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Abstract We consider the problem of multiple fitting of linearly parametrized curves, that

arises in many computer vision problems such as road scene analysis. Data extracted from

images usually contain non-Gaussian noise and outliers, which makes classical estimation

methods ineffective. In this paper, we first introduce a family of robust probability den-

sity functions which appears to be well-suited to many real-world problems. Also, such

noise models are suitable for defining continuation heuristics to escape shallow local min-

ima and their robustness is devised in terms of breakdown point. Second, the usual Iterative

Reweighted Least Squares (IRLS) robust estimator is extended to the problem of robustly es-

timating sets of linearly parametrized curves. The resulting, non convex optimization prob-

lem is tackled within a Lagrangian approach, leading to the so-called Simultaneous Robust

Multiple Fitting (SRMF) algorithm, whose global convergence to a local minimum is proved

using results from constrained optimization theory.

Keywords Non Convex problem · Constrained Optimisation · Primal and Dual Problem ·
Robust Estimators · Image Analysis

1 Introduction

In many scientific activities, a very common approach involves collecting n observations

(x1,y1), · · · ,(xn,yn) that take their values in R
p×R, and then finding the model that best fits

these data. The simplest regression model is the linear one:

yi = X(xi)
t Ã+bi i = 1, ....n (1)
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where Ã = (al)0≤l≤d is the vector of (unknown) model parameters, X(xi) = ( fl(xi))0≤l≤d

collects the values of some basis real functions at locations xi and bi is the random mea-

surement noise. X(xi) is also called design of the measurement (or experiment) (Mizera and

Müller 1999). We assume that the bi are independent and identically distributed (i.i.d.), and

centered.

Fig. 1 Images from two real-world road scene sequences. The data points are the centers of the horizonal

line segments (dark/blue pixels). Ouliers can be observed. The first or second degree simultaneous fits of

lane-markings are shown as thin light gray/green curves.

In real-world applications, bi are most of the time non-Gaussian and thus some gross er-

rors, called outliersmay be observed. This is illustrated in Fig. 1 in the context of road mark-

ing extraction from numerical images. In this application, horizontal segments (in dark/blue

pixels on the figure) that correspond to putative road marking elements are first extracted by

some low-level image processing (Veit et al. 2008). The centers of these segments constitute

the data points and the goal is then to fit the lane-markings curves plotted in bright/green

thin curves. Note that, while the generative model (1) is linear with respect to its parameters,

the resulting curves may be non-linear, as shown in Fig. 1. Of course, it is highly desirable

that outliers do not bias the estimation of the parameter vector A. The estimation problem

must then be set in a robust estimation framework.

Another characteristic of real-world problems is that several instances of the model may

be present in the same data set, as in Fig. 1. In some applications, heuristics may be em-

ployed to cluster the data and then, to separately fit each instance. However, in most cases, it

is better to simultaneously estimate the parameters of the whole model components, though

it is a more difficult problem (Tarel et al. 2007a, 2007b). In particular, the advantage of

simultaneous multiple fitting over separate fitting is the possibility of easily introducing ge-

ometric prior constraints between curves (see Tarel et al. 2007a, p. 55). This is exemplified
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in Fig. 2 in an application of road markings fitting to driver assistance. During this exper-

iment, the driver voluntarily changes lane. This causes discontinuities in the estimation of

the vehicle’s lateral position when separate single curve fittings are used, while constrained

simultaneous fitting ensures the continuity of detection.
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Fig. 2 Lateral position of the vehicle w.r.t. lane markings. (a) is the result when separate fitting is per-

formed. During the lane change manoeuver, a discontinuity is observed. (b) is the result obtained using the

simultaneous multiple fitting algorithm proposed in Sec. 5. The detection is continuous despite lane changes.

The contribution of the present paper is twofold. We first introduce a parametric family

of robust probability density functions, which allows using continuation heuristics to es-

cape shallow local minima, and devise their robustness properties in terms of breakdown

point along the lines of Mizera and Müller (1999). Second, we formulate the problem of

simultaneously estimating sets of linearly parametrized curves, in the robust framework.

