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