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ABSTRACT

In image retrieval systems, a variety of simple similarity
measures are used. The choice for one similarity measure
or another is generally driven by an experimental compar-
ison on a labeled database. The drawback of such an ap-
proach is that, while a large number of possible similarity
measures can be tested, we do not know how to extend from
the obtained results. However, the choice of a good similar-
ity measure leads to noticeable better results. It is known
that this choice is related to the variability of the images
within the same class. Therefore, we propose a model of
image retrieval systems and deduce a scheme for deriving
the best similarity measure in a set of similarity measures,
assuming a parametric model of the variability of feature
vectors within the same class. An experimental validation of
the model and the derived similarity measures is performed
on synthetic ground-truth databases. Finally, from our ex-
periments, we give several rules to follow for the design of
ground-truth databases allowing reliable conclusions on the
search of better similarity measures.

1. INTRODUCTION

In image retrieval systems by example, as in many other
computer vision systems, the information of interest in each
image is summarized in the so-called signature. The aim
of introducing such a summary is to reduce the amount of
information to be processed.

An image is thus represented by a feature vector lying in a
high dimensional space. Many feature spaces were proposed
and experimentally compared. We believe that an analy-
sis of how those feature spaces are compared is required
to progress in building better image retrieval systems. Of
course, this analysis is not easy to perform, and therefore we
focus on comparing feature spaces representing in essence
the same information about images, but in different ways.
In such a case, if quantizing errors are ignored, two feature

spaces are equivalent if the associated similarity measures
are correctly chosen. As a consequence, the comparison of
feature spaces containing essentially the same information
leads to the question: what is the best similarity measure
that must be used to compare two feature vectors within the
same feature space?

In the context of image indexing, many similarity measures
were proposed, see [6, 8] for a summary. Two different sim-
ilarity measures used on the same feature space are usually
compared in terms of precision-recall diagram on an image
database. But as noticed in [5, 7, 1], the choice of similarity
measure is mainly related to the variability of the feature
vectors. Thus, we based our approach on a statistical anal-
ysis. Given a set of possible similarity measures, we propose
a scheme for deriving the best similarity measure in this set,
from a parametric model of the variability of feature vectors.

In Section 2, we experimentally show improvements that
can be expected by well adapting the similarity measure to
the feature space. Experiments are mainly performed on a
feature space of color histograms, but other kind of feature
spaces are also used. The analysis of these results requires
a model of image retrieval systems. In Section 3, we present
our model of image retrieval systems. This model gives the
criterion a similarity measure must maximize. Then in Sec-
tion 4, we propose a scheme to derive the best similarity
measure that must be used in a set of similarity measures,
given the statistical model of the used features. In the next
section, we investigate possible parametric models for color
histogram features from an experimental point of view. In
Section 6 and 7, we derive the best similarity measures for
well-known pdfs, such as Gaussian, uniform and exponen-
tial, for different sets of similarity measures. We take ad-
vantage of these derivations to compare the model to simu-
lations on synthetic experiments. Then, we give some clues
on which specifications a ground-truth database must fol-
low to obtain reliable conclusions that can be used for other
databases.

2. SIMILARITY MEASURE OPTIMIZA TION

It is well known that given a feature space, results of im-
age retrieval may be improved just by a better choice of
the similarity measure. In order to run systematic experi-
ments, we use ground-truth image databases and all the re-
sults are averaged over all query images. Fig. 1 shows a few
image classes from ground-truth database DB;. Usually, a



ground-truth image database is composed of IV, classes with
different visual contents. Each class contains N; images, so
the total number of images in the database is N.N;. For
any query g took from the database, we select the N; closest
images. When the recognition is perfect, the closest images
are all from the class to which the query g belongs.
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Figure 1: Few images from our database DB;. It is
formed by N, = 64 classes with N; = 9 images per
class.

Different ground-truth databases have been used for our ex-
perimentations:

e Scene database DB;.: It consists of 81 classes of 9 im-
ages each (729 images), and contains TV broadcasts,
sample images of videos, paintings...

e Texture Database DB;: It groups 792 images into 88
classes of 9 images each. It is extracted from Brodatz
color texture Database. Color variability in every class
is less important than in DB;,.

e Shape Database DB;: It is formed by 64 classes with
9 images per class (576 images).

e Fit Database DBy: It contains 7 classes, 100 images
per class (700 images). This database is used only for
pdf fitting as described in Section 5.

e Corel Database DB.: It contains 71 classes, 30 images
per class (2130 images). It is extracted from the Corel
database.