The resulting, non-convex optimization problem is tackled within a Lagrangian approach

which leads to the so-called Simultaneous Robust Multiple Fitting (SRMF) algorithm. Its

global convergence (to a local minimum) is finally proved using results from constrained

optimization theory.

The organization of the paper is as follows. In Section 2, we relate the contributions of

the paper to existing works. In Section 3, we introduce our noise models and study their

robustness. The SRMF algorithm is derived in Section 4 and Section 5.

2 Relationship to prior works

Many robust estimators were already introduced in the literature, along with criteria that

measure their robustness. Among them, M-estimators (Huber 1984, Hampel et al. 1986) are

an efficient, deterministic alternative to stochastic approaches such as RANSAC (Fischler

and Bolles 1981), as illustrated for instance in Tarel et al. (2007a). In this approach, the

estimation of model parameter vector A is set as a Maximum-Likelihood Estimation (MLE)

problem. In the case of single curve fitting, since the sampled noise bi is considered i.i.d.,

the likelihood of the observation can be written as:

p((xi,yi)i=1...n|A) ∝
1

sn
e−

1
2 ∑n

i=1 φ((
Xt
i
A−yi
s )2), (2)

where ∝ denotes the equality up to a factor and s is a scale parameter. Some examples of

the function φ are given in Section 3. Taking −ln of the likelihood leads to the associated

robust error function:

eR(A) =
1

2

n

∑
i=1

φ((
X t
i A− yi

s
)2). (3)
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Estimating A thus amounts to minimizing (3). The role of φ is to saturate the error in case of a

large scaled residual |bi|= |X t
i A−yi|, and thus to lower the importance of outliers. Note that

in Huber (1984) only convex robust error functions (3) were considered. As noticed in Black

and Rangarajan (1996), M-estimators are strongly related to the half-quadratic approach

(Geman and Reynolds 1992, Charbonnier et al. 1997), which was developed independently,

in the field of inverse problem regularization in image processing. In this framework, the

class of applicable functions has first been unlocked to non-convex functions with horizontal

asymptotes in Geman and Reynolds (1992). Then, it was further extended to a wider class

of functions in Charbonnier et al. (1997) where it is shown that φ(t) must fulfill several

hypotheses, above which the most important can be written, in our notation, as:

– H0: φ is defined and continuous on [0,+∞[ as its first and second derivatives,
– H1: φ ′(t) > 0 (thus φ is increasing),

– H2: φ ′′(t) < 0 (thus φ is concave).

The estimation of A may be performed using stochastic algorithms, but they are quite slow.

Moreover, nonlinear deterministic descent algorithms can be relatively slow around local

minima, when the gradient slope is near zero. Alternatively, half-quadratic theory replaces

the minimization of (3) by a series of quadratic minimizations, via the introduction of an

auxiliary variable, called weight in the field of robust estimation, that we will denote as

λ . This is indeed a principled way of linearizing the normal equations associated with the

optimization of (3), leading to the so-called Iterative Reweighted Least Squares (IRLS) al-

gorithm, which is most of the times used in robust estimation:

1. Initialize A0, and set the iteration index to k = 1.

2. For all indexes i (1≤ i≤ n), compute the auxiliary variables wk
i = (

X t
i A

k−1−yi
s

)2 and the

weights λ k
i = φ ′(wk

i ).
3. Solve the linear system ∑n

i=1 λ k
i XiX

t
i A

k = ∑n
i=1 λ k

i Xiyi.

4. If ‖Ak−Ak−1‖ > ε , increment k, and go to 2, else A = Ak.

The convergence of such alternating minimization schemes (i.e. the augmented half-quadratic

error is alternately minimized with respect to λ and A) has been studied by several au-

thors, e.g. by Charbonnier et al. (1997), Huber (1981), Delaney and Bresler (1998), Nosmas

(1999), and Allain et al. (2006). The convergence of the algorithm to the global minimum is

shown as long as the robust error (3) is convex (see Huber 1984, Charbonnier et al. 1997).