Precision-recall diagrams are widely used to evaluate image
retrieval systems. Nevertheless, we decided to use only the
average precision to compare different similarity measures.
We defined the average precision to be the average of the
number of relevant image among the NV; retrieved images,
over all the query images of the database.

Without any other knowledge, the best similarity measure
has to be searched with a brute force approach. The compu-
tational cost of this approach implies that we must reduce
the search to a small set of similarity measures. We have
reduce ourselves to the set of similarity measures with the

following two parameters:

Ny

3 (g —s5)? (1)

i=1

Sﬂ:ﬂ(% S) =

where ¢ = (g;) is the query vector and s = (s;) is the feature
vector to be compared with the query. Ny is the dimension
of feature vectors. This kind of similarity measures was pre-
viously used with advantages by [2] on Corel image database
with color histograms. Indeed the used kernel is of the form
K, 3(q,s) = e "8 Notice that when o = 1 and 3 > 1,
the similarity measure S1,5(g, s) reduces to the Lg distance.
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Figure 2: «-diagrams with classical L1, L2 and L
distances. a-diagram plots the average precision
versus «, using similarity measure S, 3, on DB;.

It is well known that the choice of a good B can improve
image retrieval system results. For instance, as shown on
Fig. 2 for a« = 1, the use of Ly rather L, improves the
results by 4% in average precision. Moreover, the use of
Ly rather than L, improves the results by an extra 5%.
Similar results were observed on several other ground-truth
databases.

Less known is the importance of a good choice of parame-
ter . We define a-diagram as the curve of average preci-
sion when we vary parameter « in similarity measure S, g
in (1), for a given 3. Fig. 2 gives a comparison between
a-diagrams for 8 =1, 8 = 2 and 8 = +oo. Tests have been
performed on DB;. The signature used is simply the RGB
color histogram. The obtained curves present a maximum
around 0.3. We performed tests on the other ground-truth
databases DB;., DB; and DB., and we obtained the same
kind of shapes with RGB color histograms. Moreover, the
position of the maximum varies a little depending of the
database. Therefore the a-diagram seems mainly related
only to the used feature space. Notice that an adequate «
(e = 0.3 with 8 = 1) improves the average precision by
more than 8% compared to the Euclidean distance Si,2.

Then, we checked that the similarity measure can be op-
timized for other feature spaces. Fig. 3 shows a-diagrams
for: Edge Orientation Histogram (eoh) [3] for shape fea-
tures, Fourier descriptors for texture features, RGB color
histogram and Laplacian weighted RGB color histogram [9]
for color features. In this experiment 8 = 1, and thus, when
a = 1, the used similarity measured is the classical L; dis-
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Figure 3: a-diagrams for different feature spaces and
B = 1. Used representations are: Edge Orientation
Histogram (eoh) for shape, Fourier descriptors for
texture, RGB color and Laplacian weighted RGB
color histograms.

tance. By tuning the parameter o, we are able to improve
the average precision up to 3% for RGB color histogram and
more than 1% for Fourier descriptors, for instance.

From our few user experiments, an increase of 2% of av-
erage precision is noticeable. In particular the ordering of
the retrieved images seems improved. This indicates, how
important is the search of better similarity measures.

There are two main problems with the experimental ap-
proach described before. First, it is not possible to perform
experiments on all the possible similarity measures that one
can imagine, the search space is too large. Second the best
similarity measure is obtained only for small ground-truth
databases, and we have no clue how this result generalizes
to larger databases.

The alternative to the experimental approach is to model
image retrieval systems to try to progress in the solution of
these two problems. From a model of the observed pertur-
bations of the feature space, we show next how to derive the
best associated similarity measure within a set of similarity
measures.

3. STATISTICAL MODEL

Contrary to [7], we believe that image retrieval by example
should not be modeled as a classification problem. Indeed,
classifying a database allows image retrieval, but does not
perform as well as classical image retrieval techniques. From
a classification point of view, image retrieval is seen as find-
ing a mapping from the database images to the set of class
labels. Therefore, if the image retrieval system is perfect,
given an image drawn from class C, the retrieved images
are all within C.