In the non-convex case, provided that critical points are isolated, the convergence to a local

minimum can be shown, see e.g. Delaney and Bresler (1998) and Nosmas (1999). To tackle

the non convexity of the optimization problem, and to avoid getting trapped in a shallow

local minimum far from the global optimum, a continuation heuristic called Graduated Non

Convexity (GNC) (Blake and Zisserman 1987) can be employed. It is based on tracking a

series of local minima expected to be close to the global one. To this end, (3) is approximated

by a series of parametric functions, whose first occurrence is convex and the following ones

are progressively adjusted to the original non convex error (hence the name of the method).

There are several possibilities of deriving half-quadratic criteria, and hence, the IRLS

algorithm: quadratic approximation of the robust error (Huber 1981), analytic exploitation

of the convexity of −φ (see Geman and Reynolds 1992, Charbonnier et al. 1997), and Leg-

endre duality (which also relies on convexity; see Aubert and Kornprobst 2006). In Tarel et

al. (2002), we revisited the half-quadratic theory in the Lagrangian approach, which makes

convergence proofs easier by setting the estimation problem as a consequence of Kuhn and

Tucker’s theorem. Moreover, extensions to different kinds of problems such as affine regis-

tration (Tarel et al. 2007c) and parametric region fitting (Bigorgne and Tarel 2007) can be

developed within this formalism.
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The effectiveness of M-estimators is related to the notion of breakdown point, which

was introduced in Rousseeuw (1987). Later on, the breakdown point of a specific class

of M-estimators was derived in Mizera and Müller (1999). In this paper, we introduce a

family of Non-Gaussian noise models that we found well suited for robust estimation in

image analysis applications (Tarel et al. 2007a, Ieng et al. 2007). This parametric family of

function allows a continuous transition between convex and non-convex functions, hence it

is suitable for applying a GNC strategy, as illustrated in Sec. 3.2. Moreover, following the

lines of Mizera and Müller (1999), we propose a theoretical study of their robustness, which

shows that the breakdown point is directly related to the parameter of the pdf family and can

reach the maximum achievable value of 50%.

Note that all the above presentation is limited to the case of single model fitting. Indeed,

to our knowledge, no extension to the simultaneous fitting of several curves exists in the

literature. The algorithm we study in this paper is hence original.

3 Non-Gaussian Noise Models

We now focus on a particular parametric family of probability density functions (pdf’s):

pd f (b) ∝ e−φ(b2), where φ exhibits interesting properties. For an easier presentation of this

section, we introduce the potential function ρ(u) = φ(u2).

3.1 Parametric noise models

A first interesting family of pdf’s is the stretched exponential family (also called generalized

Laplacian, or generalized Gaussian, see Srivastava et al. 2003):

Eα ,s(b) =
α

sΓ ( 1
2α )

e−(( bs )2)α
(4)

The two parameters of this family are the scale s and the power α . The latter specifies the

shape of the noise model. Moreover, α allows a continuous transition between two well-

known statistical laws: Gaussian (α = 1) and Laplacian (α = 1
2
). The associated ρ function

is ρEα (u) = (u2)α with u = b
s
, so φEα (t) = tα , with t = b2

s2
.

As explained in Sec. 4, to guarantee the convergence of the SRMF algorithm, the φ ′

function, related to ρ ′ by φ ′(u2) = ρ ′(u)
2u

, has to be defined on [0,+∞[. This is not the case

for α ≤ 1
2
in the stretched exponential family. Therefore, the so-called smooth exponential

family (SEF) Sα ,s was introduced first in Tarel et al. (2002):

Sα ,s(b) ∝
1

s
e−

1
2 ρα ( bs ) (5)

where ρα(u) = 1
α ((1+u2)α −1). The associated φ function is φSα (t) = 1

α ((1+ t)α −1).
As for the stretched exponential family, α allows a continuous transition between well-

known statistical laws such as Gauss (α = 1), smooth Laplace (α = 1
2
) and Cauchy (α =

0), see Tab. 1. In the smooth exponential family, when α is decreasing, the probability to

observe very large errors corresponding to outliers, increases. algo We note that pdf’s in

the SEF fulfill the necessary hypotheses H0-H2. Moreover, recall that the weight in half-

quadratic algorithms is λ = φ ′( b
2

s2
) which, for the SEF reduces to φ ′

Sα
= (1+ t)α−1, see

Tab. 1. Notice that while the pdf is not defined when α = 0, the corresponding weight does

and that it is the same as for the Cauchy law.
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Table 1 List of classical noise models within the smooth exponential family (SEF).

α φSα (t) weight=φ ′
Sα

(t) pdf name

1 t 1 Gauss
1
2

2(
√
1+ t−1) 1√

1+t
smooth Laplace

0 equiv. to ln(1+ t) 1
1+t

Cauchy

3.2 The Graduated Non Convexity (GNC) Heuristic

The weight λ , used in the IRLS algorithm, becomes more sharply peaked and heavily tailed

when α decreases. As a consequence, the lower α , the lower the effect of outliers on the

result and thus, the more robust the fitting. However, when α decreases, the robust error

function eR(A) becomes less and less smooth. If α = 1, the cost function is a paraboloid and

thus there exists a unique global minimum. By decreasing α to values lower than 1
2
, local

minima appear. This is illustrated in Figure 3 where the robust error function eR(A) is shown
for four decreasing values of α .
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Fig. 3 The robust error function eR(A) for an example of scalar data with two clusters, for different values

of α . Notice the progressive appearance of the second minimum while α decreases.

Following the principle of the GNC method (Blake and Zisserman 1987), the localiza-

tion property of the robust fitting w.r.t. the decreasing parameter α can be used to converge

toward a local minimum close to the global one. Convexity is first enforced using α = 1.

Then, a sequence of fits with decreasing α , is performed in continuation, i.e. each time

using the current output fit as an initial value for the next fitting step. Of course, α must be

decreased slowly, unless the curve fitting algorithm might be trapped into a shallow local

minimum far from the global one.
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3.3 Robustness Study

The parameter of the SEF not only provides means of controlling the shape of the data dis-

tribution. Indeed, we will show below, as the following lemma claims, that α also provides

means of measuring the robustness of the proposed robust estimator family.

Lemma 1 The breakdown point of SEF estimators is increasing towards the maximum

achievable value, that is 50%, as α ∈]0,0.5] decreases. The maximum goes to 50% when

α → 0.

To prove this lemma, we first need to recall some results from robust statistics. Follow-

ing Mizera and Müller (1999), in the fixed design case, the robustness of an M-estimator

is characterized by its breakdown point, which is defined as the maximum percentage of

outliers the estimator is able to cope with:

ε∗(Â,Y,X) =
1

n
min{m : sup

Ỹ∈B(Y,m)

‖Â(Ỹ ,X)‖ = ∞} (6)

where Ỹ is a corrupted data set obtained by arbitrary changing at most m samples (among

the n samples of the data vector), B is the set of all Ỹ : B(Y,m) = {Ỹ : card{k : ỹk 6= yk}≤m}
and Â(Ỹ ,X) is an estimate of A from Ỹ . It is important to notice that the previous definition is

different from the one proposed in Rousseeuw (1987) which is not suited to the fixed design

setting. As Rousseeuw (1987, page 183) shows, the maximum value of ε∗(Â,Y,X) is 50%.

Mizera and Müller (1999) also provide several results that are crucial in our work. First

they emphasize the notion of regularly varying functions, and describe the link between this

kind of regularity and robustness property. By definition, f varies regularly if there exists a

r such that:

lim
t→∞

f (tb)

f (t)
= br (7)

When the exponent r equals zero, the function is said to vary slowly, i.e. the function is

heavily tailed.

Following Mizera and Müller (1999), we assume that the ρ function of the M-estimator

follows the four following conditions:

1. ρ is even, non decreasing on R
+ and non negative,

2. ρ is unbounded,

3. ρ varies regularly with an exponent r ≥ 0,

4. ρ is sub-additive: ∃L > 0, ∀t,s≥ 0, ρ(s+ t) ≤ ρ(s)+ρ(t)+L.

Under these conditions, it is shown in Mizera and Müller (1999) that the breakdown point

ε∗ is bounded by M(X ,r), a function of the exponent r. More specifically, this function

is decreasing with respect to r. Its maximum is reached for r = 0 and corresponds to the

maximum achievable breakdown point of 50%.