A key advantage of image retrieval by example is, that the

retrieved images from two queries are generally different,
even if these queries are in the same class. But, this prop-
erty is not verified when the image retrieval by example is
formulated as a classification problem because the class of
the query is not known. We prefer, therefore, to better an-
alyze what is usually performed in image retrieval systems
by example.

Usually, visual image information is represented by a feature
vector, in order to increase speed and to save memory. Given
a feature vector query g, we define the goal of a content-
based retrieval system to retrieve the feature vectors that
are the most likely to be in the same class as the query. The
main difference, compared with classification approach, is,
that we do not know the query class. We just know that ¢
is a random realization of its class. Then, given any feature
vector s in the database, the problem is to decide if s and
q are in the same class or not. If the number of samples is
large enough, this question can be answered by statistical
testing. Unfortunately, in the context of image retrieval, we
only have two samples: s and gq.
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Figure 4: Example of intra-distance di; and inter-
distance d;; distributions for RGB feature vector
from the two classes displayed in Fig. 6 (castle and
sunset from the Corel database).

For sake of simplicity, we suppose that only two different
classes C1 and C3 are available in the database and that
q belongs to Ci. The database is also assumed ground-
truth. When s also belongs to C1, the similarity measure
u = d(q,s) has a probability distribution function (pdf)
d11(u). When s belongs to Ca, a different pdf di2(u) is
obtained for w as shown in Fig. 4 on a real two classes
database. The distance u = d(q, s) between ¢ and s is al-
ways positive and thus pdfs di1 and di2 are defined only
on [0, +00]. Usually, an image retrieval system is equivalent
to a sort on the set of distances of the query to each im-
age of the database. Therefore, given a distance threshold
t, the number of images s of C; with a lower distance than
t to q, is N;D11(t) = N; fot d11(u)du. Diy is by definition
the cumulative distribution function (cdf) of dq;. Similarly,
the number of images s of C> with a lower distance than ¢
to q, is N;D12(t) = N; fot d12(u)du. Thus, the total num-
ber of retrieved images is thus N;(Dii(t) + D12(t)). The
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the average precision we introduced in the previous section.
The maximization of average precision is used in the fol-
lowing to compare two different similarity measures on the
same feature space.

percentage of relevant images is P =

But rather than a threshold on the distance, image retrieval
systems better use a threshold on the number of retrieved
images. In our two classes problem, we need to return 50% of
the total number of images in the database. If the retrieval
system is perfect, all the retrieved images are in C;. To
retrieve NV; images, threshold ¢ must be chosen in such a
way that D11(t)+Di12(t) = 1, and thus the average precision
reduces to:

P = D11 ((D11 + D12)" (1)) (2)

where t does not appear anymore. This is illustrated in
Fig. 5 with two far apart Gaussian pdfs, where m1; and mq»
are the mean of the inter- and intra-distances, respectively.

We now need to link cdfs Di; and Dis to the pdfs of the
feature vectors. Let P,;(z) = P(z|C(q)) be the pdf of feature
vector ¢ knowing the class of the query ¢, and Ps(z) =
P(z|C(s)) be the pdf of the class of s in the database. These
pdfs are defined on the feature space F, i.e  belongs to F.

In practice it is not realistic to assume that these pdfs are
fully known. A first difficulty is that F is usually a fea-
ture space of high dimensionality. As a consequence, the
direct sampling of these pdfs requires a large number of im-
age samples, not possible to achieve in practice. Thus, the
components of the feature vector are assumed independent
from each other. This assumption means that P(z) is a
product of 1D pdfs, and is thus easier to sample. A second
difficulty is that this model is still too complicated for a for-
mal analysis. As a consequence, in the proposed parametric
model, the components of the feature vectors are assumed
independent and having the same kind of pdf with different
parameters. For simple derivations, we also assume that the
only different parameter is the mean on each component.

More formally, we assume ¢; — ¢; and s; — S; are iid with
a centered pdf e, where ¢; and s; are the components of ¢
and s respectively. T denotes the expectation of a random
variable x.

4. OPTIMIZA TION CRITERION

In this section, we approximate the average precision P
in (2) to better analyze its link with the centered pdf e of
feature vector components.

Generally, similarity measures proposed in the literature are
sums of similarity measures of the components. Thus, the
distance d(q, s) can be written as:

Aa.9)= Y 6lai— 50

Let f(z:) be the pdf of the random variables x; = ¢; —s;—m,
with m; = @; —3;. Since ¢; — ¢ and s; — 3; have same pdf e,
it is not difficult to prove that f(z;) is a symmetric function

with respect to 0. Indeed, we have:

f@ =5 [ e e =5 ay (3)

2

with y; = ¢; —s; —m;. Thus, v; = ¢; — s; has a centered and
symmetric pdf when s is in the same class than ¢g. On the
contrary, v; = g; — $; has only a symmetric pdf with respect
to m;.

The pdf of the intra-distance w, for one component ¢, is
F(6~ (u))6" (u). The pdf of the intra-distance is the con-
volution of £(§~*(u))6~ " (u) with itself, Ny times. Indeed,
the intra-distance di; is the sum on all components of the
intra-distance 611. Using the central limit theorem (and thus
assuming finite variance for u [4]), the pdf d11 converges to-
wards a Gaussian distribution, when Ny goes to infinity. A
similar result can be derived for the inter-distance [4]: the
pdf di2 converges towards a Gaussian distribution, when
Ny goes to infinity. As an illustration, with Ny = 180,
intra-distance dq1 and inter-distance di2 of Fig. 4 look like
Gaussian distributions.

# of retrieved images

D12(t) + D11 (t)
2N;

| distance
: threshold

mi1 - 2z mi2 t

Figure 5: Number of images retrieved from the
database as a function of the distance t used as a
threshold.

The two pdfs d11 and di2 being approximatively Gaussian,
they are summarized by their mean and variance. The mean
of the intra-distance is simply given by mi1 = di1(v) =

N;8(v). Its variance is vis = Ny (62(0) — 6(v)).

The case of inter-distance is a little more complicated. When
the different component means m; are large with respect to
the standard deviation of v;, the two pdfs di1 and di2 are
far apart, and the retrieval system gives perfect results. A
more realistic situation is when m; is small with respect to
the standard deviation of v;. This observation leads us to
perform a second order Taylor expansion on §(v; +m;) with
respect to m;:

8(v; + ms) ~ 8(vs) + mi6' (v:) + %mﬁa”(vi)

With this approximation, we deduce that the mean of inter-



distance is m12 = d12(v) ~ N6(v)+1 SN m28" (v) since
§'(—v) = —8'(v). With the zero order expansion, the vari-

2
ance of the inter-distance is v12 ~ Ny (62(v)—6(v) ). We will
see later, that it is sufficient to use order zero for consistent
expansion of P.

The two pdfs d11 and di2 being approximatively Gaussian,
it also allows us to derive a simpler equation for the average

precision P in (2). We denote as g(z) = #6_%”2 the

reduced Gaussian pdf, and G(z) = [*_ g(t)dt its cdf. G(z)
is also known as the error function. By symmetry of G(x)
and since v11 = v12, as shown in Fig. 5, we deduce that
t = Mt g the t where Gy (SS2LL) 4+ Grp(BS2L2) = 1.

V11 V12
From (2), we then deduce:
M1z — M1

P~G( ) (4)

2/v11
From (4), when there is no difference in means (m12 = mi1),
the two classes have exactly the same pdf and thus the re-
trieval system gives a completely random result, i.e P = 0.5.

Now, we substitute the obtained means and variances of d11
and di» in the average precision (4):

o Nrm2 "
P:G(\/ §m; §"(v)

2 0/Ew) - 50

This last equation is important since it allows us to predict
the average precision obtained by an image retrieval system,
knowing the pdf of the difference v of feature vector com-
ponents, as a function of the component distance §. This
equation opens the possibility of analytical studies of the
optimal similarity measure based on the feature vector pdf
e, for usual image retrieval systems.

) (5)

We denote as G~ ! the inverse of the error function G. Then,
we introduce the following rectified average precision:

)= ai(py = Ym0 (6)

rs(v

The rectified precision rs(v) is always positive. And, the
higher rs(v) is, the better is the image retrieval system. A
rectified precision of zero means that the system performs
very poorly like a random sampler. An infinite rectified
precision means that the system performs perfectly.