The advantage of these results is obvious when compared to previous work that only

provided robustness measures for specific estimators (Rousseeuw 1987): it enables an easy

evaluation of the robustness of a large class of M-estimator. In particular, we can apply these

results to the SEF and sketch the proof of lemma 1.
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Proof of Lemma 1: First, let us check the four above conditions on the ρα function. Func-

tion ρα is clearly even, non decreasing on R
+ and non negative. The first condition is thus

satisfied. The second one is fulfilled only when α > 0, due to the fact that ρα is bounded for

α ≤ 0. Looking at the ratio:

ρα(tb)

ρα(t)
=

(1+ t2b2)α −1

(1+ t2)α −1
=

( 1
t2

+b2)α − 1
t2α

( 1
t2

+1)α − 1
t2α

we see that when α > 0, limt→∞
ρα (tb)
ρα (t) = b2α . As a consequence, the ρα function varies reg-

ularly and the third condition is also satisfied. For the fourth condition, we can use Huber’s

Lemma 4.2 (Huber 1984) to prove the sub-additivity when α ∈]0,0.5[. For α = 0.5, it can
also be proved that ρα is sub-additive. All conditions on ρα being fulfilled, Mizera’s results

can be applied with r = 2α to derive lemma 1.

4 Multiple Robust Fitting

It is possible to set and solve the problem of simultaneously fitting ofm linearly parametrized

curves in a robust way, where m is a priori fixed. Each individual curve is explicitly de-

scribed by a parameter vector Ã j, 1 ≤ j ≤ m. The observations, y, are given by the linear

generative model:

y = X t Ã j +b (8)

The vectors of each curve are of dimension d + 1. Our goal is to simultaneously estimate

the m curve parameter vectors A j=1,··· ,m from the whole set of n data points (xi,yi), i =
1, · · · ,n. The probability of a measurement point (xi,yi), given the m curves is the sum of

the probabilities over each curve:

pi((xi,yi)|A j=1,··· ,m) ∝
1

s

m

∑
j=1

e−
1
2 φ((

Xt
i
A j−yi
s )2).

Concatenating all curves parameters into a single vector A= (A j), j = 1, · · · ,m of dimension

m(d+1), and assuming statistically independent measurements, we can write the probability

of the whole set of points as the product of the individual probabilities:

p((xi,yi)i=1,··· ,n|A) ∝
1

sn

n

∏
i=1

m

∑
j=1

e−
1
2 φ((

Xt
i
A j−yi
s )2) (9)

Maximizing the likelihood p(A|(xi,yi)i=1,··· ,n) is equivalent, after taking logarithms, to max-

imizing the following error :

(P)

{

eMLE(A) =
n

∑
i=1

ln(
m

∑
j=1

e−
1
2 φ((

Xt
i
A j−yi
s )2)) (10)

As in the single-model case, φ(t) must fulfill the hypotheses H0, H1 and H2. We introduce

the following associated constrained problem for any fixed A:

(P′)











minW E(A,W ) = ∑n
i=1 ln(∑

m
j=1 e

− 1
2 φ(wi j)),

such that

hi j(A,W ) = wi j− (
X t
i A j−yi

s
)2 ≤ 0, 1≤ i≤ n,1≤ j ≤ m

(11)
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whereW = (wi j) with 1≤ i≤ n and 1≤ j ≤ m.

In multiple fitting, nm auxiliary variableswi j and constraints hi j(A,W )=wi j−(
X t
i A j−yi

s
)2 ≤

0 are introduced instead of n in the single fitting case. In order to solve this constrained

problem, we first check the constraints qualification (CQ) hypothesis. According to lemma 2

(chapter 5) in Minoux (1986), the CQ hypothesis is met when the gradients of saturated con-

straints functions are linearly independent. Indeed, in the present problem, for any i ∈ [1,n]
and any j ∈ [1,m],

∂hi j
∂wkl

= δ(i, j),(k,l) =

{

1 i = k, j = l

0 otherwise
(12)

Thus the gradients ∇hi j are independent and hence the constraints are qualified.