5. FEATURE PDFFITTING

In practice, the pdf of the feature vector components are
usually not known. A question arises: what kind of pdf
is useful to model image features used in image retrieval
systems? Due to the reduced number of images per class, we
have to assume a parametric model with only a few number
of unknown parameters.

Using a database built from ground-truth classes of images,
the shape of these pdfs for each component can be estimated.
However, the number of elements per class should be large
enough to allow reliable conclusions.

We tried to choose a wide panel of pdfs to be fitted. We
consider the following pdfs:

e One parameter pdfs: Poisson, Exponential.

e Two parameters pdfs: Rayleigh, Weibull, Gamma, Gaus-
sian, Uniform and Lognormal.

In [1], the authors started to investigate statistical approaches
for modeling content-based retrieval systems, and they also
investigated a parametric fitting of component pdfs. Nev-
ertheless, our approach turns out to be rather different due
to the fact that we do not assume that all the parameters
are fully known when the retrieval system processes a query.
This leads us to search for the best similarity measure rather
to transform the pdfs of the components into uniform pdfs.
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Figure 6: Image examples from three classes: cas-
tle, sunset and grass. Notice that the variability in
colors from these three classes over 100 images is
rather different.

To experimentally test the different models, we performed a
Kolmogorov-Smirnov test on 700 images of a ground-truth
database. We choose the RGB color histogram as feature
vector because, with color, it is easier to build classes. Given
a color space quantization, the color histogram is a measure
of the color distribution in the image, i.e, each component of
the RGB histogram represents the probability that a pixel
of the image has the corresponding color. As explained be-
fore, we consider that components are independent of one
another, and thus we focus on the color pdf of each com-
ponent separately within an image class. All images in a
class contain almost the same visual information, and each
class has a different level of color variability, as illustrated in
Fig. 6. We used 7 classes of 100 images each: 5 classes from
the Corel database (sunset, mountain, waterfall, castle, and
raptor), a grass texture class that we collected ourselves, and
finally an outdoor class having 100 random images from the
Corel database of very different outdoor scenes.

During the tests, we took into account the fact that color
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Figure 7: Examples of empirical pdfs of RGB fea-
ture vector from the castle class. Each sub-plot dis-
plays the number of pixels with the same color, as a
percentage of the image size, versus the color.

histograms are sparse (on average more than 70% of the
components are null), at least for the color quantization that
we choose (6 bins per color axes and thus 216 components
for the color histogram). We notice that component pdfs
are either mono- or bi-modal. Usually, there is an important
mode in 0. Fig. 7 shows typical examples of the empirical
pdfs.

With 100 values, it is possible to perform maximum likeli-

hood estimation of the parameters of each pdf. A Kolmogorov-

Smirnov test [4] is then used to evaluate the goodness-of-fit.
Recall that, this test consists in comparing, with L., dis-
tance, the experimental and theoretical cumulative distri-
bution functions. The L., distance is defined as the maxi-
mum bin difference. This test provides a criterion for model
rejection.

Fig. 8 presents Kolmogorov-Smirnov results performed on
the castle and grass classes. Histograms show the number
of feature components that may fit each pdf model. It is
clear that Exponential pdf performs better than Poisson pdf,
for one parameter pdfs. Weibull and gamma pdfs perform
better compared to the others with two parameters. Similar
results have been observed for the other classes.

Due to the complexity versus fit dilemma, it is difficult to
have a definitive conclusion on which pdf the feature com-
ponents is following. Nevertheless, the following family of
pdfs seems suitable:

h(zls, a,b) = P(,‘j)s,,x“-le-v (7)
obtained by applying the power function ze on gamma
random variable z. By definition, the Euler function is
rp) = tt:0+°° t*~le~td¢. Half-Gauss, Gamma, Weibull, Ex-
ponential, Rayleigh pdfs are all particular cases of this fam-
ily. For instance, the Half-Gaussian is obtained for a = 2

and b=1/2.
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Figure 8: Result of the Kolmogorov-Smirnov test on
the castle and grass classes. The number of compo-
nents not rejected is shown versus the pdf name.

6. OPTIMIZA TION OVER g

Compared to (1), in this section, we restrict the set of sim-
ilarity measures, where we search for the best one, to Lg
distances, i.e @ = 1. Thus, we have §(v) = |v|°.

With examples, we illustrate how the best similarity mea-
sure within Lg can be derived depending of the pdf mod-
eling the variability of the feature components. Then, we
take advantage of these derivations to validate the proposed
model.

When the similarity measure is Lg, it is interesting to no-
tice that the rectified precision in (6) can be written as the
product of two terms:

r (’U) _ Nf mzz lg(ﬂ — 1)|’U|B_2’U_2
B - 22 —2
VIR

Notice that r3 is defined only for g > 1.

(8)




In (8), the first term @ involves only the dimension
Ny of the feature space and the average squared difference of
component means m;, relative to the variance v2 of v. This
term is not related to 3, and thus to the similarity measure.
We named the second term squared, the speed 73(v) of the

precision:

o= BB =D

— —2
A(jv]*8 — [vl?7)

(9)

The speed 73(v) is related to the choice of 8 and to the
shape of the pdf f of the components differences v (and
thus to the shape of e). But notice that 75(v) is invariant
under scale variations of v. This allows us to simplify the
following derivations by assuming that the variance of v is
1.

The search for the best similarity measure within Lg is
equivalent to maximizing the speed 75(v) with respect to

3.

6.1 Gaussian

The simplest model is to assume that the Ny components
(gs) of the feature vector g are Gaussian random variables
following;:

glglo) = e 3% (10)
Varo

with mean zero and standard deviation . With the previous
notations, we have e(q) = g(q).

The components being Gaussian with variance o2, a compo-
nents difference v is also Gaussian with variance 2¢%. Thus
pdf f(v) is also Gaussian. Before to compute the average
precision (5), we need the moment of order p of v:
L)

I'(3)
which is defined only when p > —1. After substitution in (9),
we deduce the following speed, after simplifications:
g T
TN -

o = (207)

(]

(11)

78(Gauss) =

Notice that from our derivation, the speed is defined only
for 8> 1.

To validate the proposed model of image retrieval systems,
we compared the average precision obtained in the Gaus-
sian case (11) to the average precision obtained by simula-
tion on a two classes synthetic database of 200 images each.
The number of components Ny is set to 100. The synthetic
database is simply produced by sampling a Gaussian ran-
dom variable with m; = 1 and ¢ = 4. Fig. 9 shows the
average precision obtained for different values of 3 in the
range [0, 4], compared to theoretical values. The fit between
predicted and simulated average precisions is relatively good
in such a case since the standard deviation of v is relatively
large compared to the value of m;.

From Fig. 9, we can see that the average precision is maxi-
mum for § = 2. This can be also proved analytically. There-

—— predicted
—+ simulated

0.545

precision

0.535

Figure 9: Comparison between theoretical and sim-
ulated average precision in the Gaussian case when
B varies.

fore, when the feature pdf is Gaussian, Lo is the best simi-
larity measure within the set Lg.

6.2 Exponential

Typically, the feature components are histograms and thus
their values are normalized between 0 and 1. Thus, to be
exact, previous pdf are typically restricted to [0, 1].

We now assume that feature components are exponential
random variables with pdf:

1 _a
e(glo) = ;6 e lg>o0

Its mean is o and its standard deviation o. It is simple to
prove that the difference of two exponential random vari-
ables of parameter ¢ is a Laplace (or double exponential)
random variable with pdf:

1 |
l =—e @
(o)) = 5e
Its mean is zero and its variance 202. The moment of order
p of v following a Laplace pdf is:

—  wZp
ol = ()5 +1)
Therefore, its speed is after simplifications:

r’(+1)
@+1) -3+ 1)
which is defined for 8 > 1 only.

78(Laplace) = T

Fig. 10 displays the theoretical and simulated average pre-
cisions as a function of 8. The simulation is done with the
same parameters than in the previous section. The fit be-
tween the two curves is not bad for # > 1, remembering
the two approximations we did in Section 4. For 8 < 1,
out of the domain of definition of speed, 7g(Laplace) does
not nicely extend, like in the Gaussian case. The proposed
model is limited a search within Lg with 8 > 1.
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Figure 10: Comparison between theoretical and sim-
ulated average precision in the Exponential case
when [ varies.