We now focus on the minimization of E(A,W ) w.r.t. W only, subject to the same nm

constraints, for any fixed A. We introduce a classical result of convex analysis (Boyd and

Vandenberghe 2004): the function g(Z) = ln(∑m
j=1 e

z j ) is convex. Due toH1 andH2,−φ(w)
is convex and decreasing. Therefore, E(A,W ) w.r.t. W is convex as a sum of functions g

composed with −φ . Moreover, E(A,W ) is continuously differentiable because it is a sum

of differentiable functions, the minimization of E(A,W ) w.r.t.W is well-posed because with

the CQ hypothesis, it is a minimization of a convex function subject to qualified constraints.

We are thus allowed to apply theorem 6 (chapter 5) in Minoux (1986): if a solution exists,

the minimization of E(A,W ) w.r.t.W is equivalent to search for the unique saddle point of

the Lagrange function of the problem:

LR(A,W,Λ) =
n

∑
i=1

ln(
m

∑
j=1

e−
1
2 φ(wi j))+

n

∑
i=1

m

∑
j=1

1

2
λi j(wi j− (

X t
i A j− yi

s
)2)

where Λ = (λi j),1≤ i≤ n,1≤ j ≤ m are Kuhn and Tucker multipliers (λi j ≥ 0).
For any fixed A, by differentiating w.r.t wi j and by checking Kuhn and Tucker conditions:

{

∇WLR(A,W,Λ) = 0

λi jhi j(A,W ) = 0,1≤ i≤ n,1≤ j ≤ m
(13)

we deduce that the solution of the problem is such that:

λi j =
e−

1
2 φ(wi j)

∑m
k=1 e

− 1
2 φ(wik)

φ ′(wi j),1≤ i≤ n,1≤ j ≤ m, (14)

Thus, from hypothesis H1, we deduce that λi j > 0 and, as a consequence, always using

Kuhn and Tucker conditions, we have that all constraints are saturated. Thus, solutions of

(P′) are such that:

wi j = (
X t
i A j− yi

s
)2,1≤ i≤ n,1≤ j ≤ m (15)

More formally, we have proved that for any fixed A, the constrained problem (P′) is

equivalent to:

min
W

max
Λ

LR(A,W,Λ) (16)

Thanks to the saddle point existence, we can solve the constrained problem by using

primal and dual approaches. The primal approach only gives equations (14) and (15).

At this step, the advantage of our approach becomes obvious: the Lagrange function LR
is quadratic w.r.t. A, unlike the original problem (P). Hence, the dual approach allows us

to find the optimal value of A. Using the saddle point property, we can change the order of
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variablesW andΛ in (16). We now introduce the dual function E (A,Λ) =minW LR(A,W,Λ)
and instead of solving (P′), we will solve the dual form problem (D):

(D)

{

max
A,Λ

E (A,Λ) (17)

¿From property 2 (chapter 6) in Minoux (1986), E (A,Λ) is proved to be concave w.r.t.

Λ . The dual function is also clearly quadratic and concave w.r.t. A. Nevertheless, E (A,Λ) is
not proved to be concave w.r.t. both A andΛ but can be maximized w.r.t. A andΛ alternately.

Finally, it is necessary to make the connection between problem (P) and (D):

Theorem 1 A local solution of problem (D) is also a local solution of problem (P).

Thanks to the concavity of the dual function w.r.t , let V be a vicinity of small enough

so that for any A V and any ,

Proof: Let (Ã,Λ̃) be a local solution of (D). Thanks to the concavity of the dual function

w.r.t Λ , let V be a vicinity of Ã small enough so that for any A ∈ V , and for any Λ ,

E (Ã,Λ̃) ≥ E (A,Λ)

If Â is a local solution of (P), we define Ŵ by substituting Â in (15) and Λ̂ by substituting Â

in (14). If Â ∈ V , we deduce

E (Ã,Λ̃) ≥ E (Â,Λ̂)

From the definition of E (A,Λ) and of LR, we deduce:

LR(Ã,W̃ ,Λ̃) =
n

∑
i=1

ln(
m

∑
j=1

e−
1
2 φ((

Xt
i
Ã j−yi
s )2)) ≥ LR(Â,Ŵ ,Λ̂) =

n

∑
i=1

ln(
m

∑
j=1

e−
1
2 φ((

Xt
i
Â j−yi
s )2))

Therefore Ã is also a local solution of (P) and for V small enough, Ã = Â.