As a summary, with the proposed model, we have seen
that for an exponential pdf, the optimal similarity measure
within L,B is Ly.

6.3 Exponential of a Power

We have previously shown that the best similarity measure
within Lg is Ly when f is a Gaussian pdf and L; when f
is a Laplace pdf. A question arises: is there a direct link
between the power inside the exponential in the pdf and the
optimal value of 37

More formally, f is assumed to be:

<
oA

. 1 _
Z(’U|S,b) = WE s

The mean of v is zero and its variance is v2 = s
moment of order p is:

s L(b(p + 1))
(b)

[l =

and thus the speed is:

0 = T'%(3b) 2(b(3—1) +1)38°
T = 2 ()62 T(0)L(6(28 + 1)) — L2(b(B + 1))

Compared to the previous examples, formal maximization of
73 with respect to 3 is rather complicated. Thus, we have
numerically search for the curve of the best 3, for different
values of b.

The obtained results are shown in Fig. 11. Surprisingly, it
appears that L 1 is not in general the best similarity mea-

sure. For all 7 in [1,1.7364], L, is the best distance within
Lg, with 8 > 1. This may explain why L; shows better re-
sults compared to Ly and L4 in the experiments of Fig. 2.

6.4 Uniform

In Fig. 11, when } goes not infinity, i.e, when i(v|s, b) be-
comes the distribution function of a uniform random vari-
able, 3 seems to go towards infinity. To check this, we com-
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Figure 11: Best § as a function of % for a pdf in the
family i(v|s, b).

pute the speed in the case where the feature components
are uniform random variables. In such a case, the difference
of two components is a centered triangular random variable
(or Simpson [4]) with moments of order p:

- 02) 5
|11 j— 2&
(p+1)(p+2)
The obtained speed is defined for 8 > 1 as:

(B+1)*(B+2)°(28+1)
36ﬂ2(ﬁ+ 5)

Ta(triangle) =
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Figure 12: Comparison between predicted and ob-
served average precision in the uniform case when g
varies.

Another time, as shown in Fig. 12, the predicted and sim-
ulated average precisions are very close to each other for
B > 1. The curve is increasing from 8 = 1, and thus L is
the best similarity measure within Lg, 8 > 1, for a uniform
pdf.

7. OPTIMIZA TION OVER «



In the previous section, we optimized the similarity measure
over B. But as shown in Section 2, an optimization over «
is also of interest. To simplify the analysis, we assume that
B is fixed to 2, i.e §(v) = v>. Indeed, the Euclidean distance
implies interesting simplifications of the speed. First, the
speed becomes:
1
() = 1y =1

where k(v) = %‘g is the Pearson kurtosis. Second, we

V=T
can rewrite the speed directly as a function of of feature

components g and s:
1

(q—5)4 -1
(g—s)2

T (V) =

Since ¢ and s have the same pdf e, we have (¢ — s)?2 =
2¢% — 232, (g — s)* = 2¢* — 8¢%G + 6q_22, and thus:
1

ﬁ
a*—4¢37+3¢>" _ 4
2(¢2-g2)2

72(q) =

We now introduce the a parameter of similarity measures
Sa,2. By adapting the derivation of Section 3 where v =
g — s, to the case where v = ¢® — s* (¢ and s are assumed
positive), we deduce the following rectified precision:

r2(q) =

VN m a(Qa = D@2 +ag* T — (0= VTP

2 —  —
2q Zﬂ\/q‘la — 4g3eq® + 3q2a2

(12)

The rectified precision in (12) is written as the product of
two terms, as in (8). Similarly, the new speed can be defined
as:

2 2a=2 4 qpa-12 qa—2ga)2g22
o (20 =1)¢**=> + aq*~' — (a—1)¢*%q%)"q

8(q™ — 445 + 3P — 2 — 7))

Ta(q) =
(13)

The speed 7, is invariant with respect to the scale of gq.
The search for the best similarity measure within Sq 2 is
equivalent to maximizing the speed 7, (q) with respect to a.