5 Simultaneous Robust Multiple Fitting Algorithm (SRMF)

The algorithm consists in maximizing E (A,Λ)w.r.t. A andΛ alternately. Finding maxΛ E (A,Λ)
along with Kuhn and Tucker’s conditions lead to equations (15), (14) and seeking maxA j

E (A,Λ)
leads to:

(
n

∑
i=1

λi jXiX
t
i )A j =

n

∑
i=1

λi jyiXi, 1≤ j ≤ m (18)

As already stated, the function E (A,Λ) is concave and quadratic w.r.t. A and concave

w.r.t. Λ . As a consequence, this implies that such an algorithm always strictly increases the

dual function if the current point is not a stationary point of the dual function (Luenberger

1973). The problem of stationary points is easy to be solved by checking the negativeness of

the Hessian matrix of E (A,Λ). If this matrix is not negative, we disturb the solution so that it

starts converging to a local maximum. Along with Theorem 1, this proves that the following

algorithm is globally convergent, i.e., it converges toward a local minimum of eMLE(A) for
all initial A0’s which are neither a maximum nor a saddle point (assuming isolated critical

points).

The Simultaneous Robust Multiple Fitting algorithm (SRMF) is written as:
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1. Initialize the number of curves m, the vector A0 = (A0
j), 1 ≤ j ≤ m, which gathers all

curves parameters and set the iteration index to k = 1.

2. For all indexes i, 1 ≤ i ≤ n, and j, 1 ≤ j ≤ m, compute the auxiliary variables wk
i j =

(
X t
i A

k−1
j −yi

s
)2 and the weights λ k

i j =
ε ′+e

− 1
2

φ(wk
i j

)

mε ′+∑m
j=1 e

− 1
2

φ(wk
i j

)
φ ′(wk

i j).

3. Solve the linear system:

BAk =







∑n
i=1 λ k

i1yiXi
...

∑n
i=1 λ k

imyiXi







4. If ‖Ak−Ak−1‖ > ε , increment k, and go to 2, else the solution is A = Ak.

In the above algorithm, B is the block-diagonal matrix whose m diagonal blocks are the

matrices ∑n
i=1 λ k

i jXiX
t
i of size (d + 1)× (d+ 1), with 1≤ j ≤ m. The complexity is O(nm)

for the step 2, and O(m2(d+1)2) for the step 3 of the algorithm.

In practice, some care must be taken to avoid numerical problems. It is important that

the denominator in (14) be numerically non-zero, even for data points located far from all

curves. Zero probabilities are banned by adding a small value ε ′ (equal to the machine

precision) to the exponential in the probability pi of a measurement point. As a consequence,

when a point with index i is far from all curves, φ ′(wi j) is weighted by a constant factor,

1/m, in (14).

Finally, let us notice that the IRLS can be seen as a special case of the SRMF algorithm

with m= 1. Compared to the IRLS, the λi j are weighted by an extra probability ratio, which

is widely used in clustering algorithms as a membership function. In other words, the SRMF

algorithm at the same time classifies the data points and performs the multiple simultaneous

robust fitting.

6 Conclusion

When regression methods are applied to real data such as image analysis, the robust theory is

requested. Indeed, noise on extracted data is generally non-Gaussian and several instances

of object of interest may be observed in practice. In such cases, the proposed Simultane-

ous Robust Multiple Fitting (SRMF) algorithm may help when the problem can be linearly

parametrized. Numerically, this leads to a non-convex optimisation problem from which the

algorithm can be derived following classical primal-dual approach. To reduce the depen-

dency to the initial conditions, we introduced a parametric pdf family called SEF. Thanks

to the GNC heuristic, this family allows to better escape to local minima, as we observed

in practice. We thus also provide a study on the value of the breakdown point for the pdf’s

within this family.
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