7.1 Weibull
From Section 5, a more realistic pdf than exponential is the
Weibull distribution:
@ g1 —9*
w(gls,a) = ;qa te™s q>0
obtained by applying the power function za where z is an
1
exponential random variable. From [4], its mean is saI'(Z +
1), and its variance s= (T(241)-T?(1+1)). More generally,
its moment of order p is:

= 351“(5 +1)

After substitution of the previous moment equation in the
speed (13), we deduce the speed for a Weibull pdf as a func-
tion of a:
CE+1)-T*(c+1)° U2

8 Vo

Toa(Weibull) =

with Uy = (2a — 1)T(22=2 4+ 1) + aI?(2L + 1) — (a —
DI(22+1)I(2+1) and Vo = T(22 +1)—4T(32 + 1)T(2 +
1) +30%(2 +1) — 2(0(%2 + 1) — I*(2 + 1)), The speed
To(Weibull) is defined only when a > 0, > —%, o > —a+2
anda>1-3%.
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Figure 13: Comparison between predicted and ob-
served average precision in the exponential case
when « varies in S, 3.

As shown in a-diagrams of Fig. 13, where a = 1, the speed is

—2(q% — q_"‘Q)2 defined only for @ > 1. Nevertheless as shown by simulation,

it exists a value of « close to % where the simulated precision
is maximum. This can explain the results descibed in Sec. 2.

7.2 Designof Ground-truth Databases

In the previous sections, synthetic databases have been used
to validate the model by showing the fit between the pre-
dicted and simulated average precisions. Of course there is
not a good fit between simulation and theory for all kind
of synthetic databases. The synthetic database must be de-
signed in such a way that the measure of the simulated av-
erage precision is reliable.

From our experiments, we have inferred several specifica-
tions the synthetic database must follow:

e The standard deviation of the feature components should
be 5 times higher than the difference of means between
two feature components.

e The number of images N; per class should be higher
than 200.

e The size of the feature vector Ny should be higher than
100. If not the average precision becomes too noisy.

The last two rules are very important to help in designing
real ground-truth databases as used in Section 2. If these
specifications are followed, it is then possible to generalize,
to other image databases similar in content to the ground
truth-database, the best similarity measure obtained on the
ground-truth database.



8. CONCLUSIONS

We have shown how to derive the best similarity measure in
a set of similarity measures based on a proposed model of
image retrieval systems. The statistical model assumes in-
dependent feature components with same parametric model
for the pdfs but different means. To simplify the explana-
tions, we have assumed that the image database has two
classes, but the proposed model can be extended without
difficulties to a larger number of classes. This model is par-
tially tested on real data by fitting of feature components
over a dedicated database. For fitting color histograms, fam-
ily (7) which generalizes Gauss, Weibull and Gamma pdfs
seems convenient.

We hayve illustrated this derivation on several examples as-
suming Gaussian, exponential, uniform, and Weibull pdfs
for the feature variability. This derivation is useful when
the feature variability can be modeled by a known family
of parametric pdfs. To our knowledge, very little has been
done on modeling the variability of features used in image
retrieval systems. Nevertheless, this is probably a very im-
portant subject to study if we want to develop better image
retrieval systems.

If there is no way to derive a model for the feature variability,
a search of the best similarity measure can be performed on
a ground-truth database. This is an optimization problem
over the parameters of a set of similarity measures. The
parameterized set of similarity measures (1) is very con-
venient for such a purpose. In particular, we have shown
with these similarity measures interesting increases of aver-
age precision. We noticed that the best similarity measure
seems mainly related to the feature space rather than to
the choice of the database. From our tests on synthetic
databases, we inferred several rules than must be followed
in designing ground-truth databases for reliable conclusions
on the choice of the best similarity measure. If these spec-
ifications are followed, it is then possible to generalize, to
other image databases similar in content, the best similarity
measure obtained on the ground-truth database. To tackle
the over-fitting problem, rather than to use the central limit
theorem as we did, an interesting possibility is to use the
Berry-Eséen theorem [4] to obtain in which range the aver-
age precision is.

The first limit of the approach is that we assume indepen-
dent feature vector components. The second limit is that the
variances of the feature components are assumed equal. We
are planing to relax these assumptions in future works. The
main perspective of this work is to develop algorithms for
adapting the similarity measure parameters by performing
learning,.
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